
Exploration of Lossy Compression
for Application-level Checkpoint/Restart

Naoto Sasaki

Dept. of Mathematical and Computing Science
Tokyo Institute of Technology

Tokyo, Japan
Email: sasaki.n.ac@m.titech.ac.jp

Kento Sato

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, USA
Email: kento@llnl.gov

Toshio Endo

Global Scientific Information and Computing Center
Tokyo Institute of Technology

Tokyo, Japan
Email: endo@is.titech.ac.jp

Satoshi Matsuoka

Global Scientific Information and Computing Center
Tokyo Institute of Technology

Tokyo, Japan
Email: matsu@is.titech.ac.jp

Abstract—The scale of high performance computing (HPC)
systems is exponentially growing, potentially causing pro-
hibitive shrinkage of mean time between failures (MTBF)
while the overall increase in the I/O performance of parallel
filesystems will be far behind the increase in scale. As such,
there have been various attempts to decrease the checkpoint
overhead, one of which is to employ compression techniques
to the checkpoint files. While most of the existing techniques
focus on lossless compression, their compression rates and
thus effectiveness remain rather limited. Instead, we propose a
lossy compression technique based on wavelet transformation
for checkpoints, and explore its impact to application results.
Experimental application of our lossy compression technique
to a production climate application, NICAM, shows that the
overall checkpoint time including compression is reduced by
81%, while relative error remains fairly constant at approxi-
mately 1.2% on overall average of all variables of compressed
physical quantities compared to original checkpoint without
compression.

Keywords-fault tolerance; checkpoint; lossy compression;

I. INTRODUCTION

The scale of HPC systems and the performance are expo-

nentially growing. With the growing performance, applica-

tion users enjoy the reduced calculation time, and make the

problem sizes of the applications larger. While the extreme

scale system gives application developers the advantages,

this tendency causes several drawbacks. One of the draw-

backs is system failures. Because the failure rate increases

as systems size grows [1]–[3], MTBF decreases at extreme

scale. For example, MTBF of exa-scale supercomputers is

projected to decrease to about a few hours [4]. Therefore,

applications’ users are expected to pay more cost for fault

tolerance

To continue its computation even on a failure, HPC appli-

cations periodically write checkpoints, which are snapshots

of application states, so that applications can roll back to the

last checkpoint and restart the computation [5], [6]. How-

ever, if we write checkpoints of applications running on su-

percomputers, the checkpoint time becomes huge overhead

[2]. For example, the TSUBAME2.0/2.5 supercomputer has

116 TB memory [7]. If we write an entire memory footprint

of the TSUBAME2.0/2.5 supercomputer, it approximately

takes 4 hours given 8 GB/s of checkpointing throughput

to the parallel file system of TSUBAME2.0/2.5 [8]. If we

consider the projected MTBF, a few hours, the straight

forward checkpointing cannot solve the problems.

One of approaches to shorten checkpointing time is to

reduce the size. Existing works proposed incremental check-

pointing [9]–[11], and compression for checkpoints [12],

[13]. However, the effectiveness of these approaches are

limited in real applications, such as computational fluid

dynamics (CFD) applications, since the majority of the

memory footprint is frequently updated, and the checkpoint

data is floating point values. Thus, the existing approaches

does not well-suited for reducing the checkpoint size of real

applications

To reduce the size of checkpoint data of real applications,

we propose a lossy compression technique, and explore the

feasibility. Although lossy compression introduces errors,

Our lossy compression techniques based on wavelet trans-

formation can remarkably reduce the checkpoint data of

real applications while minimizing the errors. We apply our

lossy compression technique to a real climate application,

NICAM [14]. The experimental results show that our lossy

compression can reduce overall checkpoint time including

compression time by 70% with 1.2% of an average relative

error, which is much less than simulation errors regularly

produced by scientific models and sensors observing input

data.

2015 IEEE 29th International Parallel and Distributed Processing Symposium

1530-2075/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPS.2015.67

914

II. BACKGROUND

A. Compression of Checkpoint Images

One of approaches to reduce checkpointing overhead

is compression. By reducing the checkpoint image size,

we can reduce checkpoint overhead. However, compres-

sion itself introduces overhead. Therefore, the advantage

of compression, i.e., size reduction, must be bigger than

the drawback, i.e., checkpoint overhead. Specifically, if we

denote compression time, checkpoint time with compression

and without compression as C, Tcomp and Torig , checkpoint

compression becomes viable where:

C + Tcomp < Torig (1)

In addition, compression time increases as the total check-

point size increases at extreme scale. The compression algo-

rithm must be not only fast but also scalable to checkpoint

size. Most of existing approaches focus on lossless compres-

sion [15]–[18]. However, if we apply lossless compression

to floating point arrays, the compression rate is limited.

The lossless compression may not be a viable solution to

checkpoint size reduction at extreme scale.

B. Lossy Compression

Another viable approach is lossy compression because the

technique can remarkably reduce checkpoint size much more

than lossless compression. Although lossy compression in-

troduces errors, the errors may be acceptable if we examine

processes for developing real scientific applications.

When application developers develop a scientific simu-

lation code, they model the target scientific phenomena,

write the code, and run the simulation based on input data

observed by sensors. Because scientific models cannot grasp

an exact scientific explanation of the target phenomenon,

the models can introduce errors. The degree of the errors of

several models are known as a few % [19]–[22]. In addition,

observed input data itself can also contain errors due to

inaccuracy of scientific sensors. Therefore, the simulation

introduces errors in practice, and thereby the errors can

also be accumulated to the final results as the simulation

progresses.

To avoid the errors from being accumulated, data assimi-

lation is used in wide range of computational science areas

[20]. Data assimilation is a technique which periodically

corrects intermediate results by assimilating the observed

real data into the results, which lets us know errors are
inherent to scientific simulations. Motivated by the facts, we

explore whether lossy compression can remarkably reduce

checkpoint size while keeping the same ration of errors as

what scientific models and sensors produce.

C. Motivation of Wavelet Transformation

Wavelet transformation, one of frequency analysis tech-

niques, is known as an effective method for data compres-

sion especially in multi-resolution analysis. In practice, a

Original checkpoint data (Floating point array)

Low-frequency
band array High-frequency band array

High-frequency band array

High-frequency band array

bitmap array

bitmap�
 array
average Low and high-frequency band arrays

average

1. Wavelet transformation

2. Quantization

3. Encoding

4. Formatting

Figure 1: An overview of the proposed compression method

recent compression algorithm employed in JPEG 2000 uses

wavelet transformation in order to achieve higher quality

compression than a compression algorithm used in previous

version of JPEG, which uses discrete cosine transform [23].

It is known that the compression approach based on

wavelet transformation is effective if the target data is

smooth; the differences between neighborhood values are

small. Each value of intermediate data of many scientific

applications, such as CFD applications, are smooth because

physical quantities, such as pressure, temperatures and ve-

locities, does not spatially changed much. Therefore, we

target lossy compression using wavelet transformation.

III. FLOATING POINT LOSSY COMPRESSION

To reduce checkpoint time, we propose a floating point

lossy compression (Figure. 1). Our lossy compression targets

floating-point arrays of multi-dimensional mesh data, which

represents physical quantities such as pressures, tempera-

tures and velocities in scientific applications, such as CFD

applications. Because the mesh data accounts for the great

majority of checkpoint data in mesh-based scientific applica-

tions, we focus on compression of the mesh data represented

by floating point arrays.

Our lossy compression algorithm is completed by three

steps; wavelet transformation (Section III-A), quantization
(Section III-B) and encoding (Section III-C) to floating point

arrays, which needs to be checkpointed. Then, we compress

the outputted arrays by gzip after our lossy compression.

Although lossy compression basically introduces errors, our

lossy compression can reduce checkpoint size much more

than lossless compression.

As we described in Formula 1, total checkpoint time

needs to be less than checkpoint time without compression.

Therefore, the compression time needs to be scalable to

checkpoint size. While time complexity of several existing

lossy compression algorithms is O(n log n) to checkpoint

size, n, our lossy compression is completed with O(n)

915

�
�
�
����

�
�
�
����

�
�
�
����

�
�
�
����

�
�
�

�
�
�

		� 		�

���������	�� ��
����
�	��

�
�
�
����

�
�
�
����

		� 		�

���� �
�� ���� �
��

��

��
�

�
�
�
����

�
�
�
����

		� 		�

L[i]=
A[2i]+ A[2i+1]

2
H[i]=

A[2i]− A[2i+1]

2

Figure 2: 1D wavelet transformation

����� ��
�� ����� �����

��
�� ����� ����� �����

����� ����� ��
��� ��

��

��
��� ��
��� ��

�� ��
���

����� ��
��

����� �����

��
�� �����

����� �����

������ ���
��

������ ������

����� ��
��

����� �����

��
�� �����

����� �����

������ ���
��

������ ������

������ ���
��

������ ������

������ ���
��

������ ������

Figure 3: 2D wavelet transformation

A. Haar Wavelet-based Transformation

First, we apply a wavelet transformation based on Haar

wavelet transformation to a target array [24]. This transfor-

mation is to obtain a well-suited data structure for com-

pressing scientific mesh data while minimizing the errors

in quantization and encoding. Figure. 2 shows the example

of the wavelet transformation of an 1D arrays, A[j] (j =
0 . . . 2n + 1). The wavelet transformation divides the array

into two sub-band arrays, low-frequency band array (L), and

high-frequency band array (H) where:

L[i] =
A[2i] +A[2i+ 1]

2
(i = 0 . . . n) (2)

H[i] =
A[2i]−A[2i+ 1]

2
(i = 0 . . . n) (3)

Note that two neighboring values can be calculated as

A[2i] = L[i]+H[i] and A[2i+1] = L[i]−H[i], thereby this

transformation is lossless. In addition, difference between

two neighboring values, A[2i] and A[2i + 1], is usually

small in scientific mesh data. Therefore, the values of H
are expected to be small, and are concentrated in a narrow

range. This characteristic is an important to minimize errors

while reducing the data size in quantization and encoding.

For a 2D array, we apply the 1D wavelet transformation

to each row (x-axis), then each column (y-axis) of 2D array.

Thus, after the two transformations, we obtain one low-

frequency band region, LL, and three high-frequency band

region, LH , HL and HH as shown in Figure. 3. Because

difference of neighboring two values in L, H is also small,

the values in the three high-frequency band regions also

become small, and concentrate in a narrow range. Likewise,

for a3D array, we apply the 1D wavelet transformation to

z-axis direction addition to x, y-axis. In case of a 3D array,

we obtain one low-frequency band region, and seven high-

frequency band regions.

B. Quantization

Next, we apply quantization to the values in the high-

frequency band regions. In the quantization, we transform

each value in the high-frequency band regions to limited

number of values in order to reduce the variety of values

appeared in the high-frequency band regions.; Although this

transformation is lossy, and introduce errors, this trans-

formation makes redundant values, which is a important

characteristic to achieve high compression rate.

1) Simple Quantization: First, we explain a simple quan-

tization method. In the simple quantization, we divide the

values in the high-frequency band regions into n partitions

(Step (1) in Figure. 4), then calculate an average of values

in each partition, and replace all values with the averages

of each partition to which the values belong (Step (2) in

Figure. 4). If a value v belongs to an i-th partition, and

the average in the partition is average[i], then we change

v to average[i]. Thus, after the simple quantization, only n
kinds of values appear in the high-frequency band regions.

Figure. 4 shows an example if n is 4. The value, n, gives us

a trade-off between degree of errors and compression rate.

However, we can still satisfying compression rate even with

large n as described in Section IV-C.

As mentioned in Section III-A, the values in the high-

frequency band regions are close to zero, and most of the

values usually belong to a few partitions, which makes a

spike in the distribution as shown in Figure. 4. From our

preliminary experiments, we found that our lossy compres-

sion introduces undesirable errors with lower compression

rate if we apply the quantization to partitions to which a

small number of values belong.

2) Proposed Quantization to Reduce an Error: To solve

the problem in the simple quantization method, we extend

the method to be able to apply the quantization to only

partitions in which the spike exists. For detection of the

spike, we can easily find the spiked partitions by choosing

partitions which contain more number of values than the

other partitions. Specifically, we divide the values in the

high-frequency band regions into d partitions (Step (3) in

Figure. 4). We denote Ndiv[i] as the number of the values

contained in i-th partition, then we choose partitions such

that:

Ndiv[i] ≥ Ntotal

d
(4)

Ntotal is the total number of the values in the high-frequency

band regions. Hence, Ntotal

d is equal to the average number

of values per a partition (Step (4) in Figure. 4). Then, we

apply the simple quantization to only the detected partitions

(Step (5) in Figure. 4). By using the spike detection, we can

remarkably reduce errors with comparable compression rate

916

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

n = 4

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Values in high-frequency band Values in high-frequency band Values in high-frequency band

Fr
eq

ue
nc

y

Distribution of high-frequency band

(1) (2)

2.5 -2 - -0.5 0 1 1.5 3 3

average [0] average [1] average [2] average [3]

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Values in high-frequency band Values in high-frequency band Values in high-frequency band

(4) (5)

(3) d = 10

Ntotal

d
��� ����� ��� ����� ��� ����� �� ���� �� ���� �� ���� �� ���� 	�

ave

n = 4

n = 4

� ��

average [0]

� �� �� ��

]

average [1]

� ����

average [2]

�� �

average [3]

Simple quantization

Proposed quantization

Figure 4: Simple quantization

 array average

average [0] average [n−1]…… double� char�char� char�double� double�

Low and high-frequency band
(double and char)

0 1 1 0 0 1 0 1 1 0 1 1 �……

bitmap�

Figure 5: output format

to the simple quantization. Figure. 4 shows an example if d
is 10, n is 4.

C. Encoding

After the quantization, the high-frequency band regions

to which the quantization is applied consist of only n kinds

of floating point values, and these values are stored in the

array, average[i] (i = 0 . . . n − 1), which is created in the

quantization. To reduce the sizes of the values in the high-

frequency band regions, we replace the floating-point values

with indexes of the average array, and store them to char
variables. The value, n, does not become large number to

obtain satisfying errors, 1 byte of the data type is enough to

store each index. Because we store the array of the indexes

with the average array, this operation is lossless.

D. Output Format

Figure. 5 shows output format when we write the com-

pressed checkpoint to a file system. As described in Section

III-B, our proposed lossy compression apply only the part of

values in high-frequency band regions. To memorize which

values are transformed and encoded, we use bitmap for the

decompression. To decode the encoded values, we also store

the average array, and append to bitmap. Finally, we apply

gzip to the formatted output.

IV. EVALUATION

A. Experimental Conditions and Environment

We apply our approach with lossy compression to target

checkpoint data of a real climate application, NICAM [14].

The lossy compression has been widely used in order to

output data for visualization of simulations, however, it

has been hardly used for checkpointing, in fear of that

production of errors in floating point arrays may invalidate

the results of simulations. Thus in addition to evaluation

of compression time, I/O time and compression rate, we

evaluate the effects of lossy compression on simulated

results; we include evaluation of relative errors introduced

by the lossy compression, by comparing the result data and

original data.

Applications usually write checkpoints of intermediate

data after certain period of time. To make the intermediate

data for checkpointing, we run NICAM for about an hour,

which is identical to 720 time steps. In NICAM, a single

time step simulate climate for 10 days. In our experiments,

the targets of compression data are 3D arrays of pressure,

temperature and wind velocity in NICAM. These 3D arrays

are double-precision floating point arrays, each of which has

size of 1156× 82× 2. Among of those, this section mainly

describes results for the temperature array because we see

the similar results in the other arrays.

We use an in-house cluster as the experimental platform.

Each node has a specification shown in Table I, and the

nodes share an NFS file system, which is used to store

checkpoint images. We evaluate compression rate (cr) as:

cr =
cscomp

csorig
× 100 (5)

where csorig is checkpoint size without compression, and

917

Table I: System specification

Node
CPU Intel Core i7-3930K 6 cores 3.20GHz

Memory DDR3 16GB
Network card Broadcom bnx2

Shared file system
File system Network File System (NFS) v3 1.5TB

RAID Dell PERC H700 (RAID6)
Disk Western Digital WD (model:WD2002FAEX)

0

10

20

30

40

50

60

70

80

90

100

C
om

pr
es

si
on

 r
at

e
[%

]

gzip
Simple quantization (n=128)
Proposed quantization (n=128)

Figure 6: Comparing compression rates of gzip, our lossy

compressions with simple quantization and proposed quan-

tization

cscomp is checkpoint size with compression. For evaluation

of errors, we use relative error (rei) expressed as:

rei =
|xi − x̃i|

maxj{xj} −minj{xj} (6)

where xi is an original value of an array, X = {xi|i =
0, . . . ,m}, , and x̃i is an value of an array, which is

compressed, then decompressed by the lossy compression

to X .

In the experiments, we use several numbers of divisions,

division number, in the quantization phase (n in Figure. 4),

from 20 to 27. The parameter d is set to be 64 for our

proposed quantization in Figure. 4.

B. Lossless V.S. Lossy Compression

Figure. 6 shows compression rates of gzip, our lossy

compressions with simple quantization and proposed quan-

tization. For the two lossy compression methods, we set the

division number as 128 in this evaluation.

The results show that gzip is apparently insufficient for

compressing floating point values; the compression rate is

86.78%. On the other hand, with our lossy compressions,

we can remarkably reduce checkpoint size in real appli-

cations. From the experimental results, we can see that

the effectiveness of lossless compression is limited in real

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16 32 64 128

C
om

pr
es

si
on

 r
at

e
[%

]�

Division number�

Simple quantization Proposed quantization

Figure 7: Compression rates under different division number,

n, and quantization methods

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 4 8 16 32 64 128

R
el

at
iv

e
er

ro
r

[%
]�

Division number�

Simple quantization Proposed quantization

Figure 8: Relative errors under different division number, n,

and quantization methods

applications, such as CFD applications, since checkpoint

data is floating point values. Thus, lossy compression is

essential for improving compression rate in real applications.

C. Lossy Compression with Simple and Proposed Quantiza-
tion

Figure. 7 and Figure. 8 show compression rates and

average relative errors respectively, under different division

numbers, n, and quantization methods. We compute the

average relative errors as
∑m

i=1 rei/m . These two graphs

illustrate a trade-off between compression rates and errors;

when we use larger n, relative errors become smaller (bet-

ter), while compression rates get larger (worse), though the

increase is rather gradual. As shown in the figures, our

proposed method can reduce more errors while achieving

the comparable compression rate to the simple method.

Figure. 7 shows compression rates of a temperature array

918

in different division numbers and quantization methods. The

compression rates tend to increase as the division number (n)

increases; it is 11.06% with the simple quantization when

n = 1, and reaches 12.10% when n = 128. With the

proposed quantization, the compression rates are larger,

which is 14.43% when n = 1 and 16.75% when n = 128.

For other arrays than the temperature array, the measured

compression rates are 11% to 13% with simple quantization,

and 13% to 29% with proposal quantization.

Figure. 8 shows relative errors of the temperature array

in different division numbers and quantization methods. It is

natural that the relative errors are reduced with larger n; the

average relative error is 0.74% at n = 1 with simple quanti-

zation, and 0.025% at n = 128. With proposal quantization,

it is 0.49% at n = 1 and 0.0056% at n = 128. Also we

investigated all the floating point arrays in the application.

The average relative errors with simple quantization are in

the range of 0.0053% to 14.56%, and the maximum relative

errors are 0.048% to 56.84%, which would be intolerable.

With the proposed quantization, they are improved. They

are 0.0004% to 1.19% in average, and 0.0022% to 5.94%

at maximum. We compute the maximum relative errors as

maxi=0...m{rei}.

As a whole, while the proposed method keeps the com-

pressed size low, the method can significantly reduce the

errors as the division number increase. As described in

Section II-B, errors in floating point data that are tolerable

depending on characteristics of applications and application

users’ preference. Thus users will need to control the pa-

rameter n in order to fulfill their preferences. In future, we

will provide more intuitive capability, which can control the

errors by specifying a value, such as tolerable degree of

errors.

D. Compression Time

As described in Section II-A, one of our goals is to

reduce total checkpointing time including compression at

large scale. In order to estimate the total checkpointing time

of large scale systems based on the results from our in-house

cluster, we make the following assumptions. We consider

weak scalable cases, where each application process has

checkpoint data whose size is constant, 1.5MB. The size

is based on checkpoint size of a single array in NICAM.

Here the compression time does not depend on parallelism,

since compression of checkpoints of each process can be

done in a embarrassingly parallel fashion. We obtain the

compression time from the actual measurement. Also we

obtain the compression rate, 19%, in this case. For the I/O

time, we assume that checkpoint images of all processes

are stored into the shared parallel file system, whose I/O

throughput is 20GB/s. Thus, we can estimate the I/O time

as:

1.5[MB/processes] × 0.12× P / 20[GB/s]

0

20

40

60

80

100

120

140

160

180

200

256 512 768 1024 1280 1536 1792 2048

ov
er

al
l c

he
ck

po
in

t t
im

e
[m

se
c]
�

the number of paralellisms

Checkpoint time (w/ compression)
gzip
Temporal file wirte for gzip
Quantization and Encoding
Wavelet transformation
Other overheads
Checkpoint time (w/o compression)

Figure 9: Overall checkpint time in increasing parallelisms

where P denotes the number of parallelisms. Figure. 9 shows

the estimated checkpoint costs in increasing parallelisms.

For the compression time, we show the detailed breakdown

based on the actual measurement. The figure also shows the

estimated checkpoint costs without compression.

From the figure, we observe that our approach is superior

in the aspect of compression time with larger number of

processes, because compression costs get relatively smaller

compared to I/O time. The crosspoint is around 768 pro-

cesses in this case. With 2048 processes, our estimation in-

dicates that we can reduce checkpoint costs by 55%. Because

compression time is constant to increasing parallelism, the

slop of the total checkpoint time with our proposed method

is more flat than one without compression. In this trend, if

we scale out the system, the checkpoint costs can be reduced

by about 81 (= 1−0.19
1 × 100)%.

This evaluation is limited to smaller checkpoint sizes

(1.5MB/process) due to the available initial input data for

NICAM. However, our compression algorithm has compu-

tational time complexity, O(n), to checkpoint sizes. Thus,

the superiority demonstrated in Figure. 9 is kept with larger

checkpoint sizes.

As shown in Figure. 9, most of the compression time

is consumed by gzip. The current implementation writes

temporary checkpoint data as files, and apply gizp to these

files via the file system. This cost will be mostly eliminated

by compressing the temporary checkpoint data with zlib in

memory. Also, we are going to investigate other compression

methods that are more appropriate than gzip when combined

with our lossy compression. Although our current imple-

mentation includes extra overhead, the estimation verifies

that our lossy compression method remarkably reduces

checkpoint time at extreme scale.

919

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

72
0

77
0

82
0

87
0

92
0

97
0

10
20

10

70

11
20

11

70

12
20

12

70

13
20

13

70

14
20

14

70

15
20

15

70

16
20

16

70

17
20

17

70

18
20

18

70

19
20

19

70

20
20

20

70

21
20

21

70

22
20

R
el

at
iv

e
er

ro
r

[%
]�

Time steps (One step simulates 1200 seconds of climate changes)�

Simple quantization
Proposed quantization

Figure 10: The transition of the relative error with application time steps

E. Feasibility Study of Lossy Compression

In the previous sections, we have evaluated immediate
errors; we compare original values with decompressed val-

ues by the lossy compression. In real simulation runs,

application users run the simulations for long time after

restarts from failures, and the errors of the successive

results may diverge, or may converge. To investigate the

successive impacts, we evaluate the errors on each time step

by comparing with original values on each step.

First, we run NICAM for 720 time steps, and then make

checkpoint images with the lossy compression. After the

checkpointing, we decompress the checkpoint, and we re-

run for additional 1500 time steps, i.e., 2220 time steps in

total, in order to emulate a restart from a failure.

Figure. 10 shows the progress of the relative errors as the

time step proceeds. Because the application restarts at a step

720, the x-axis begins from 720, and ends with 2220 steps.

It shows the average relative errors of the temperature array.

We observe that the proposed quantization exhibits smaller

errors than the simple one. In the simple quantization, we

also see that the fluctuation of errors are larger, and from

around step 1570, the errors start to decrease. Meanwhile,

the errors by proposed quantization are milder, and increase

slowly throughout steps from 720 to 2220. We also observed

the similar tendency with the other arrays.

For both quantization methods, the errors randomly grow

up and down while slowly increasing, and the movements

resemble to 1D random walk. If we assume that the errors

grow according to an 1D random walk, the expected errors

after n steps becomes the order of
√
n, which explains the

slow grows of the errors. In practice, scientific models also

produce the same degree of errors. Thus, the slow grows of

the errors may be acceptable compared to inherent errors to

scientific simulations, such as input data errors, sensor errors

and model errors. However, we should investigate on many

real applications, and the invariants of the physical quantities

as future work. In addition, values of the target array can be

symmetric, or being obeying the principle of the conserva-

tion of energy. If we apply lossy compression to those arrays,

the lossy compression can break the consistency. Thus, lossy

compression may require users to do data adjustment for the

consistency after restart in such applications.

V. RELATED WORK

To restart from failures, applications usually write check-

points to reliable parallel file systems. However, writing

checkpoints to such shared file system incurs huge overhead

because parallel file systems are shared by all of com-

pute nodes, and cannot provide enough I/O bandwidth to

all the compute nodes. To solve the problem, multi-level

checkpointing has been proposed [5], [25]. With multi-

level checkpointing, applications can make use of storage

hierarchy where the applications write checkpoint to local

storage frequently, and to parallel file system less frequently.

By optimizing each level of checkpointing intervals using

checkpointing models, the application can significantly re-

duce the checkpointing overhead [25], [26]. However, failure

rate is projected to become higher at extreme scale. The

existing multi-level checkpointing may not be enough for

extreme scale systems.

For further improvement of checkpointing at ex-

treme scale, in-memory checkpointing is one of the ap-

proaches [27]–[29]. By directly writing checkpoints to

memory in stead of storage sub-systems with an RAID-

5 technique, checkpointing time can be improved by one

order of magnitude while keeping certain level of reliability.

Asynchronous checkpointing also reduce the I/O overhead

by overlapping with computations [2]. In addition, utilization

920

of new storage hierarchy, burst buffer, is validated to signif-

icantly improve both checkpoint time and storage reliability

by storage reliability modeling [30].

Another approach is reducing checkpoint sizes. Our pro-

posed approach is classified in this category. Incremental

checkpointing stores only differences with the last check-

point instead of storing the entire image every time [9]–

[11]. If the differences are small, the checkpointing costs

are significantly reduced. However, with this approach, the

restart costs tend to increase, since the recovery requires

several consecutive checkpoint images [9]. In addition, the

effects of this approach may be limited in scientific appli-

cations because the entire arrays of physical quantities are

frequently updated, which results in storing entire arrays.

Islam et al. have proposed lossless compression to reduce

checkpointing costs [13]. The scheme merges distributed

checkpoint images per each variable, and select effective

compression methods for each variable. However, compres-

sion rate of floating-point arrays can be limited compared to

lossly compression in scientific applications . Xiang et al.

have studied feasibility of lossy compression for checkpoint

data [31]. They applied existing lossy compression [32] to

checkpoint data of an N-body cosmology simulation while

injecting a varying number of failures. Lossly compression

has been becoming feasible for checkpointing in other types

of applications. As future work, we’ll apply our lossy

compression to such applications.

VI. CONCLUSION

In order to reduce checkpointing time, we have pro-

posed a lossy compression technique based on wavelet

transformation. Then, we have applied our approach to a

real climate application, NICAM, to evaluate compression

times, compression rates, relative errors. The experimental

results show that our lossy compression can reduce overall

checkpoint time including computation time for compression

by 81%, while the introduced relative errors are around 1.2%

on overall average of all variables of compressed physical

quantities compared to the original values.

Our future work includes improvement of the compression

algorithm to reduce compression rates and errors. It is also

important to investigate the feasibility in other applica-

tions. Finally, we will combine with other efforts to reduce

checkpointing costs, such as harnessing storage hierarchy,

optimizing checkpoint frequency by checkpointing model

for lossy compression.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344. (LLNL-

CONF-663096). This work is supported by Grant-in-Aid for

Scientific Research S 23220003 and JST-CREST, ”Software

Technology that Deals with Deeper Memory Hierarchy in

Postpetascale Era”.

REFERENCES

[1] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and
R. Sahoo, “Bluegene/l failure analysis and prediction models,”
in International Conference on Dependable Systems and
Networks(DSN 2006), June 2006, pp. 425–434.

[2] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin,
B. R. de Supinski, and S. Matsuoka, “Design and
modeling of a non-blocking checkpointing system,” in
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
ser. SC ’12. Salt Lake City, UT, USA: IEEE Computer
Society Press, 2012, pp. 19:1–19:10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389022

[3] A. Moody, G. Bronevetsky, K. Mohror, and B. De Supinski,
“Design, modeling, and evaluation of a scalable multi-level
checkpointing system,” in 2010 International Conference
for High Performance Computing, Networking, Storage and
Analysis (SC), Nov 2010, pp. 1–11.

[4] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer,
and M. Snir, “Toward exascale resilience,” Int. J. High
Perform. Comput. Appl., vol. 23, no. 4, pp. 374–388,
Nov. 2009. [Online]. Available: http://dx.doi.org/10.1177/
1094342009347767

[5] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “Fti: High performance
fault tolerance interface for hybrid systems,” in Proceedings
of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’11.
Seattle, Washington: ACM, 2011, pp. 32:1–32:32. [Online].
Available: http://doi.acm.org/10.1145/2063384.2063427

[6] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott,
“Proactive fault tolerance for hpc with xen virtualization,”
in Proceedings of the 21st Annual International Conference
on Supercomputing, ser. ICS ’07. New York, NY,
USA: ACM, 2007, pp. 23–32. [Online]. Available: http:
//doi.acm.org/10.1145/1274971.1274978

[7] S. Matsuoka, T. Aoki, T. Endo, H. Sato, S. Takizawa,
A. Nomura, and K. Sato, TSUBAME2.0: The First Petascale
Supercomputer in Japan and the Greatest Production in
the World. Chapman & Hall/CRC Computational Science,
Apr. 2013, vol. 1, ch. 20, pp. 525–556. [Online]. Available:
http://www.crcnetbase.com/doi/book/10.1201/b14677

[8] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin,
B. R. de Supinski, and S. Matsuoka, “Design and modeling
of a non-blocking checkpointing system,” pp. 19:1–19:10,
2012. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2388996.2389022

[9] N. Naksinehaboon, Y. Liu, C. Leangsuksun, R. Nassar,
M. Paun, and S. Scott, “Reliability-aware approach: An
incremental checkpoint/restart model in hpc environments,”
in 8th IEEE International Symposium on Cluster Computing
and the Grid, 2008. CCGRID ’08, May 2008, pp. 783–788.

921

[10] J. S. Plank, J. Xu, and R. H. B. Netzer, “Compressed
differences: An algorithm for fast incremental checkpointing,”
University of Tennessee, Tech. Rep. CS-95-302, August 1995.

[11] J. Sancho, F. Petrini, G. Johnson, and E. Frachtenberg, “On
the feasibility of incremental checkpointing for scientific
computing,” in 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings, April 2004, pp.
58–.

[12] D. Ibtesham, D. Arnold, K. Ferreira, and P. Bridges, “On the
viability of checkpoint compression for extreme scale fault
tolerance,” in Euro-Par 2011: Parallel Processing Workshops,
ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, vol. 7156, pp. 302–311. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-29740-3 34

[13] T. Islam, K. Mohror, S. Bagchi, A. Moody, B. De Supinski,
and R. Eigenmann, “MCRengine: A scalable checkpointing
system using data-aware aggregation and compression,” in
2012 International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), Nov 2012,
pp. 1–11.

[14] M. Satoh, T. Matsuno, H. Tomita, H. Miura, T. Nasuno,
and S. Iga, “Nonhydrostatic icosahedral atmospheric model
(NICAM) for global cloud resolving simulations,” Journal
of Computational Physics, vol. 227, no. 7, pp. 3486 –
3514, 2008. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0021999107000654

[15] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt,
“Integrating online compression to accelerate large-scale data
analytics applications,” in Proceedings of IEEE Parallel
and Distributed Processing Symposium (IPDPS), 2013, May
2013, pp. 1205–1216.

[16] L. A. B. Gomez and F. Cappello, “Improving floating point
compression through binary masks,” in IEEE BigData 2013,
Santa Barbara, California, 2013.

[17] M. Burtscher and P. Ratanaworabhan, “High throughput com-
pression of double-precision floating-point data,” in Data
Compression Conference, 2007. DCC ’07, March 2007, pp.
293–302.

[18] A. Padyana, D. Sudheer, P. K. Baruah, and A. Srinivasan,
“Reducing the disk io bandwidth bottleneck through fast
floating point compression using accelerators,” International
Journal of Advanced Computer Research, vol. 4, no. 1, pp.
134-144, 2014, 2014.

[19] G. Han, X. Wu, S. Zhang, Z. Liu, and W. Li, “Error covari-
ance estimation for coupled data assimilation using a lorenz
atmosphere and a simple pycnocline ocean model,” Journal
of Climate, vol. 26, no. 24, pp. 10 218–10 231, 2014/10/19
2013.

[20] D. Zupanski and M. Zupanski, “Model error estimation
employing an ensemble data assimilation approach,” Monthly
Weather Review, vol. 134, no. 5, pp. 1337–1354, 2014/10/19
2006.

[21] J. L. Anderson, “An ensemble adjustment kalman filter for
data assimilation,” Monthly Weather Review, vol. 129, no. 12,
pp. 2884–2903, 2014/10/18 2001.

[22] J. S. Whitaker, T. M. Hamill, X. Wei, Y. Song, and Z. Toth,
“Ensemble data assimilation with the ncep global forecast
system,” Monthly Weather Review, vol. 136, no. 2, pp. 463–
482, 2014/10/18 2008.

[23] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine trans-
form,” IEEE Transactions on Computers, vol. C-23, no. 1,
pp. 90–93, Jan 1974.

[24] A. Graps, “An introduction to wavelets,” Computational Sci-
ence Engineering, IEEE, vol. 2, no. 2, pp. 50–61, Summer
1995.

[25] A. Moody, G. Bronevetsky, K. Mohror, and B. R.
de Supinski, “Design, Modeling, and Evaluation of a
Scalable Multi-level Checkpointing System,” in Proceedings
of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and
Analysis, ser. SC ’10. New Orleans, LA, USA: IEEE
Computer Society, Nov. 2010, pp. 1–11. [Online]. Available:
http://dx.doi.org/10.1109/sc.2010.18

[26] N. Vaidya, “On checkpoint latency,” in In Proceedings of
the Pacific Rim International Symposium on Fault-Tolerant
Systems, 1995, pp. 60–65.

[27] G. Zheng, L. Shi, and L. V. Kale, “FTC-Charm++:
An In-Memory Checkpoint-Based Fault Tolerant Runtime
for Charm++ and MPI,” in Proceedings of the 2004
IEEE International Conference on Cluster Computing, ser.
CLUSTER ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 93–103. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1111712

[28] R. Rajachandrasekar, A. Moody, K. Mohror, and D. K. D.
Panda, “A 1 pb/s file system to checkpoint three million
mpi tasks,” in Proceedings of the 22Nd International
Symposium on High-performance Parallel and Distributed
Computing, ser. HPDC ’13. New York, NY, USA:
ACM, 2013, pp. 143–154. [Online]. Available: http:
//doi.acm.org/10.1145/2462902.2462908

[29] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. d. Supinski,
N. Maruyama, and S. Matsuoka, “Fmi: Fault tolerant
messaging interface for fast and transparent recovery,” in
Proceedings of the 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, ser. IPDPS ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp.
1225–1234. [Online]. Available: http://dx.doi.org/10.1109/
IPDPS.2014.126

[30] K. Sato, K. Mohror, A. Moody, T. Gamblin, B. De Supinski,
N. Maruyama, and S. Matsuoka, “A user-level infiniband-
based file system and checkpoint strategy for burst buffers,”
in Cluster, Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on, May 2014, pp. 21–
30.

[31] X. Ni, T. Islam, K. Mohror, A. Moody, and L. V. Kale,
“Lossy compression for checkpointing: Fallible or feasible?”
in International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2014.

[32] P. Lindstrom and M. Isenburg, “Fast and efficient compression
of floating-point data,” IEEE Transactions on Visualization
and Computer Graphics, vol. 12, no. 5, pp. 1245–1250, Sept

922

