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Abstract—For scalable 3-D FFT computation using multiple
GPUs, efficient all-to-all communication between GPUs is the
most important factor in good performance. Implementations
with point-to-point MPI library functions and CUDA memory
copy APIs typically exhibit very large overheads especially for
small message sizes in all-to-all communications between many
nodes. We propose several schemes to minimize the overheads,
including employment of lower-level API of InfiniBand to effec-
tively overlap intra- and inter-node communication, as well as
auto-tuning strategies to control scheduling and determine rail
assignments. As a result we achieve very good strong scalability as
well as good performance, up to 4.8TFLOPS using 256 nodes of
TSUBAME 2.0 Supercomputer (768 GPUs) in double precision.

I. INTRODUCTION

Fast Fourier Transform (FFT) [1], [2] is one of the most
important computational scheme as well as being commonly
used as a powerful tool to reduce the amount of overall
calculation by transforming operations into that in spectral
space. FFT is used not only in many multimedia applications
including signal processing, audio recognition, image process-
ing, decoders/encoders, but also in large scale simulations in
various fields such as weather/climate, molecular dynamics,
and fusion. In particular, 3-D FFT is mainly used in high
performance computing applications such as direct numerical
simulations [3] and Protein docking simulations [4], [5], in
which FFT becomes the dominant kernel. As a result, typically
FFT is a key part of computational benchmarks; as such
most of processor vendors, compiler vendors and OS vendors
provide highly optimized FFT libraries for their products.

GPGPU [6], i.e. use of Graphics Processing Unit (GPU)
for general-purpose computation, is now focused especially in
high performance computing area due to its high floating-point
performance, high memory bandwidth as well as high power
efficiency. FFT was ported to GPUs very early on [7], [8];
initially FFT implementation was designed as a shader code
executed in the graphics pipeline, therefore there were many
limitations and overheads. Henceforth, the programmability
of GPU was extended continuously so as to enable high
quality graphics rendering using more complex shader code.
The by-product of this was that general-purpose programming
also became easier. Then NVIDIA introduced CUDA GPU
architecture [9] and the CUDA language, both of which were
optimized for GPGPU computations. By the use of CUDA,
several implementations of high-performance FFT [10], [11],

[12] were proposed, in addition to NVIDIA’s CUFFT library.
Also, there are several works on auto-tuning FFT implementa-
tions for CUDA GPUs [13], [14], achieving high performance
across many kinds of GPU products and transform sizes.

CUDA applications can be extended into multiple GPUs
using OpenMP, MPI, and other standard parallel program-
ming framework. The use of multiple GPUs increases the
performance as well as capacity of the device memory. Some
CUDA applications are forced to use multiple GPUs due to the
limitation of the capacity. However, a major issue arises here:
we need to effectively manage the global data transfer between
GPUs, and typically communication becomes dominant part of
the multi-node FFT implementations.

In an earlier work we extended single GPU implementation
of 3-D FFT into multiple GPUs using MPI+CUDA [15]. The
implementation was fairly straightforward; however it was
very difficult to achieve scalable performance, even for small
number of GPUs. The primary reason for the poor scalability
was that, when we increased the number of nodes, the message
size in all-to-all communication became increasing smaller.
Overall, overheads in data transfer operations were quite large
in multi-node FFTs, especially with GPUs.

Today, numerous FFT libraries are available, but their
interfaces of library functions are often similar. Typically, an
FFT library would have two library functions; one function
that performs initialization (or planning), followed by another
which actually computes FFT. Some libraries also conduct
auto-tuning during initialization. In general, an application
repeatedly calls FFTs of same transform size. For this rea-
son, many libraries provide separate initialization routines to
minimize the overheads of FFT computation itself during the
main iterations. We should minimize the overheads in the same
way to improve the scalability of 3-D FFT when using multiple
GPUs.

We propose to minimize the overhead by combination
of several strategies. In order to minimize the overheads,
we carefully optimize the scheduling of the data transfers
using low-level IBverbs API and CUDA API, and effectively
overlap intra- and inter-node communication in an aggressive
fashion. Another problem is network congestion in large-scale
InfiniBand network, and we propose to dynamically select
from multiple rails automatically to avoid network congestions
caused by busy traffic or faults in the InfiniBand itself. Finally,
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we auto-tune the parameters to obtain the best results, both
statically as well as dynamically. The result is dramatic—
we achieve very good strong scalability as well as good
performance, achieving up to 4.8TFLOPS performance using
256 nodes of TSUBAME 2.0 Supercomputer (768 GPUs),
several times faster than reported in comparable work.

The rest of this paper is composed as follows. Section 2
summarizes the results of typical implementation of multi-
GPU 3-D FFT using CUDA and MPI. In Section 3, we
propose several optimizations to improve the scalability of all-
to-all communication in multi-GPU 3-D FFT. In Section 4,
we evaluated the proposed optimizations. Section 5 describes
related works, and conclusions in Section 6.

II. BACKGROUND

Many GPU environments nowadays are multi-GPUs. Work-
stations typically now accept multiple GPUs, and there are
large-scale GPU cluster system with thousands of GPUs such
as our Tokyo Tech.’s TSUBAME2.0. Across such environ-
ments, GPU applications can use algorithms that are tailored
for theoretically unlimited number of GPUs, up to the point of
their physically availability. Such multi-GPU environments can
be fundamentally categorized as distributed memory parallel
computer systems, whereupon numerous FFT implementations
research had been conducted. [3], [16], [17], [18], [19], [20],
[21].

3-D FFT computes 1-D FFTs for each dimension of 3-
D array data. To compute the 1-D FFT efficiently, all the
data along the dimension should be located on the same
node. We need to exchange data between nodes during the
computation of 3-D FFT on distributed memory systems,
where data distribution depends on the application. In the case
of a typical 1-D distribution, the computation of 3-D FFT
can be done as follows, where we need only one all-to-all
communication.

Step 0. Initial data as (NX, NY, NZ/P).
Step 1. Perform 2-D FFT for dimension X&Y.
Step 2. Shuffle data as (NX, NY/P, NZ).
Step 3. Perform 1-D FFT for dimension Z.

On the other hand, after those three steps (1∼3), data distri-
bution is different from the initial one, but data distribution
change during the transform is usually accommodated for in
the applications themselves to obtain maximum performance.
For example, several applications call inverse transform after
forward transform and they have no limitation in the data
distribution between the transforms, such as three-dimensional
reference interaction side model (3D-RISM) [22], [23], [24]
and many convolution-based applications including docking
simulations [4], [5].

In most FFT implementations, it is most important to
optimize the all-to-all communication between nodes, even
sacrificing the data distribution uniformity as above, as the
data transfer between the compute nodes are the bottleneck
in parallel computations of FFT. However, matters become
more complicated for coprocessor implementations such as
with GPUs: In addition to the host CPU memory, GPU devices

TABLE I
SPECIFICATIONS OF TSUBAME 2.0 THIN NODE (HP SL390G7, 1408

UNITS)

Component Model
CPU Intel Xeon X5670 (6-core, 2.93GHz)×2
Memory 54GB, DDR3-1600 Triple-Channel×2 sockets
GPU NVIDIA Tesla M2050 (3GB)×3
Network Mellanox QDR x4 InfiniBand ConnectX-2 HCA×2
OS SUSE Linux Enterprise Server 11 SP1
MPI OpenMPI 1.4.2
CUDA Tool Version 4.1, Driver Version 285.05.09
IBverbs Version 1.1.4
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Fig. 2. Block diagram of TSUBAME 2.0 Thin node.

have local device memory which allows fast access from GPU.
In CUDA, we use CUDA memory copy API for data transfer
between host memory and GPU devices whereas MPI library
for data transfer between nodes. As a result, data transfer
between GPU devices requires three steps: CUDA device-to-
host transfer, MPI transfer, and CUDA host-to-device transfer.
Since multi-GPU FFT would require all-to-all communication
between GPU devices, the simplest implementation would
be to use MPI Alltoall() routine in combination with CUDA
memory copy operations as pre- and post-ambles. NVIDIA
Fermi GPUs support efficient memory copy operation of
block-stride patterns using CUDA 2-D memory copy API
functions.

Such an implementation is simple, but not optimal because
DMA controllers of GPU devices are idle during the all-to-all
communication between nodes. Furthermore, CUDA memory
copy operations of two directions, host-to-device and device-
to-host, are not overlapped, and wastes bi-directional PCI-
Express as well as inter-processor link bandwidth such as QPI
or HyperTransport. In order to maximize bandwidth usage in
the system, we propose to employ software-pipelining for the
three steps to perform all the transfers simultaneously, but this
would result in splitting the MPI all-to-all communication into
many point-to-point communications, which would not be very
efficient for small payloads.

Figure 1 shows the strong scalability of a simple implemen-
tation of N3 3-D FFT on TSUBAME 2.0 Thin nodes using
CUDA 4.1 and OpenMPI 1.4.2. Table I and Figure 2 show the
specifications and the block diagram of the TSUBAME 2.0
Thin node respectively. On-board 1-D and 2-D FFT compu-
tations use corresponding functions of the NukadaFFT library
[25], which enables 1-D FFT computations for dimension Z
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Fig. 1. Strong scalability of a simple N3 3-D FFT implementation using MPI library and CUDA APIs straightforwardly. Only one GPU is used on each
node to maximize bandwidth. CUDA memory copy operations and MPI data transfers are performed concurrently.

1 without transpose operation [10], and optimizes for varying
dimensional sizes using auto-tuning [13].

Since the aggregate bandwidth between compute nodes is
theoretically proportional to the number of compute nodes in
full fat-tree network topology as TSUBAME 2.0, the increase
in the number of compute nodes should proportionally speed-
up not only the on-board FFT part but also all-to-all com-
munication between GPUs in FFT computation. For smaller
numbers of nodes, performance is well scalable as shown in
the graph. For larger numbers of nodes, however, the perfor-
mance quickly saturates except for the N = 1024 case. That
is because the message size in the all-to-all communication
becomes too small to achieve high data transfer rate. When
computing 2563 3-D FFT using 128 nodes, the message size
is only 16KBytes.

III. IMPROVING SCALABILITY OF MULTI-GPU 3-D FFT
We observed that the performance of 3-D FFT is not very

scalable for large number of nodes. This is in contrast to on-
board FFT computation where NukadaFFT exhibited strong
scalability up to the limit of GPU memory. This is largely
due to all-to-all communication not being scalable, because
of the large overhead in transferring very small messages.
Furthermore, all-to-all communication between large number
of nodes easily suffers from network congestion, despite
efforts by the modern MPI implementations to avoid them. For
scalable all-to-all communication between GPUs, we need to
solve these two major problems.

Our contributions described in this section are as follows:
• We employ low-level InfiniBand API to minimize the

overhead of small message transfers, and to control the
scheduling of the data transfers.

• The low-level API also allows selection of the InfiniBand
rails for each data transfer. Using the multiple InfiniBand

1nufftPlan0d() library function creates a plan which performs 1-D FFTs
only for dimension Y of a 3-D array. We can use this for dimension Z by
assuming (NxNy , Nz , 1) 3-D array.

rails, we resolve the problem of congestion in InfiniBand
networks.

Our contribution is not InfiniBand-specific, or limited to
FFT alone. Rather, our technique is applicable to important
class of algorithms such as FFT that require high performance
all-to-all communications between GPUs. What we point out
is that, by facilitating lower-level APIs than what is available
with MPI, that (1) allow to overlap communications effectively
along the communication path, and (2) facilitate path selection
when multiple network routing paths are available, algorithms
that require high-bandwidth could greatly benefit.

A. Reducing Overheads

Today, MPI is de facto standard programming model for
distributed memory systems. Using the MPI library, we do
not have to consider underlying hardware interconnect such as
InfiniBand, Ethernet, or even proprietary ones such as those
on Cray XT/XE, IBM BlueGene, Fujitsu K/FX-10, even if the
nodes have multiple network rails or allow for multiple routing
paths. As a sacrifice of such simplicity, however, we are not
able to control the details of the behaviors of some MPI library
functions, and would result in large overhead especially in the
case of small message sizes.

As discussed above, achieving high-performance on band-
width intensive algorithms such as FFTs require much finer
and intricate control of the network, especially for GPUs. In
this particular work, we utilize use IBverbs API for all-to-all
communication instead of point-to-point MPI library routines.
IBverbs is a portable, lower-level API for InfiniBand networks;
to perform an RDMA transfer between nodes using InfiniBand,
we must (1) establish connection between the nodes, (2)
register the memory buffer used for RDMA, (3) exchange
access keys for the buffer, (4) post request for RDMA transfer,
and (5) wait for completion using IBverbs API functions. In
practice, we need to execute the steps (1)∼(3) only once if
we maintain the established connections and re-use the same
buffers and other resources, an optimization not explicitly
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Fig. 3. An example of the data transfer scheduling using CUDA and IBverbs
for dual-rail InfiniBand (Rank #0).

controllable with MPI. If the compute nodes have multiple
InfiniBand HCAs or ports, the API allows us to manually
choose the InfiniBand rails used for each peer node. This
is useful in all-to-all communications to prevent the small
message to each peer node from being split into smaller
messages for multiple rails, which might cause performance
degradation seen in some MPIs that implement all-to-all on
top of its peer-to-peer API.

For our work, for portability we use the IBverbs APIs only
for actual data transfers in all-to-all communications, where
performance is critical. MPI library functions are used for
other communication that are less performance critical, such
as synchronization, reduction and gather operations, and our
3-D FFT routine works correctly when linked with existing
MPI-based application codes.

Figure 3 shows an example of data transfer scheduling using
CUDA and IBverbs for dual-rail InfiniBand network such as
TSUBAME2.0. We use simple ring scheduling in the all-to-
all communication. When a node with rank P receives data
from rank P − k, the rank P also sends data to rank P + k
simultaneously, effectively pipelining data transfer. On every
node, each direction of each InfiniBand rail communicates
with a different node. Moreover, in each pipelined stage, mul-
tiple RDMA transfers are performed simultaneously, because
this reduces the overheads of RDMA transfer in total. In the
previous stage, the data to be sent to other nodes are transferred
from device to host as shown in top of the Figure 3. In the next
stage, the data received from other nodes are transferred from
host to device as shown in bottom of the Figure 3, maximally
utilizing the PCIe uplink and downlink simultaneously.

In the figure, the red vertical lines between stages indicate
synchronizations between all nodes, ensuring that all the
data transfers in the previous stage have completed, and of
course data for the next stage is ready. This synchronization
is also important to control scheduling. Assume that some
nodes takes relatively longer time in previous stage. Without
synchronization, earlier nodes start data transfers of the next
stage and since those nodes will access the same peer nodes,
this further slows down the slow nodes.
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Fig. 4. Exchanging rails assigned for slow connections.

As an optimization parameter, we can choose the number of
RDMA transfers executed simultaneously in each stage. Here,
a large number reduces the overheads of RDMA transfers
and number of synchronizations. On the other hand, the first
and last stages take longer time which is not overlapped with
RDMA transfers. Considering these kinds of trade-offs, we
need to carefully choose the best parameter, and we resolve
this through auto-tuning as we will discuss later.

B. Rail Selection

Many supercomputers employ InfiniBand network for inter-
connects of the compute nodes. To provide higher bandwidth,
some including TSUBAME 2.0 or Kyoto-U/U-Tsukuba T2K
have multiple InfiniBand HCAs or HCA with multiple ports.
The usual tradeoff is that, multi-rail InfiniBand network in-
creases complexities because we must load-balance between
rails. On the other hand, multi-rail also gives us another opti-
mization opportunity. If we observe a network contention be-
tween two nodes on an InfiniBand rail, we might be able avoid
it by using the other rails. This is because each InfiniBand rail
has independent routing tables. In the TSUBAME 2.0 system,
all of the Thin nodes have two InfiniBand HCAs and those
are connected to primary and secondary InfiniBand networks,
respectively. Since several nodes such as Medium/Fat nodes
with large memory capacity and storage systems are connected
only to the primary InfiniBand network, those two networks
are not identical. As a result, the routing between two nodes
is not always the same in both rails.

Rail selection also allows us to avoid using bad/unstable
InfiniBand links or ports by changing rails. In large-scale
InfiniBand network with fat-tree topology, it is not easy to
detect bad links, especially between edge switches and top-
level core switches. Although bad links can be avoided by
using performance counters, this is difficult to do in a produc-
tion machine running numerous jobs by many users. Moreover,
links can have slow-down problems without increasing error
counts, and such issues occur only when the link is overloaded,
making detection very difficult.

Figure 4 illustrates the strategy of exchanging rail assign-
ments. As mentioned in the previous subsection, multiple
RDMA transfers are performed simultaneously in our im-
plementation. The number k (k = 1, 2, . . . , 8 in Figure 4)
indicates the ring transfer to k-th neighbor rank. The RDMA
requests are posted almost at same time by all the nodes;
however the exact time at which they complete are not all the



same. Here, we measure the elapsed time for each RDMA
transfer, and find the slowest one for each rail on all the
nodes. Those slowest ones become the candidates of the rail
exchange, although the phenomenon might be one-time only
or minor in that we should exchange the rail assignment
only if the candidates continue to be extremely slow. Current
implementation decides to conduct rail exchange only if the
slowest one takes more than 1.1x of the fastest one of each
rail. We note that such hysteresis threshold is very important:
assume that 2.x slower rail is exchanged with another rail.
Without the threshold, it may return to the original rail if it was
selected as the slowest in the newly assigned rail, even if the
slow-down ratio is only 1.01x. Although exact determination
could have minor effect, in practice we have found threshold of
1.1 works well, and that is the number used in our evaluations
in the next section.

In our implementation, multiple ring transfers are performed
concurrently. Each ring transfer must be assigned to one of
the InfiniBand network to avoid load imbalance. In this case,
if network congestion is observed, the congestion occurs (1)
between multiple ring transfers, or (2) within a single ring
transfer. In both cases, we can move only the slowest ring
transfer to the other rail.

The exchange of rail assignment is conducted during the last
phase of each 3-D FFT computation. In this phase, we first
gather the timing data on each node. Then, for each execution,
we exchange the rail assignment at most once for each stage
until it converges. One caveat is that, the solution may be
local minima, but since the number of combination of the rail
assignments is too large, it would not be practical to find the
theoretically optimal combination, especially during runtime.
Instead, we focus on eliminating critical congestions with this
simple method, and experiences have shown that this step-by-
step method convergences to the near-optimal fairly quickly.

C. Auto-tuning

In general, applications using FFT computations repeatedly
perform transforms of same size. This makes it easy to use an
online auto-tuning approach [13].

Of the two proposed optimizations for all-to-all communica-
tions, we need to determine the best parameters corresponding
to those optimizations. The first parameter is the chunk size,
and for this both offline and online tuning would be feasible.
Since the number of candidates for this parameter is fairly
small, our implementation uses online tuning based on the
first several executions. The second parameter is the rail
assignment. Since in a large production machine the overall
condition of InfiniBand network will continue to fluctuate on
continuous basis with execution of new jobs, fault occurring in
various parts of the machine, etc., tuning of the rail assignment
is performed constantly even if convergence is reached to cope
with changes in the network.

IV. PERFORMANCE EVALUATION

We proposed several optimizations to improve the scala-
bility of 3-D FFT using multiple nodes and multiple GPUs.

In this section, we evaluate the effects of each using the
TSUBAME 2.0 Thin compute nodes as shown in Table I.
When calculating performance in GFLOPS, we assume N -
point 1-D FFT requires 5N log2 N floating-point operations,
known as pseudo GFLOPS in FFT. N3 3-D FFT requires
15N3 log2 N floating-point operations. Due to the lack of
space, we compute complex-to-complex 3-D FFT in double
precision in all of the performance evaluations as this is
a typical application requirement, although effects in single
precision and/or real would be similar.

A. NUMA support

The TSUBAME 2.0 Thin nodes have two CPU sockets, and
each has an embedded memory controller and local memory.
In 3-D FFT computation, most of the memory accesses are
done by (multiple) DMA controllers of InfiniBand HCAs
and GPU devices. In standard scenarios, DMA access can
efficiently transfer the data between host memory and devices;
however, a memory controller might become a bottleneck
when several DMA controllers are accessing the same memory
controller. This could seriously affect performance especially
after minimizing the overheads using low-level APIs. For
this reason, we allocate memory buffers on all CPU sockets
beforehand to avoid such a situation.

Figure 5 shows the performance comparison with and
without NUMA support. TSUBAME 2.0 Thin nodes have
two InfiniBand HCAs and two CPU sockets. Although using
memory controllers of both CPUs might seem advantageous,
CUDA memory copy between CPU socket 1 and GPU 0
increase the data transfer of QPI bus, since both HCAs are
attached to the PCIe lanes of the chipset on Socket 1. To
determine the optimal configuration, we assigned separate
buffers for each HCA rail and conducted comparison. Figure
5 compares two memory locations of the buffers: (1) both
buffers being on CPU socket 0, and (2) each HCA buffer
different CPU sockets. As shown in the graph the latter
is advantageous by about 3–11%, confirming that avoiding
bottlenecking memory controller with DMA engines being
more significant. We note that the improvement ratio is some-
what less compared with simple InfiniBand throughput tests
without GPUs or computation thereof, where the effect of
individual buffers allows us to attain much greater performance
differences (4.4GB/s → 6.1GB/s, without GPUs).

B. Chunk Size Selection

Figure 6 shows the performance of 2563 3-D FFT with
different chunk sizes. The number of nodes is 64, and three
GPUs are used on each node. In this evaluation, the dynamic
rail selection is disabled.

As mentioned in Section 3.1, small chunk size is not prefer-
able because it requires significant synchronizations, and small
numbers of RDMA transfers are performed simultaneously
which leads to relatively large overhead. On the other hand,
large chunk size decreases the percentage of overlapped stages.
In the case of 64, there are no overlap between RDMA
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Fig. 7. Performance of 2,000 executions of 3-D FFT with and without the dynamic rail selection.
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Fig. 5. Performance of 2563 3-D FFT with and without NUMA support.
The number of nodes is 64, and three GPUs are used on each node.

transfers, CUDA host-to-device transfers, and CUDA device-
to-host transfers. Here, performance degradation is not as bad
as one would expect, as RDMA transfers of both directions
are still performed simultaneously even without the overlap.

Figure 8 shows the performance comparison between two
implementations with IBverbs and with MPI Isend&Irecv. In
both cases, the chunk selection is enabled, and dynamic rail
selection is disabled. The implementation with IBverbs achieve
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Fig. 6. Performance of 2563 3-D FFT with different chunk sizes. The number
of nodes is 64, and three GPUs are used on each node.

1.1x–1.6x higher performance than MPI. The difference comes
from the overheads of MPI library functions. We observed
large performance difference in case of large number of nodes,
that is, when the message size is small.

C. Dynamic Rail Selection

Figure 7 shows the performance of continuous 2,000 execu-
tions of 3-D FFTs, with and without the dynamic rail selection.
Although we observe some performance degradations in both
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cases, tremendous performance degradations are avoided by
the use of dynamic rail selection.

Figure 9 shows result of another experiment. Assume a job
executes 2563 3-D FFTs repeatedly using 64 nodes and 192
GPUs. We launched seven such jobs simultaneously as a block
in this experiment to simulate a real-life scenario when one
would be performing parallel parameter sweep, across those
seven jobs. Each block of nodes consists of 64 nodes, and the
same set of nodes was used for each block, both with and
without dynamic rail selection. In this case, 64 × 7 = 448
nodes perform heavyweight all-to-all data transfers, possibly
causing considerable network congestion. Furthermore, since
TSUBAME2.0 is a highly-utilized production supercomputer,
the remaining 900 or so nodes were being used for jobs of
other 50-100 or so users totally oblivious to the experiment but
still affecting the network. Since many of the Tsubame2.0 jobs
are MPI jobs or conduct heavy I/O, the InfiniBand network
was considerably congested. Here, we see that although block
3 and 4 exhibits a small amount of performance degradation,
we succeeded in performance improvement in most of the
blocks, by up to 29%.

Needless to say, dynamic rail selection works well only if
there are network contentions. Otherwise, for example when
executing with 64 nodes and other nodes being practically idle,
we might not have to exchange the rail assignments; in such a
case allgather operation to collect the transfer speeds at each
node simply becomes the overhead. One small improvement
would be to turn on the rail selection when the system is
busy, and turn off or reduce frequency of the adjustment
otherwise. Another option is to merge the current all-to-all
communication data and transfer speed information as being
carried over to the next stage. This might be advantageous with
small increase in the data size sent to each node, an issue we
will experiment in our future work.
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Fig. 9. Performance of 3-D FFT with and without the dynamic rail selection.
Seven jobs are executed simultaneously on the system, and each job compute
2563 3-D FFT repeatedly using 64 nodes and 192 GPUs.

D. Scalability

Finally, we demonstrate scalability, especially focusing on
strong scaling. Figure 10 shows the strong scalability results
using one GPU on each node. The performance is consid-
erably improved from the prior implementation using MPI
interface shown in Figure 1. Our implementation still increases
the performance even with 128 nodes, while the pure MPI
implementation saturates with only 32 nodes. Table II shows
the breakdown of the execution time spent in each phase.
The on-board 1-D and 2-D computations are well scalable,
although they finally saturate due to insufficient parallelism
for GPUs. The all-to-all time also reduces as the number of
nodes increases, as a result of minimizing the overheads in
all-to-all communications, although still on a small increase
trajectory. In the case of 4 nodes, all-to-all communication
occupies 76.0% of total execution time, while it occupies
87.7% in case of 128 nodes.

Figure 11 shows the strong scalability results using three
GPUs on each node. Only one process is launched on each
node. Our implementation is hybrid, that is, the data from
three GPUs are packed and then unpacked on the target node
so that the size of the message transferred between nodes is
same as the 1 GPU per node experiment. In most cases, the
performance is about 1.5x higher than 1 GPU per node case
whereas the on-board computation improvement is of course
much greater. As such, if total performance is of premium
importance, then one would still obtain performance gains
with 3 GPUs. Here, the performance difference is attributed
to the fact that the all-to-all communication part is faster,
because the CUDA data transfer using six DMA controllers
completes earlier, and for the remaining time InfiniBand HCAs
are able to work more efficiently. On the other hand for very
small transform sizes, the use of three GPU on each node
decreases performance. Although message size transferred
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Fig. 10. Strong scalability of N3 3-D FFT performance. Only one GPU is used on each node.

TABLE II
BREAKDOWN OF THE EXECUTION TIME OF COMPUTING 2563 3-D FFT. ONLY ONE GPU IS USED ON EACH NODE. TIME IS IN MSEC.

# of nodes 4 8 16 32 64 128
2-D FFT(dim. X&Y) 4.780 2.378 1.229 0.650 0.333 0.182
All-to-all 29.961 13.864 7.168 4.137 2.853 2.657
1-D FFT(dim. Z) 4.658 2.368 1.196 0.650 0.338 0.19
% of all-to-all 76.0% 74.5% 74.7% 76.0% 80.9% 87.7%
Total 39.399 18.610 9.593 5.437 3.524 3.029
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Fig. 11. Strong scalability of N3 3-D FFT performance. All three GPUs are used on each node.

between nodes is same, the message size of CUDA memory
copy becomes smaller, and the advantages of having DMA
controllers becomes diminishes.

Although it was easy to achieve scalable performance
using MPI for large transform sizes, we can still improve
performance. In case of 10243 transform using 128 nodes, MPI
implementation achieves only 1.5TFLOPS with one GPU per
node, but our optimized implementation achieves 1.9TFLOPS
with one GPU per node and 2.5TLOPS with three GPUs per

node. Using 256 nodes and 786 GPUs, achieve more than
4.8TFLOPS in 20483 3-D FFT computation, several times
faster than multi-GPU FFTs reported in the past, or CPU-
only implementations with very similar network bandwidth
and (full fat-tree) topology.

In-core performance of 3-D FFT using single GPU of
2563, 3843 and 5123 are 68.0GFLOPS, 48.5GFLOPS and
50.7GFLOPS respectively. We could achieve up to 9.7x, 23.3x
and 28.2x speed-ups using multiple GPUs. This is a very



favorable result for many applications, as this indicates that
FFT-based solvers can obtain good speedups (i.e., strong
scaling) even for smaller problem sizes, such as being the
case for molecular dynamics.

V. RELATED WORK

Chen et al. work on 3-D FFT using GPU cluster [26]. They
also use low-level InfiniBand API to achieve higher bandwidth
using dual-rail than MPI library. However, their target is very
large-scale and using small GPU cluster consists of 16 nodes
and one InfiniBand switch. We focus on not only large-scale
but also small sizes which can be executed on single GPU,
and we could achieve much higher performance in double
precision than [26] in single precision.

Czechowski, et al. work on 3-D FFT using same compute
nodes with similar GPUs but only one InfiniBand HCA [27].
Their achieved performance is less than 1/3 of ours for large
size (1,024), and less than 1/6 for smallest size (256). Our
implementation is much better even in consideration of the
difference in number of InfiniBand rails. Their FFT algorithm
is also different from ours. Their implementation uses local
transposes which is one of the most time consuming part. On
the other hand we are using NukadaFFT library routines that
enable transpose-free multi-dimensional FFT proposed in [10].

Takahashi [20] shows the performance of 3-D FFT using
T2K Tsukuba system. The compute nodes are CPU based,
and have quad-rail DDR InfiniBand network. The theoretical
peak bandwidth of InfiniBand network is 8GB/s, which is
same as dual-rail QDR InfiniBand of TSUBAME 2.0 Thin
node. He achieved up to 401GFLOPS using 256 nodes (4,096
cores). To achieve the same performance, we need only 32
nodes. Although the algorithm is different, we demonstrate
that 3-D FFTs are not simply limited to network injection or
bisection bandwidth, but could benefit from much faster many-
core processors by allowing strong scaling with proper data
transfer optimizations.

VI. CONCLUSION

Several multi-GPU applications require scalable implemen-
tation of 3-D FFT. Since typical implementations using MPI
and CUDA have limitation in scalability due to the large
overheads in data transfer for small messages. We have
presented highly software-pipelined all-to-all communication
between GPUs using low-level IBverbs API and CUDA API
to minimize the overheads and directly manage the resources
and rail assignment. In large scale InfiniBand network of
supercomputers, network contention at some points may be-
come the bottle-neck. Our implementation employs dynamic
rail selection to avoid those contentions. As a result of these
optimizations, we achieved much higher scalability for small
transform size such as 2563. Performance for large transform
sizes also improved, and finally we achieved up to 4.8TFLOPS
using 256 nodes, even if many other jobs are running on the
other compute nodes of the system. Our results would likely
be applicable to other many-core systems such as Intel MIC,
or other interconnects such as proprietary ones with multiple

routing strategies, calling for standardized lower-level APIs
compared to the current MPI standard to cope with strong
scaling for current as well as future Exascale systems.
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