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Background " Proposal Evaluation and Model Prediction
« Public cloud: high scalability, high computational resources on-demand usage available. We propose pertormance model for our Cloud-based Burst Buffers system.
+ Such cloud environments are suitable for large scale data intensive computation. - predict the performance. _ Amazon EC2 25
. . - help to determine the optimal configuration.
+ However there are two major challenges in cloud storages: Tokyo 215
+ Low I/O performance. Loose consistency model, . 224
+ We have proposed Cloud-based Burst Buffers (CloudBB) [1] as a new tier in cloud storage hierarchy to improve I/O Performance MOdeI of Cloud-based Burst Buffers m3 xlarge 147
performance and consistency while using cloud storages. In our model, we make two assumptions:
*  The master node evenly distributes data of applications across burst buffers nodes evenly so that I/O workloads are 4 76
I/O throughput of Amazon S3 balanced across burst buffer nodes; 15GiB
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. Dataset and Experiment Setting Details
N-1 throughput N-N throughput Cost = Time X (Po X No + Py x Ny + Py X Nyy) .
N clients access to the different part of a shared file Each client access to its own file . 4 of Compute Optimal number of Optimal number of
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Since the throughput of IOnode are shared by multiple compute nodes. The number of IOnode
% v Thus, overall average 1/O throughput, Thrciouaps, can be computed as The number of Master Node 2 2
Shared cloud storage
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Burst buffers are several dedicate nodes to provide remote data cache with high throughput and low latency. ThrciowdBB = CZ P; x Thr,,

+ Our system consists of several SCBBs (Sub CloudBB). i=0

In each SCBB, there is a Master and several IOnodes

The total time in computation

Ne

The total input size

The total data size can be Montage [2] Results
buffered in burst buffer

Montage [2] Prediction results

Pj denotes probability where i number of compute nodes accessing the
same IOnode. Hence, the Thri, and Pj can be computed as:

» Masters control the IOnodes in the same SCBB, manage file metadata and handle I/O requests from Compute Nodes. The radio of tasks must be According to the results of Montage [2] and the prediction, our model can predict the performance and optimal configuration

+ IOnodes store actual data and transfer data with Compute Nodes. executed serially in total tasks while using our CloudBB system.

+ Consistent hash of file path is used to distribute workload among each SCBBs.

The average throughput of cloud
Th'rm = Imax {ThrCompute Node) Th'rIOnode} 8 P
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Tomee Conclusion
" P ro b | em The throughput of CloudBB
under the given configuration + We propose performance model for our Cloud-based Burst Buffers system.

+ Trade off: more IOnodes -> high performance & high cost <NC -1

(NI _ 1)Nofifl
less IOnodes -> low performance & low cost
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o The maximum throughput of . . . . - .
+ Since we use several additional nodes as burst buffer nodes, it is important to choose the number of IOnodes carefully to Pi= NNe-t IOnode We validate our model using the experiment results of a HPC application on real public cloud, Amazon EC2.
achieve high performance as well as save cost.
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