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Abstract

Federated storage resources in geographically dis-
tributed environments are becoming viable platforms for
data-intensive cloud and grid applications. To improve
I/O performance in such environments, we propose a novel
model-based I/O performance optimization algorithm for
data-intensive applications running on a virtual cluster,
which determines virtual machine(VM) migration strate-
gies, i.e., when and where a VM should be migrated, while
minimizing the expected value of file access time. We solve
this problem as a shortest path problem of a weighted di-
rect acyclic graph (DAG), where the weighted vertex rep-
resents a location of a VM and expected file access time
from the location, and the weighted edge represents a mi-
gration of a VM and time. We construct the DAG from
our markov model which represents the dependency of files.
Our simulation-based studies suggest that our proposed al-
gorithm can achieve higher performance than simple tech-
niques, such as ones that never migrate VMs: 38% or al-
ways migrate VMs onto the locations that hold target files:
47%.

1. Introduction

Federated storage resources in geographically dis-
tributed environments are becoming viable platforms for
data-intensive cloud and grid applications, since they can
provide much larger amounts of storage resources with
abundant computational power than those of typical single-
site environments. In such environments, achieving high
I/O performance is significant problem, since it can be af-
fected by inter-site network bandwidth. Previous studies
have focused on data management techniques such as file
replication and caching to reduce costly network file ac-

cesses [15]. However, these techniques introduce a large
amount of file transfer and storage consumption because of
vast sizes of target files, which affects efficient resource uti-
lization.

Virtual clusters [12, 9], which are effectively the resource
allocation methods for clouds such as the Amazon EC2 [1],
can solve this difficulty by migrating VMs onto close loca-
tions to target files [8]. However, determining optimal VM
migration strategies, i.e., which VMs should be migrated to
where and when, is a difficult problem, since they depend
on the size and locations of target files, the memory size of
a VM, and run-time network performance.

To facilitate efficient data access in a virtual cluster, we
propose a novel model-based I/O performance optimization
algorithm for data-intensive applications, determining VM
migration strategies while minimizing file access time, in-
cluding VM migration time, on the assumption that inter-
site network throughputs and the size and locations of target
files can be monitored. Our algorithm models the depen-
dency of file accesses as a markov model from which we
create a weighted directed acyclic graph (DAG) that rep-
resents the transition of VM migration, We then solve this
problem as a DAG shortest path problem that minimizes
overall expected file access time. Our simulation-based
studies suggest that the proposed algorithm can achieve
higher performance than simple techniques, such as ones
that never migrate VMs: 38% or always migrate VMs onto
the sits that hold target files: 47%.

2 Related Work

One of the most effective techniques to improve file I/O
performance in geographically distributed environments is
to deploy files to closest network proximity of the re-
questing nodes. In particular, read-access performance can
significantly affect data-intensive application turn-around
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times, since such applications often read large data from
data management systems but only write a small amount
of results. Therefore, improving I/O performance is espe-
cially effective for write-once, read-mostly applications. To
improve the I/O performance, there is file replication and
caching as most previous studies.

File replication attempts to minimize remote file ac-
cesses by creating multiple copies of frequently-accessed
popular files distributed across sites. Many data manage-
ment systems, including replica management systems in
grids [13, 15], distributed file systems [2, 7], employ this
approach.

File caching in data management systems is effective ap-
proach to improve I/O performance. For example, optimally
selecting files to cache has to consider how likely they are
used again in both caching situations. However, one of the
difficulties that is unique to data manage systems is that op-
timal caching also depends on where cached files are orig-
inally located. For instance, caching files that are available
close to requesting nodes might not contribute to reducing
application run times. In contrast, files that are used in-
frequently but are located far away from requesting nodes
might be worth caching, because avoiding future accesses
to such files can reduce access times substantially. There-
fore, optimal caching strategies need to consider not only
access patterns but also wide-area network properties such
as latencies and bandwidths.

For these reasons, determining optimal replication strate-
gies, i.e., which files should be replicated to which sites,
is a difficult problem, mainly because they depend on ap-
plication of file access patterns that may only be observed
at application run times. These file replication and cache
techniques are effective to improve file I/O performance.
However, these techniques have several limitations in data-
intensive applications, which introduce a large amount of
file transfer and storage consumption because of vast sizes
of target files.

Virtual clusters [12, 9], which are a virtualized com-
puting clusters that consist of underlying multiple physi-
cal computing cluster nodes on a widely distributed envi-
ronment inter-connected with physical or overlay networks,
can solve this difficulty by migrating VMs onto close loca-
tions to target files [8]. Therefore, it is required to consider
not only migration of data but also migration of processes,
i.e., virtual machine, for further I/O performance improve-
ment in geographically distributed environments, which are
the underlying platform for clouds and grids. There have
been a number of proposals in VM migration techniques
[8, 11], however these techniques focus on VM migration
for just management flexibility or power efficiency in wide
area networks. There are also research works by using
VM migration to increase the performance of virtual cluster
[14], which transparentlly migrate MPI processes running
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Figure 1. The overview of our proposed algo-
rithm

on virtual machines for load balancing. However, as far as
we have researched, we have not been able to encounter a
concrete algorithm for run-time migration of multiple jobs
using VMs for optimizing parallel workloads in order to op-
timize I/O in a wide-area distributed environment.

3 Proposal

Our algorithm determines VM migration strategies, i.e.,
which VM should be migrated to where, while minimizing
overall expected file access time, on the assumption that the
inter-site network throughputs and the size and locations of
target files are given. Figure 1 illustrates the overview of
our proposed algorithm. We create a markov model that
represents the dependency of file accesses between files us-
ing collected access profiles. Then, we create a weighted
DAG, where the weighted vertex represents a location of a
VM and expected file access time when the VM accesses a
target file, and the weighted edge represents a migration of a
VM and time. Then, we solve this problem as a DAG short-
est path problem that minimizes overall expected file access
time. This section describes the detail of our proposed VM
migration strategy.

3.1 Markov Model of File Access Patterns

Our technique requires a sequence of file accesses to es-
timate the dependency of accesses between files. To rep-
resent the access dependency between files, we construct a
markov model that represents the probability of access tran-
sitions from one file to another from monitored trace, File
Access Log shown in Figure 1. We use this model to esti-
mate expected file access time to target files. For example,
let the markov model be constructed as described in Fig-
ure 2. In this model, the successor of File 1 is expected
File 2 in 90% and File 3 in 10%. We can describe this state
transition diagram as a stochastic matrix, which represents
a markov chain over a finite state space. If the probability of
transition from File i to File j in 1-step is Pr(j|i) = pij , we
can create the stochastic matrix, P = (pij) . The stochastic
matrix of the markov chain in Figure 2 can be represented

467



File 1 File 2 File 3

0.1
0.9 0.9

0.1 1.0

Figure 2. Example of Markov model

as follows:

1 2 3
1

⎛
⎝

0 0.9 0.1
⎞
⎠P = 2 0.1 0 0.9

3 1.0 0 0

Note that the probability of transition from File i to any files
must be 1, since the summation of the :

∑
j

pij = 1.

Here, we can further extend this stochastic matrix of 1-
step transition from File i to File j to s steps. We denote
the probability of transitions from File i to File j in s-step
as p

(s)
ij . For example, the stochastic matrix of 2-step transi-

tions from File i to File j in Figure 2 can be represented as
follows:

1 2 3
1

⎛
⎝

0.19 0 0.81
⎞
⎠P 2 = 2 0.9 0.09 0.01

3 0 0.9 0.1

By using this markov model, we estimate future file ac-
cesses from a target file to another file.

3.2 Optimal Relocation of VM

Our algorithm determines optimal VM migration strat-
egy, i.e., whether we should migrate VM or not to where
and when. VM migration strategy determined by our al-
gorithm selects optimal locations that minimize expected
access time of following file sequences. Here, we assume
that inter-site network bandwidths are given and the size
and locations of files are collected from data management
systems. Furthermore, we assume that files have their ID
numbers from 1 to K, and file access transitions obey our
markov model described in Section 3.1. We determine opti-
mal locations for file accesses by solving shortest path prob-
lems of DAG. Figure 3 illustrates a general topology of the
DAG constructed in our algorithm, in which vertexes are
grouped in several stages from Stage 1 to Stage S. In our
algorithm, VM accesses just one file in each stage. The ver-
texes of each stage represent locations of a VM, where M is
the number of sites, and their weights represnt the expected
file access time from the current site to the target file loca-
tion. On the other hand, the edges represent transitions of a
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Figure 3. The general topology of a DAG

VM from the current site to the next location in next stage,
and their weights represent VM migration times.

Let the access time of File k ∈ {1, · · ·K} from the Site
i ∈ {1, · · · ,M} be rik (the detail will be described in Sec-
tion 3.3), and the requested access file be File k̂. We denote
the expected file access time from Site i to the location of
File k̂ at Stage s ∈ {1 · · ·S} as follows:

wis =

⎧⎪⎨
⎪⎩

rik̂ if s = 1
K∑

k=1

p
(s−1)

k̂k
· rik Otherwise

where p
(s)

k̂k
denotes the probability of file access transitions

from File k̂ to File k in s-steps, which is derived from the
stochastic matrix, P s.

On the other hand, let the VM migration time from Site
j to Site i be mji. Note that we introduce a goal vertex as
a end point of the shortest path, to which the edge weights
from all vertexes on Stage S represent 0. In addition, we
have to determine the number of stages, S, where S denotes
the number of files to be considered for solving a shortest
path search. In case of considering a large number of stages,
it may take a long time to solve a shortest path search for op-
timal location because of a large number of vertexes, while
in case of considering few stages, it may increase the total
file access time due to the inaccurate location estimation.
We employ the number of stages, S, at which the transi-
tions of file accesses return to the requested file again, i.e.,
File k̂.

Figure 4 illustrates the example of the constructed DAG,
in which file access patterns obey the markov model in Fig-
ure 2 and the VM located on Site 1 in 3 sites accesses File 3
at first. When the VM transitions as follows: (Stage 1,Site
1) �→(Stage 2,Site 2) �→(Stage 3,Site 2), the expected total
file access time represents m11 +w11 +m12 +w22 +m23 +
w33, which includes the summation of all vertex weights
and edge weights in the path. Therefore, the best VM mi-
gration storategy in 27(=33) ways is shortest path from Start
to Goal vertex. Note that mii represents 0, since this means
not migrating the VM. In our experiments, we solve a short-
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Figure 4. Example of the constructed DAG. In this exam-
ple, our algorithm outputs Site1 as a optimal VM location
for accessing File 3
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Figure 6. File size:
2GB

est path problem by using Dijkstra’s algorithm, but other
heuristical methods can be employed for large systems. Our
technique conducts the optimization on every file access,
and we employ the first location in the determined shortest
path for optimal VM migration. if (Stage 1,Site 1)�→(Stage
2,Site 2) �→(Stage 3,Site 2) is the shortest path, our algo-
rithm outputs Site 1 (Figure4).

Figure 7. VM Memory
Size: 1024MB

Figure 8. Network Through-
put: 25MB/s

3.3 Experimental Setup

We conducted preliminary experiments to create perfor-
mance models for file access and VM migration times, us-
ing two machines connected via network emulator GtrcNet-
1 [10] as shown in Figure 5, each of which consists of AMD
Opteron 250 (2.4GHz) × 2, 2GB of memory and gigabit
ethernet, running on Linux 2.6.18. We use Xen 3.1.0 [5, 6]
for the underlying virtual machine.

First, to create performance model of remote file access
time, rik, we conduct several workloads that sequentially
read a file with 2GB size on the remote machine in different
network bandwidth settings. Figure 6 compares local and
remote read access performance. The x-axis corresponds
to the network bandwidth between two machines, while the
y-axis corresponds to the elapsed time of read file access.
We see that network bandwidth becomes the bottleneck for
file access in case of lower network bandwidth. In contrast,
local I/O throughput, including memory, HDD and SSD etc,
becomes the bottleneck in case the network bandwidth is
higher than the local I/O throughput. Thus, we model the
file access time r as follows:

r =
s

min (hl, hn)

where s corresponds to the file size to be accessed, hl to
local I/O throughput, and hn to network bandwidth.

Next, to create performance model of VM migration
time, we migrate a VM running an application between
two machines under different network throughputs and VM
memory sizes. Xen supports live migration and stop-and-
copy migration. We employ stop-and-copy migration for
accuracy of performance model. We use the BLAST [4] as
an execution application, which is a typical bioinformatics
tool that finds regions of local similarity between sequences.
The total size of dataset to be accessed by the application is
2.03[GB] in this experiment. Figure 7 and Figure 8 show
the actual VM migration time, including initialization and
finalization operations. We set the memory size of the VM
to 1024[MB] in Figure 7, while the network bandwidth to
25[MB/s] in Figure 8. We see that the actual VM migra-
tion time exhibits inverse proportion to VM memory size
and proportion to network bandwidth. Furthermore, we see
that the elapsed time of both initialization and finalization
operations for a VM migration are regarded as constant in
any VM memory size and network bandwidth cases. Thus,
we model the VM migration time m as follows:

m =
v

hn
+ C

where v corresponds to the allocated VM memory size, hn

to network bandwidth, and C to the elapsed time for initial-
ization and finalization operations for VM migration.
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4 Experiment

We conducted performance studies using a simulated ge-
ographically distributed environment shown in Figure 9: 4
sites interconnected with 10[MB/s] or 100[MB/s] WANs,
and local I/O throughputs of each site to 60[MB/s]. The VM
with 1024[MB] memory size is initially located on Site 1.
These parameter settings are collected from the given grid
environment, the InTrigger [3] resilient grid testbet. Net-
work bandwidths between cluster sites in this environment
exhibit 80-100[MB/s] in the best case, 7-10[MB/s] in the
worst case. The simulated workload accesses a set of files
whose size and location is shown in Figure 10: this behav-

Figure 11. Ex.1: VM Memory size is 1024GB

Figure 12. Ex.2: VM Memory size is 1024GB

ior is collected from BLAST. We set four datasets and two
experimental settings (Exp.1 and Exp.2), which deploy dif-
ferent dataset locations; each dataset is distributed across
different sites, and files in a single dataset are located in the
same single site. We constructed a markov model of file
access transitions from access profiles. We set the elapsed
time of initialization and finalization operations for a VM
migration to 13[seconds]. We compare our proposed tech-
nique (Proposal) with two alternative strategies, which are
listed below:

• No VM migration is performed (No migration I/O).
Applications running on a VM always access from the
initial location (Site 1 in this experiment).

• VM migration is always performed to the sites that
hold target files (Migration I/O).

Figure 11 shows the total read file access time, includ-
ing local/remote file access and VM migration time with
three strategies, when the datasets are distributed as Exp.1
in Figure 10. Compared to the No migration I/O strategy,
the Migration I/O strategy reduces the total file access time
by 21% by migrating a VM to sites that holds target files
every time. In contrast, our proposed algorithm reduces the
total file access time by 47%. Although the actual file ac-
cess times of our proposed algorithm exhibit longer execu-
tion time than that of the Migration I/O strategy, our pro-
posed algorithm reduces the total file access time more than
that of the Migration I/O storategy. This is due to the fact
that a large number of VM migration operations occur in
the Migration I/O strategy, which is a costly operation in
WANs. On the other hand, our strategy can avoid unneces-
sary VM migration and achieve optimal placement for read
file accesses.

Figure 12 shows that the total read file access time when
the datasets are distributed as Exp.2 in Figure 10. We
observe that the total file access time in the Migration
I/O strategy exhibits longer than that of the No migration
I/O strategy. This results from the fact that the locations
of datasets significantly affect I/O performance of file ac-
cesses. In this case, the datasets with large size files are
located on the same or close site to the initial location of the

470



VM (Site 1 in this experiment), which is better condition for
the No migration I/O strategy than the Migration I/O strat-
egy. In contrast, our proposed technique reduces the total
file access time by 34% compared to the No migration I/O
strategy, by 38% compared to the Migration I/O strategy,
since our strategy avoid costly operations such as remote
access to large size files and VM migrations.

In our experiments, we set the number of stages, S, to
5. In case of considering a large number of stages, it may
take a long time to solve a shortest path search for optimal
location, while few stages, it may cause inaccurate loca-
tion estimation. However, we observed some irregular sit-
uations; in one benchmark, our algorithm using 120 stages
exhibits 7.61% total file access time improvement, in con-
trast, 7.58% total file access time decrease using 100 stages,
compared to the one using 5 stages. This is due to that the
estimation accuracy is affected by the file accesses of run-
ning applications.

Our proposal introduces extra overheads to the original
file accesses, which are mainly caused by solving shortest
path search problems on every file access request. However,
we observed that the elapsed time for solving the optimiza-
tion problem is more than 270[µ seconds], which would be
small or negligible compared to the total file access time
of data-intensive application running on geographically dis-
tributed environments. Furthermore, we can solve these
problems in advance, since the objective shortest path can
be determined from the target files; our algorithm considers
all possibilities of VM locations. We just look up a corre-
sponding optimal location for the VM from the determined
results by using the current VM location and file ID, when
a file request is arrived. For example, in the case of 10, 000
files and 14 sites, which is collected from the InTrigger en-
vironment, it takes within 37.8[seconds] to determine the
optimal VM locations. Further studies may be required
if more heuristical approaches would be appropriate for a
large number of files, in the millions. We plan to conduct
comprehensive analysis to judge the tradeoffs between dif-
ferent shortest path algorithms for our purpose.

5 Conclusion

We have presented a VM relocation algorithm for data-
intensive applications on a virtual machine in a geographi-
cally distributed environment. Our proposed algorithm de-
termines optimal location of VM to access target file, while
minimizing the total expected file access time to files by
solving DAG shortest path search problems, on the assump-
tion that the network throughput between sites and the size
and locations of target files are given. Our simulation-based
studies suggest that the proposed algorithm can achieve
higher performance than simple techniques, such as ones
that never migrate VMs by 38% or always migrate VMs

onto the sites that hold target files by 47%. As a future
work, we will consider CPU and memory usages and other
VM placements in our proposed algorithm.
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