
Energy-aware I/O Optimization for Checkpoint and Restart
on a NAND Flash Memory System

Takafumi Saito1,2, Kento Sato1,3, Hitoshi Sato1,2 and Satoshi Matsuoka1,2,4

1Tokyo Institute of Technology
2JST/CREST

3JSPS Research Fellow
4National Institute of Informatics

{t.saito, kent}@matsulab.is.titech.ac.jp, hitoshi.sato@gsic.titech.ac.jp,
matsu@is.titech.ac.jp

ABSTRACT
Both energy efficiency and system reliability are significant
concerns towards exa-scale high-performance computing. In
such large HPC systems, applications are required to con-
duct massive I/O operations to local storage devices (e.g. a
NAND flash memory) for scalable checkpoint and restart.
However, checkpoint/restart can use a large portion of run-
time, and consumes enormous energy by non-I/O subsys-
tems, such as CPU and memory. Thus, energy-aware op-
timization, including I/O operations to storage, is required
for checkpoint/restart. In this paper, we present a profile-
based I/O optimization technique for NAND flash memory
devices based on Markov model for checkpoint/restart. The
results based on performance studies show that our profile
lookup approach can save 4.1% of energy consumption in an
application execution with checkpoint/restart. Especially,
our approach improves the energy consumption of write op-
erations by 67.4% and read operations by 40.2% on a PCIe-
attached NAND flash memory device.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance; D.4.2
[Operating Systems]: Storage Management

General Terms
Reliability

Keywords
Low energy technique; Checkpoint/Restart; NAND flash
memory

1. INTRODUCTION
Increased power consumption in modern large-scale su-

percomputers limits the design and the scale of the systems,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTXS’13, June 18, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1983-6/13/06 ...$15.00.

and this power limitation is also applied to future extreme
scale supercomputing systems. For example, the IESP [10]
reports that the upper limit of the power in an exa-scale
supercomputer should be less than 20MW, while current
power efficient technique requires over 60MW of the sys-
tem. In such large HPC systems, applications are required
to conduct tera- or peta-byte scale massive I/O operations
to local storages (e.g. a NAND flash memory) for scalable
checkpoint and restart [16]. However, as HPC system size
grows, compute nodes perform less computation but con-
sume huge power during checkpoint/restart, which result in
undesirable energy consumption. Thus, energy efficiency of
I/O operations is important at extreme scale

Recent rapid progress of flash technology introduces a new
memory tier in existing computer systems. That is, mod-
ern computer systems employ a NAND flash memory, such
as SSD or PCIe-attached flash memory, as a padding layer
in order to mitigate the performance gap between DRAM
and HDD-based secondary storage. Indeed, modern super-
computers such as TSUBAME2.0 and Gordon employ flash-
based storages, and these NAND flash technologies may also
improve checkpoint and restart I/O performance in terms of
throughput and latency for various HPC applications. These
devices can be applied to storage volumes for checkpoint
and restart I/Os instead of a traditional parallel file system
(PFS); however, the validity of energy efficiency of check-
point and restart I/O to these devices is not clear.

To address the above problem, we investigate whether en-
ergy on checkpoint and restart I/O can be reduced by apply-
ing DVFS(dynamic voltage and frequency scaling) and con-
trolling I/O processes under the specific system fault rate.
In order to estimate checkpoint and restart time, and to opti-
mize energy consumption, we model an application runtime
state using Markov model based on the existing model [21].
The results based on performance studies show that our pro-
file lookup approach can save 4.1% of energy consumption
during the application execution with checkpoint/restart.
Especially, in Fusion-io’s ioDrive [1], our approach can im-
prove the energy consumption of write operations by 67.4%
and read operations by 40.2%.

2. BACKGROUND

2.1 Checkpoint and Restart
The overall failure rate of HPC systems increases with

the size of the HPC system. Checkpoint/restart is a widely-

41

used fault tolerant technique used by HPC applications that
typically run continuously for hours or days at a time. A
checkpoint is a snapshot of an application state, which is
usually written to a reliable persistent storage volume such
as a PFS. On a failure, checkpoints are used to restore the
application states so that the application can restart the ex-
ecution form the latest checkpoint. However, when writing
checkpoint files to PFS in large-scale systems, the I/O per-
formance of PFS can be a bottleneck, which causes huge
overheads to application runtime [7, 18].

Diskless checkpoint [19, 11] is one of the solutions to min-
imize the overheads. The checkpoint technique writes appli-
cation state to distributed node-local storage devices with-
out relying on PFS, so the approach can eliminate overheads
by traditional checkpoint techniques. In fact, since most of
the failures are caused by one or a few nodes at a time [20,
16], the diskless checkpoint approach can recover from most
of failures while minimizing checkpoint overheads.

However, even with diskless checkpointing, checkpoint time
increases as system size and failure rate increase in future ex-
treme scale systems. Additionally, during checkpoint/restart,
computing nodes perform less computation but consume
huge power. Thus, the energy consumption increases even
during I/O operations in future extreme scale systems, energy-
aware I/O optimization is important in checkpoint/restart.

2.2 NAND flash memory
Existing studies [16, 11] minimize the impact of check-

point using NAND flash memory devices, such as solid state
disk (SSD), PCIe-attached flash storage. A NAND flash
memory device is one of the non-volatile memory devices in
which data is stored in an array of memory blocks. A block
contains multiple pages, each of which is the smallest size of
read and write operations. Although a NAND flash memory
device exhibits random read operations as fast as sequential
read operations by eliminating mechanical head movement
like traditional HDDs, random write operations are not as
fast as sequential ones. This performance difference is due to
the mechanical feature of a NAND flash memory device. In
a NAND flash memory device, overwrite operations are pro-
hibited, and pages are written sequentially within a block.
Thus, when writing a new page, pages that are not overwrit-
ten need to be moved out from the block, and those pages
are written to another available block sequentially with the
new page. Therefore, in order to exploit the peak I/O perfor-
mance of these NAND flash memory devices, an application
needs to write the checkpoint sequentially.

When we apply energy-aware I/O optimization techniques
to NAND flash memory devices, especially PCIe-attached
flash memory devices, we need to consider the unique fea-
tures. For example, in Fusion-io ioDrive [1], which is a
widely used PCIe-attached flash memory devices, grooming
and wear leveling techniques are used in order to optimize
write operation. Grooming is a garbage collector that pre-
erases unused blocks in background so that future overwrite
operations can omit erase operations to the target blocks.
Wear leveling is a technique to extend the lifetime of a de-
vice. Data can be written to addresses on a flash device
with a finite number of times. The limited number of write
operations is large enough (typically 10,000 or 100,000 [15,
12]), however if a system writes to the same portion of the
memory device over and over again, only that portion wears

out. To avoid the unbalanced wear-out, flash devices use the
wear leveling technique.

In recent PCIe-attached flash memory devices, groom-
ing and wear leveling operations rely on CPU cores. If
we simply apply DVFS to the PCIe-attached flash mem-
ory devices to decrease CPU frequency during I/O opera-
tions, we can save the power consumption. However, such a
DVFS technique may cause prolonged I/O time and result
in high energy consumption. In addition, if we write data
to a PCIe-attached memory device with multiple processes
concurrently, we can utilize the bandwidth of the device;
however, such operations can be random write operations
from the device’s perspective, whose situation also causes
prolonged I/O time and consumes undesirable energy. Thus,
optimization of both CPU frequencies and numbers of con-
current I/O processes is important to save energy consump-
tion during checkpoint/restart at future extreme scale.

3. RELATED WORK
As system size and failure rate in HPC systems increase,

checkpoint/restart time and checkpoint frequency also in-
crease. Additionally, computing nodes perform less compu-
tation but consume huge power, an energy-aware I/O op-
timization is significant. Existing studies reduce I/O en-
ergy consumption by utilizing local storage devices [14, 17].
PFSs usually consume more energy than local storage de-
vices, and one of the promising approaches is to use levels of
storage hierarchically according to the performance and the
energy consumption. Manzanres et al. [14] have proposed
an algorithm that prefetches popular data from a PFS into
a local storage device to reduce accesses to the PFS based
on an energy-saving prediction model. Nijim et al. [17]
have proposed an energy efficient hybrid parallel disk sys-
tem, whose technique integrates flash memory devices as a
cache to achieve energy efficiency in a PFS. A flash mem-
ory device itself is an energy efficient device, exploiting flash
memory devices is important for building energy efficient
storage systems.

Another promising approach is to use DVFS techniques
during I/O operations. Ge et al. [9] integrates DVFS con-
trol at the parallel I/O middleware layer to reduce energy
consumption of PFSs. The middleware analyses a I/O pat-
tern, and determines the optimal CPU frequency, and ap-
plies DVFS in order to minimize energy consumption based
on a I/O profile tool [8]. This work focuses on a DVFS
approach. However, as described, when we apply an energy-
aware I/O optimization to a NAND flash memory, the num-
ber of concurrent I/O processes must be considered as well
as CPU frequency.

Optimizing parallel I/O performance also contributes to
improve I/O energy efficiency. Hasan et al. [3] have achieved
high I/O throughput by using RDMA (remote direct mem-
ory access) with additional nodes. Nawab et al. [4] have
proposed a technique that asynchronously transfers multi-
ple striped data streams to increase I/O performance in Grid
environments. Asynchronous I/O can utilize CPU not be-
ing used during checkpoint/restart, which results in energy
efficiency because I/O operations can be hidden.

Our focus is to minimize energy consumption during check-
point/restart. However, a DVFS technique can be also ap-
plied to a general application execution. Wang et al. [22]
decrease energy consumption of task executions by increas-
ing task execution time within affordable limits using DVFS.

42

Figure 1: I/O throughput with different CPU frequen-

cies and devices. (1 process)

Huang et al. [13] proposed energy efficient scheduling al-
gorithm that reduces energy consumption by slacking non-
critical jobs while keeping performance-based service level
agreement. Actually, our approach is independent of the
above techniques. So, by combining those DVFS algorithms
with our I/O profile approach, we can improve energy effi-
ciency of both application runtime and checkpoint/restart.

4. POWER/PERFORMANCE EVALUATION
OF CHECKPOINT/RESTART

Table 1: Node specification

CPU AMD Opteron Processor 6172 (12 cores)
× 4 sockets

Memory DDR3-1333 SDRAM DIMM (128GB)
HDD Fujitsu MHZ2500B

(rpm:4200, seek:12ms)
SSD Intel SSD 320 Series 600GB,

SSDSA2CW600G3K5
(Sequential read/write: 270/220MB/s)

PCIe-attached Fusion-io ioDrive MLC 320GB
flash memory (Read/Write bandwidth: 735/510MB/s)

As a first step for energy-aware checkpoint/restart I/O
optimization, we run a micro benchmark to investigate how
much power consumption and I/O performance may change
by (1) CPU frequencies, (2) numbers of concurrent I/O pro-
cesses, (3) I/O operation types, i.e., read or write, (4) tar-
get storage devices, i.e., HDD, SSD, and PCI-attached flash
devices such as ioDrive. Specification of the machine we
use is shown in Table 1. Specifically, we use Fusion-io’s io-
Drive, a promising I/O device for HPC applications [6], in
this micro benchmark. The micro benchmark divides a 2GB
file into the number of specified processes, and each of the
processes sequentially reads or writes the corresponding file
chunk. The system optimizes energy consumption of check-
point/restart, so we target only sequential read and write
operations with Mbytes and Gbytes order of files.

Figure 1 and Figure 2 show the results of read and write
throughput under the given CPU frequency and power volt-

Figure 2: Power consumption with different CPU fre-

quencies and devices (1 process)

Figure 3: I/O throughput with different number of pro-

cesses and devices

age. The number of I/O processes is set to one. We use
cpufreq [5] for scaling CPU frequency and power voltage.
cpufreq is a system software which can adjust CPU fre-
quency and power voltage on the fly. We measure the power
consumption of the entire machine by using OMRON RC
3008 [2], which samples power consumption and can be re-
motely monitored every second. Here, we see that the I/O
performance of HDD and SDD is almost constant for any
CPU frequencies, while ioDrive exhibits the performance
degradation with decreasing CPU frequencies. Especially,
if we change the CPU frequency from 2.1GHz to 0.8GHz,
the degradation of the write throughput significantly de-
cline; 29% decline compared with the peak CPU frequency
(2.1Gz). In respect to power consumption, we see that HDD
and SSD exhibit almost constant results for any CPU fre-
quencies; however, power consumption of ioDrive increase
when we increase CPU frequency.

Figure 3 and Figure 4 show the results of I/O through-
put and power consumption under the given parameters; the
CPU frequency is set to 2.1 GHz, and the power voltage is
set to 1075mV respectively. Here we observe that HDD and
SSD exhibit nearly peak performance in both read and write
operations with a single I/O process. On the other hand, io-
Drive has the optimal number of concurrent I/O processes
to exploit device’s I/O bandwidth. Especially, when we in-

43

Figure 4: Power consumption with different number of

processes and devices

crease the number of the processes over 16, the throughputs
of both read and write operations starts declining. In respect
to power consumption, we see that HDD exhibits constant
results for any process counts; however, the results in SSD
and ioDrive become high when we increase the number of
processes. Specifically, we observe that the power consump-
tion of ioDrive jumps sharply.

As described above, I/O performance and power consump-
tion depend on CPU frequencies, the number of concurrent
I/O processes, I/O operation types, and target storage de-
vices. Specifically, even the same NAND flash memory de-
vices, i.e., SSD and ioDrive, exhibit significantly different
I/O performance and power consumption trend. For exam-
ple, if an application writes its checkpoint to ioDrive at high
parallelism as when doing computation (e.g. 48 processes),
the write throughput becomes the worst as in Figure 3 and
consumes the most power as in Figure 4, which results in
high energy consumption while there is no such impact on
SSD. When we apply energy-aware optimization techniques
to NAND flash memory devices, the trend has to be consid-
ered as the number of CPU cores in a machine increases in
future extreme scale systems.

5. OVERVIEW OF ENERGY-AWARE I/O OP-
TIMIZATION SYSTEM

As mentioned in Section 2.2, performance and power con-
sumption of checkpoint I/O vary according to CPU frequen-
cies and numbers of I/O processes. In order to optimize
these parameters and to minimize energy consumption, we
design an energy-aware I/O optimization runtime system.

Figure 5 shows the overview of the intended architec-
ture. In this work, we employ a profile lookup approach.
That is, when an application starts checkpointing/restart,
i.e., write/read operations, the runtime system retrieves I/O
types (write/read) and paths to distinguish devices to access
(Step 1). The runtime system looks up the I/O profile to
set the target CPU frequency and the number of concurrent
write/read processes (Step 2), and applies DVFS control via
cpufreq interface provided by Linux kernel (Step 3). Finally,
the runtime system increases or decreases I/O parallelization
to adjust the target concurrent number of processes (Step
4).

The profile takes a CPU frequency and the number of pro-

1

2

4 3

Figure 5: Intended system overview

cesses as the input, gives us checkpoint/restart throughput,
and estimated power consumption (WC/WR) as the output
so that we can compute checkpoint/restart time (TC/TR)
given checkpoint/restart data size retrieved by the runtime
system. The optimal CPU frequency and the number of I/O
processes for energy efficiency are determined by our check-
point/restart model and optimization technique (see Section
6).

We create the I/O profile once before executions of an ap-
plication, and the I/O profile is constructed by our prelimi-
nary evaluation in Section 4. In general, I/O intensive appli-
cations can conduct a variety of small and large write/read
operations during its overall runtime, the throughput and
the energy consumption can vary depending on write/read
size. But we focus on optimizing energy consumption of
checkpoint/restart to local storages, whose checkpoint/restart
data size is generally large enough (order of Mbytes, Gbytes),
and the access pattern is sequential, so throughput and en-
ergy consumption of I/O do not significantly change every
checkpoint/restart. Thus, creating the I/O profile once be-
fore executions of an application is enough to obtain accu-
rate WC/WR and TC/TR.

In this paper, we focus on the investigation of how much
the profile lookup approach can improve the energy effi-
ciency of checkpoint I/O for NAND flash memory devices.

6. ENERGY CONSUMPTION MODELING
AND OPTIMIZATION

When we execute an application while taking checkpoints,
the application runs for a fixed time period (application
runtime state denoted by state A) and writes a checkpoint
(checkpoint state denoted by state C). If a failure happens in
state A or state C, the application tries to restore the most
recent checkpoint (restart state denoted by state R), and to
restart the execution for state A. If no failure happens in
state A and state C, the application running for state A can
transition to the next state A. Thus, when an application
takes a checkpoint and restores the status from the check-
point in the case of a failure, the actual runtime, including
the times for application execution, checkpoint, and restore,
become longer than the ideal runtime where the application
runs with no failures and no checkpoint/restart operations.

In order to estimate and minimize energy consumption of
an application execution with checkpoint/restart, we model
the actual runtime by using Markov model based on the ex-
isting Vaidya’s model [21]. Actually, most of the failures are
caused by one or a few nodes, which can be recovered from

44

state A state C

state R

Basic unit

time

Checkpoint = Application runtime = TCTA

TA TC

TR

Figure 6: Basic unit of checkpoint a markov model

a local storage checkpoint [20]. We model a local storage
checkpoint case as a target checkpoint level.

Figure 6 shows a basic unit of a checkpoint interval. An
application can transition across the basic units in sequence,
while changing the state within a basic unit. TA denotes an
effective application runtime in which the application can
proceed the meaningful work without any extra operations
such as checkpoint/restart, i.e., between the end of the latest
checkpoint and the beginning of the next checkpoint; TC and
TR denote checkpoint and restart times. As described, if a
failure happens, the running application must roll-back to
the latest checkpoint, and compute the same instructions
which may have been done before the failure. Thus, the
actual runtime of the application execution with checkpoint
and restart, i.e., the mean sojourn times of each state (TĀ,
TC̄ and TR̄), may become larger than the ideal runtime, TA.
Given a system failure rate λ, the Vaidya’s model gives each
of the mean sojourn times as follows:

TĀ = λ−1eλ(TC+TR)(eλTA − 1)

TC̄ = λ−1(eλTC − 1)

TR̄ = λ−1(eλTC − 1)(eλTR − 1)

Since we use the Vaidya’s model, we make the same as-
sumptions as in the model. This formula means that an
application costs TĀ + TC̄ + TR̄ of the time to compute for
effective runtime; TA. Here, we call TA as effective runtime
to differentiate from these mean sojourn times. Actually,
given checkpoint time (TC) and failure rate (λ), an optimal

checkpoint interval can be obtained as TA =
p

2 × TC/λ by
the Vaiday’s model. Thus, TĀ, TC̄ and TR̄ are determined
by TC , TR and λ. Based on the model, an expected total
energy consumption in a basic unit, J , can be obtained as
J = TĀ ·WA+TC̄ ·WC +TR̄ ·WR, where WA, WC and WR are
power consumptions of the application runtime, checkpoint
time and restart time in a basic unit, respectively. Here, our
focus in this paper is to optimize the energy consumption by
applying DVFS and by controlling I/O processes for NAND
flash memory devices. Thus, the optimized total energy con-
sumption within a checkpoint interval, Jopt, is obtained as:

Jopt = minimize {J}
Because an application transitions across the same basic

units, we can optimize the total energy consumption by min-
imizing energy consumption of a single basic unit; J. As
described in Section 2.2, checkpoint/restart time (TC/TR)
and the power consumption during the checkpoint/restart
(WC/WR) vary according to CPU frequencies and numbers
of concurrent I/O processes. Based on the I/O profile, we
can find the optimal CPU frequency and the number of I/O
processes for checkpoint/restart to minimize J .

7. EVALUATION

7.1 Evaluation setting
We investigate how much our profile lookup approach can

improve energy consumption by using a checkpoint/restart
technique for NAND flash memory devices. We use 64GB of
a file per a compute node for checkpoint/restart and 471.1
watts of an application’s power consumption in a single com-
pute node, whose parameters are based on SP (Class C) of
NAS Parallel Benchmarks running with 48 processes on a
machine shown in Table 1. We set the system failure rate
to λ = 1.89474×10−5 (MTBF≈14hours), which is the same
parameter as the average failure rate of TSUBAME2.0 in
the year and a half from November 1st 2010 to April 6th
2012. We compare our I/O profile lookup approach to other
DVFS strategies provided by a cpufreq governor: perfor-
mance, powersave and ondemand. Details of each power
save strategy are show in Table 2.

Table 2: Compared cpufreq governor

Performance Set CPU frequency to maximum supported
frequency regardless of CPU usage by cpufreq
driver

Powersave Set CPU frequency to the lowest supported
frequency regardless of CPU usage by cpufreq
driver

Ondemand Adjust CPU frequency according to CPU
usage by cpufreq driver

Profile lookup Adjust CPU frequency and the number of
concurrent I/O processes according to our
energy-aware profile

7.2 Energy efficiency comparison
In order to evaluate the energy efficiency of an applica-

tion execution with checkpoint/restart I/O operations, we
introduce an energy efficiency index for effective application
execution named energy consumption per unit time for effec-
tive application execution (EPE). EPE quantifies how much
energy is consumed for an effective application execution,
i.e., effective runtime, TA, whose expression is described as:

EPE =
TĀ · WA + TC̄ · WC + TR̄ · WR

TA

Figure 7 shows the results of EPE in different DVFS strate-
gies and devices. Here we see that our profile lookup tech-
nique can save 1.5% of energy consumption on SSD, 4.7%
on ioDrive by only considering energy efficiency of I/O op-
erations, because our technique can optimize both CPU fre-
quencies and numbers of I/O processes, and contribute I/O
performance improvement. Table 3 shows the results of CPU
frequencies and numbers of I/O processes selected by our

45

Figure 7: Energy consumption per unit time for ef-

fective application execution (EPE) in different DVFS

strategies and devices with 48 processes

Table 3: Selected CPU frequency & the number of
I/O processes by Profile lookup approach

Read Write
HDD SSD ioDrive HDD SSD ioDrive

CPU frequency 1.7 1.4 2.1 2.1 1.7 1.4
of processes 1 1 2 1 1 2

profile lookup approach. We found that we can optimize en-
ergy consumption for checkpoint/restart I/O by using one or
two I/O processes. The performance improvement in an ap-
plication execution is limited in Figure 7; however, applica-
tions running on future extreme scale systems, where failure
rate of the system and checkpoint/restart cost may increase,
require us to use more checkpoint/restart time than that in
current systems. Thus, we believe that our profile lookup
approach is expected to be more effective in extreme scale
systems. Figure 8 shows energy consumption per MB for
write/read operations. We found that energy consumption
of write operations on SSD and ioDrive are the same extent.
Fusion-IO ioDrive is known as an energy efficient I/O de-
vice; however, without energy-aware I/O optimization, we
can not exploit peak I/O performance of ioDrive. This result
is also applicable to NAND flash memory devices that em-
ploy process-based grooming and wear leveling techniques.
In especially ioDrive, a checkpoint operation consumes much
energy without scaling down the number of write processes
on checkpoints. This is because a write operation with 48
processes consume highest power consumption, and exhibit
lowest throughput in any number of processes as in Fig-
ure 3, 4, which results in high energy consumption. Our
profile lookup approach can improve the energy consump-
tion in any types of I/O operations and different devices.
Especially, our profile lookup approach improves the energy
consumption of write operations by 67.4% and read opera-
tions by 40.2% in ioDrive, which is expected to contribute
energy efficiency at extreme scale.

8. CONCLUSION
To minimize energy consumption on checkpoint/restart

I/O, we proposed a profile lookup approach and investigated

Figure 8: energy consumption per MB for write/read

operations with 48 processes

how much energy can be reduced by applying DVFS and
by controlling I/O processes. In order to estimate check-
point and restart time and to optimize energy consumption
of an application execution with checkpoint/restart oper-
ations, we model application’s states using Markov model.
The results based on performance studies show that our pro-
file lookup approach can save 4.1% of energy consumption
during the application execution with checkpoint/restart.
Especially, in ioDrive, our approach can improve the energy
consumption of write operations by 67.4% and read opera-
tions by 40.2%. As a part of future work, we will extend
the profile lookup approach to be able to optimize energy
consumption of general data-intensive applications by sup-
porting other I/O types such as random I/Os and stride
I/Os.

9. ACKNOWLEDGMENTS
This work was supported by Grant-in-Aid for Scientific

Research (S) 23220003, the Japan Science and Technology
Agency (JST), and the Core Research of Evolutionary Sci-
ence and Technology (CREST) research project.

10. REFERENCES
[1] Fusion-io. http://www.fusionio.com/.

[2] OMRON RC3008.

[3] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky,
K. Schwan, and F. Zheng. DataStager: Scalable Data
Staging Services for Petascale Applications. In
Proceedings of the 18th ACM international symposium
on High performance distributed computing, HPDC
’09, pages 39–48, New York, NY, USA, 2009. ACM.

[4] N. Ali and M. Lauria. Improving the Performance of
Remote I/O Using Asynchronous Primitives. pages
218–228.

[5] D. Brodowski and N. Golde. ”Linux CPUFreq -
CPUFreq governors,” Linux Kernel.
http://www.mjmwired.net/kernel/Documentation/cpu-
freq/governors.txt.

[6] A. M. Caulfield, J. Coburn, T. Mollov, A. De,
A. Akel, J. He, A. Jagatheesan, R. K. Gupta,
A. Snavely, and S. Swanson. Understanding the
impact of emerging non-volatile memories on

46

high-performance, io-intensive computing. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11,
Washington, DC, USA, 2010. IEEE Computer Society.

[7] E. N. E. et al. System Resilience at Extreme Scale,
Technical report. Technical report, 2008.

[8] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and
K. Cameron. Powerpack: Energy profiling and
analysis of high-performance systems and applications.
Parallel and Distributed Systems, IEEE Transactions
on, 21(5):658 –671, may 2010.

[9] R. Ge, X. Feng, and X.-H. Sun. Sera-io: Integrating
energy consciousness into parallel i/o middleware. In
Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(ccgrid 2012), CCGRID ’12, pages 204–211,
Washington, DC, USA, 2012. IEEE Computer Society.

[10] A. Geist and S. Dosanjh. Iesp exascale challenge:
Co-design of architectures and algorithms. Int. J. High
Perform. Comput. Appl., 23(4):401–402, Nov. 2009.

[11] L. A. Gomez, N. Maruyama, F. Cappello, and
S. Matsuoka. Distributed Diskless Checkpoint for
Large Scale Systems. In Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on, pages 63–72. IEEE, May
2010.

[12] L. Grupp, A. Caulfield, J. Coburn, S. Swanson,
E. Yaakobi, P. Siegel, and J. Wolf. Characterizing
flash memory: Anomalies, observations, and
applications. In Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium
on, pages 24 –33, dec. 2009.

[13] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, and
X. Huang. Enhanced energy-efficient scheduling for
parallel applications in cloud. In Cluster, Cloud and
Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, pages 781 –786, may
2012.

[14] A. Manzanres, X. Ruan, S. Yin, M. Nijim, W. Luo,
and X. Qin. Energy-aware prefetching for parallel disk
systems: Algorithms, models, and evaluation. In
Network Computing and Applications, 2009. NCA
2009. Eighth IEEE International Symposium on,
pages 90 –97, july 2009.

[15] N. Mielke, T. Marquart, N. Wu, J. Kessenich,
H. Belgal, E. Schares, F. Trivedi, E. Goodness, and
L. Nevill. Bit error rate in nand flash memories. In
Reliability Physics Symposium, 2008. IRPS 2008.
IEEE International, pages 9 –19, 27 2008-may 1 2008.

[16] A. Moody, G. Bronevetsky, K. Mohror, and B. R.
de Supinski. Design, Modeling, and Evaluation of a
Scalable Multi-level Checkpointing System. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11,
Washington, DC, USA, Nov. 2010. IEEE Computer
Society.

[17] M. Nijim, A. Manzanares, X. Ruan, and X. Qin.
Hybud: An energy-efficient architecture for hybrid
parallel disk systems. Computer Communications and
Networks, International Conference on, 0:1–6, 2009.

[18] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam,
M. R. Varela, R. Riesen, and P. C. Roth. Modeling
the impact of checkpoints on next-generation systems.
In Proceedings of the 24th IEEE Conference on Mass
Storage Systems and Technologies, MSST ’07, pages
30–46, Washington, DC, USA, 2007. IEEE Computer
Society.

[19] J. S. Plank, K. Li, and M. A. Puening. Diskless
Checkpointing. IEEE Trans. Parallel Distrib. Syst.,
9(10):972–986, Oct. 1998.

[20] K. Sato, N. Maruyama, K. Mohror, A. Moody,
T. Gamblin, B. R. de Supinski, and S. Matsuoka.
Design and modeling of a non-blocking checkpointing
system. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis, SC ’12, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[21] N. H. Vaidya. On Checkpoint Latency. Technical
report, College Station, TX, USA, 1995.

[22] L. Wang, G. von Laszewski, J. Dayal, and F. Wang.
Towards energy aware scheduling for precedence
constrained parallel tasks in a cluster with dvfs. In
Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing, CCGRID ’10, pages 368–377, Washington,
DC, USA, 2010. IEEE Computer Society.

47

