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ABSTRACT
This paper proposes a compiler-based programming frame-
work that automatically translates user-written structured
grid code into scalable parallel implementation code for GPU-
equipped clusters. To enable such automatic translations,
we design a small set of declarative constructs that allow
the user to express stencil computations in a portable and
implicitly parallel manner. Our framework translates the
user-written code into actual implementation code in CUDA
for GPU acceleration and MPI for node-level parallelization
with automatic optimizations such as computation and com-
munication overlapping. We demonstrate the feasibility of
such automatic translations by implementing several struc-
tured grid applications in our framework. Experimental re-
sults on the TSUBAME2.0 GPU-based supercomputer show
that the performance is comparable as hand-written code
and good strong and weak scalability up to 256 GPUs.

Categories and Subject Descriptors
D.3.3 [Software]: Programming LanguagesLanguage Con-
structs and Features; D.1.3 [Software]: Programming Tech-
niquesConcurrent Programming[Parallel programming]

General Terms
Languages
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1. INTRODUCTION
Heterogeneous computing with both conventional CPUs

and vector-oriented GPU accelerators is becoming common
because of superior performance as well as power efficiency.
The peak performance of latest NVIDIA GPUs can be as
high as 515 GFLOPS per chip, which is faster than the lat-
est CPUs by several factors, allowing significant performance
boost in compute-bound applications such as N-body prob-
lems [13]. GPU’s memory bandwidth is also much greater
than conventional CPU memory, reaching over 100 GB/s
in properly aligned memory accesses, making it possible to
achieve significant speedups in memory-bound applications
such as computational fluid dynamics [23, 27].

Programming such heterogeneous systems, however, is a
notoriously difficult task. The reason is two-fold. First, most
of the existing programming models for such systems only
provide low level platform-specific abstractions. The lack of
high-level unified programming models forces the program-
mer to learn multiple distinctive models for parallel comput-
ing, e.g., message passing for distributed memory machines
and GPU-centric models for accelerators, often resulting in
ad hoc hybrid programming models. Since parallel program-
ming even with a single model is known to be difficult and
error prone, exploiting the potential performance advantage
with hybrid models is thus a highly difficult task. Second,
in the current heterogeneous architecture, data movements
often involve complex performance considerations such as
locality optimizations for keeping data close to processor
cores and overlapping of communications and computations.
While these techniques have long been well known and stud-
ied on parallel platforms, realizing them on complex hetero-
geneous systems further increases the programmer burden.
As a result, further scaling performance with a large num-



ber of GPUs remains to be challenging even for highly skilled
experts.

To solve the problem and improve programmer productiv-
ity, we envision a high level programming model that pro-
vides a uniform application programming interface for het-
erogeneous systems. While low-level interfaces are indeed
essential when the maximum programming flexibility is re-
quired, such a case should not be common but exceptional,
and simplifying programming even with limited flexibilities
and small performance cost should be highly important to al-
low the adoption of heterogeneous systems for a wider range
of application programmers.

This paper presents our high-level programming frame-
work called Physis that is specialized to stencil computations
with regular multidimensional Cartesian grids. In stencil
computations each grid point is repeatedly updated by only
using neighbor points, exhibiting regular spatial locality.
Such a computation pattern, called “structured grids” [2],
frequently appears in numerical simulation codes for solving
partial differential equations. The performance of stencil
applications is often determined by memory system perfor-
mance since the typical byte-per-flop ratio in such code is
higher than the ratio of today’s processor and memory sys-
tems, including GPUs. Therefore, optimizing data move-
ments is the most important to improve performance of such
applications. Typical such optimizations for the GPU in-
clude latency hiding by scheduling a large number of con-
current threads, data alignment to allow coalesced memory
accesses, and locality optimizations by thread blocking [24].
In addition to these optimizations, more coding effort is re-
quired to scale well with a large number of GPUs, such as
communication and computation overlapping. GPU perfor-
mance scalability is especially important for applications us-
ing a large amount of data, since a single GPU is equipped
only with a few giga bytes of memory.

In the Physis framework, we design its programming model
such that architecture neutrality can be realized on various
parallel platforms, with a particular focus on GPU-based
heterogeneous supercomputers. It provides portable and
declarative constructs for describing stencil computations,
such as creating multidimensional grids, data copying to and
from them, and applying stencils over them. Global view
memory model and implicit parallelism are adopted to real-
ize high productivity as well as architecture neutrality. The
declarative programming interface at the same time allows
for static compilation techniques to automatically parallelize
stencil computations over distributed memory environments
with optimizations such as compute-communication over-
lapping. While it is beyond the scope of this paper, the
framework is designed to allow for further advanced soft-
ware techniques to be applied transparently for the appli-
cation programmer, such as model-based and experimental
performance tuning, resiliency through error checking and
scalable and fast checkpointing [12, 18].

We describe an implementation of the framework based
on the standard C language.1 We introduce a small set of
custom data types and intrinsics for stencil computations
into C as an embedded DSL [10]. Those custom extensions
are translated to platform native code, such as CUDA for
GPU and MPI for message passing. Programs written in the
Physis DSL can also be automatically translated to parallel

1The source code is freely available at http://github.com/
naoyam/physis.

code using MPI with the overlapping optimization for better
scalability.

To evaluate our framework, we implement several sten-
cil applications in the Physis DSL and evaluate its per-
formance using the TSUBAME2.0 supercomputer at Tokyo
Tech, which is the fourth fastest machine at the Nov 2011 list
of Top500. We present results of performance studies using
up to 256 NVIDIA Fermi GPUs, and demonstrate that our
framework can achieve performance comparable to hand-
written versions with good strong and weak scalability. To
evaluate the productivity, we also compare lines of code in
our DSL with native programming languages, and show that
it is comparable to sequential code, indicating a similar level
of productivity as sequential programming.

2. BACKGROUND
Stencil is one of the most fundamental computational pat-

terns in numerical algorithms. Many of fluid dynamics phe-
nomena can be described by partial differential equations
(PDEs) over multi-dimensional Cartesian grids, such as weather
and seismic waves, and their simulations can be implemented
with stencil-based numerical algorithms such as finite-difference
methods.

We define a stencil as an operation applied over points
of multi-dimensional grids of data. More formally, let V
be a two-dimensional grid defined over (i, j) coordinates. A
general form of 2-D stencils can be written as follows:

V n+1(i, j) = f(V n(i+ α, j + β)|α, β ∈ C)

where V N (i, j) is the value of the grid at (i, j) at time n,
C is a set of constant integral values, and f is a function
that takes a set of points at time n and yields the updated
value of V at time n + 1. Stencils are typically defined as
an operator that performs computation for each point using
its neighbor points. For example, a 5-point diffusion stencil
can be written as

V n+1(i, j) = 1/5(V n(i, j) + V n(i+ 1, j) + V n(i− 1, j)

+ V n(i, j + 1) + V n(i, j − 1))

While the basic form of stencils has simple and regular
computation characteristics, and therefore relatively straight-
forward to parallelize, its actual applications to real-world
problems can be more complex. One of the major com-
plexities is due to the irregularities of boundary conditions.
Although stencils are uniformly defined over the entire grid,
it is common that boundary points require separate com-
putations than interior points in order to reflect simulation
settings accurately. There are some commonly used condi-
tions such as Dirichlet and Neumann boundary conditions,
but applications may use custom conditions to improve sim-
ulation accuracy for the problem at hand.

Optimizing data movements in stencils is highly impor-
tant, yet introduces significant complexities in simulation
code. There has been significant research devoted to such
optimizations because of low arithmetic complexities and
high memory I/O costs on modern microprocessors, includ-
ing blocking of hardware and software caches [8, 9, 23, 30].
Datta et al. explored stencil optimizations, including cache
blocking, memory affinity, and data padding [9]. Nguyen
et al. further improved performance by employing both
spatial and temporal blocking [19]. Kim proposed use of
Mehrstellen discretization, which trades off computation costs



for faster convergence. This can be effective for stencils,
since they are often memory bound and thus idle processing
cores can be essentially exploited for free [16].

Since many of important science and engineering prob-
lems require large-scale simulations, their implementation
techniques on distributed-memory machines have also been
a long-term active research topic [25, 27, 29]. One of the
most well-known optimizations for such environments is to
hide the cost of boundary exchange communications by over-
lapping them with stencil computations. Typical paralleliza-
tion on clusters of machines decomposes grids into a disjoint
set of subdomains, where each of them is computed by one
node. Since stencil operations require neighbor points, how-
ever, each node must exchange boundary points with other
compute nodes responsible for neighbor subdomains. This
communication requirement can introduce significant over-
heads, especially when a large number of nodes are involved,
and thus reducing communication cost is highly important
to improve application performance scalability.

3. HIGH-LEVEL FRAMEWORK FOR STEN-
CIL COMPUTATIONS

We design a high-level programming framework that pro-
vides a highly productive programming environment for sten-
cil computations. The framework consists of a domain-
specific language and platform-specific runtimes. The DSL
allows for declarative and flexible descriptions of stencils
in an architecture-neutral way, which is then translated to
architecture-specific code by source-to-source translators. The
framework runtime encapsulates architecture-specific data
management tasks and provides a uniform interface of vir-
tual shared memory for multidimensional grids. The rest of
this section discusses our major design goals of the frame-
work.

3.1 Design Goals

Automatic parallelization.
We design the Physis DSL amenable to compiler-based au-

tomatic parallelization on distributed-memory parallel envi-
ronments. Although automatic parallelization has been an
active research topic for the past decades, it has not been
widely successful in practice for general-purpose languages,
especially on distributed memory environments, since effec-
tively exploiting data localities available in applications is a
complex and difficult task [15]. In contrast, our framework is
limited to a small set of domain-specific computations, but
by doing so we eliminate the difficulties of automatic par-
allelization in conventional general-purpose languages, and
realize implicit parallelism on a variety of parallel platforms.

Embedded DSL rather than external DSL.
Inventing a completely new language for a given problem

domain, i.e., an external DSL approach [10], potentially al-
lows for a maximally optimized language design. In practice,
however, being dissimilar to existing familiar languages may
hinder adoption by a wide body of application programmers.
We design our DSL as a small set of extensions on existing
general-purpose languages, i.e., an embedded DSL [10]. We
choose C as the base language in our current design and
implementation since it is one of the most commonly used
languages in high performance computing.

Declarative and expressive programming model.
In order to improve productivity, we maximize program-

ming abstraction by adopting a declarative programming
model that allows for less manual programming than im-
perative models. For example, in the Physis DSL the pro-
grammer expresses how each grid element is computed, but
it is determined by the framework how the whole grid is
processed with the user-specified computation; the overall
computation may be performed sequentially or in parallel
depending on target environments of the framework. Hav-
ing too much abstraction, however, can be too restricted to
implement real-world scientific simulations. For example,
some stencils may be applied only to a part of a whole grid,
such as boundary regions. Although we attempt to keep the
language extensions minimal, we adopt additional domain-
specific constructs if they can further improve productivity
of programmers and performance of final implementation
codes.

4. PROGRAMMING MODEL
The Physis DSL extends the standard C with several new

data types and intrinsics for stencil computations. The user
is required to use the extensions to express stencil-based
applications, which are then translated to actual implemen-
tation code by the Physis translator.

4.1 Runtime Initialization and Finalization
The user program must first initialize the Physis runtime

environment by PSInit before any use of Physis extensions,
which can then be destroyed by PSFinalize:

void PSInit(int *argc, char ***argv,

int num_dimensions, size_t max_dim_i,...)

void PSFinalize()

The first two parameters of PSInit are assumed to be point-
ers to the command-line argument number and pointers,
as in MPI_Init of MPI. The additional parameter speci-
fies properties of the global domain, where multidimensional
grids can be created. The num_dimensions parameter spec-
ifies the number of dimensions of the global domain and the
rest of parameters specify the maximum size of each dimen-
sion. The number of the additional parameters must be the
same as the number of dimensions.

4.2 Using Multidimensional Grids

4.2.1 Grid Data Types
Physis supports multidimensional Cartesian grids of floating-

point values (either float or double). Grids of structs are
not currently supported; they can be represented by using
multiple separate grids of floats or doubles.

To represent multidimensional grids, we introduce several
new data types named based on its dimensionality and ele-
ment type, e.g., PSGrid3DFloat for 3-D grids of float val-
ues and PSGrid2DDouble for 2-D grids of double values. The
type does not expose its internal structure, but rather works
as an opaque handle to actual implementation, which may
differ depending on translation targets.

Since many of the Physis intrinsics are overloaded with
respect to the grid types, below we simply use PSGrid to
specify different grid types when not ambiguous.



4.2.2 Creating and Deleting Grids
Grids of type PSGridFloat3D can be created and destruc-

ted with intrinsics PSGridFloat3DNew and PSGridFree, as
defined as follows:

PSGrid3DFloat PSGrid3DFloatNew(

size_t dimx, size_t dimy, size_t dimz,

enum PS_GRID_ATTRIBUTE attr)

void PSGridFree(PSGrid g)

The first three parameters of PSGrid3DFloatNew specify the
size of each of the three dimensions. Similarly, intrinsics for
creating double-type grids and 1-D and 2-D grids are pro-
vided. The size of each dimension of grids can be retrieved
by intrinsic PSGridDim. Parameter attr is an optional pa-
rameter to specify a set of attributes. Currently the only
supported attribute is PS_GRID_PERIODIC, which designates
that the grid to be created can be accessed with the periodic
boundary condition.

4.2.3 Grid Reads and Writes
Grids can be accessed both in bulk and point-wise ways.

Bulk reads and writes are:

void PSGridCopyin(PSGrid g, const void *src)

void PSGridCopyout(PSGrid g, void *dst)

PSGridCopyin copies the continuous chunk of memory pointed
by the second parameter into the given grid, while PSGridCopyout
copies the grid element values into the memory pointed by
the second parameter. The size of data copy is determined
by the element type and size of the given grid. Physis as-
sumes the column-major order storage is used in multidi-
mensional grids.

Each point of grids can be accessed using the following
three intrinsics:

// For 3-dimensional type-T grids

T PSGridGet(PSGrid g,

size_t i, size_t j, size_t k)

void PSGridSet(PSGrid g,

size_t i, size_t j, size_t k, T v)

void PSGridEmit(PSGrid g, T v)

The set of size_t parameters specify the indices of a point
within the given grid, so the number of index parameters
depend on the dimensionality of the grid (e.g., three for 3-D
grids). The return type of PSGridGet and the v parameter
of PSGridSet and PSGridEmit have the same type as the
element type of the grid, which is either float or double.
PSGridGet returns the value of the specified point, while

PSGridSet writes a new value to the specified point. PSGridEmit
performs similarly to PSGridSet, but does not accept the
index parameters, and is solely used in stencil functions as
described below.

4.3 Writing Stencils

4.3.1 Stencil Functions
Stencils in Physis are expressed as stencil functions, which

are standard C functions with several restrictions. Stencil
functions represent a scalar computation of each point in
grids. At runtime, stencil functions may be executed se-
quentially or in parallel. Figure 1 illustrates a 9-point stencil
function for 2-D grids.

There are five restrictions on stencil functions. First, the
function parameters must begin with const int parame-
ters, which represent the coordinate of the point where this
function is applied, followed by any number of additional
parameters, including grids and other scalar values. Non-
scalar parameters other than grids are not allowed in stencil
functions. The return type of stencil functions must be void.

Second, function calls within stencil functions must be ei-
ther 1) calls to intrinsics PSGridGet, PSGridEmit, or PSGridDim,
2) calls to builtin math functions such as sqrt and sin, or
3) nested calls to stencil functions. The available math func-
tions depend on a particular target platform, since we simply
redirect such calls to platform-native builtin functions. The
user can often assume the availability of the standard libc
math functions since most of them are supported in CUDA.
Stencil functions can also use nested stencil functions, which
are subject of the same set of restrictions, except for the
function parameter and return type requirement. Nested
stencil functions are analogous to non-global device func-
tions in CUDA.

Third, the stencil index arguments of PSStencilGet must
match the pattern of x + c, where x must be one of the
index parameters of the stencil function and c be an in-
tegral immediate value. For example, PSGridGet(g1, x,

y, z) in Figure 1 is accepted by our translator, but not
PSGridGet(g1, x + t, y, z), where t is not an immedi-
ate value but a given parameter. Furthermore, the order of
index parameters appearing in PSStencilGet must match
the order of the parameters of the stencil function. For ex-
ample, PSGridGet(g1, z, y, x) is not legal in Physis. This
restriction allows us to assume that data dependencies be-
tween stencil points can be statically identified and that at
runtime they can be efficiently resolved by neighbor data
exchanges.

Fourth, in stencil functions, aliases of grid variables must
be unambiguously analyzable. Since our current translator
supports only a very simple alias analysis, each grid variable
must follow the form of static single assignments. Taking
the address of a grid variable is also not allowed in stencil
functions.

Finally, a stencil function may be executed in parallel with
an arbitrary order, so the programmer must not assume any
read-after-write dependency among different stencil points
within a function. Such dependency can only be enforced
between different invocations of stencil functions.

These restrictions are to enforce regular neighbor data
accesses patterns in stencil functions, and to allow for static
generation of efficient parallel code. Some of them could
be relaxed and complimented by runtime analysis and code
generation. For example, we could allow for arbitrary index
arguments in PSGridGet and let the runtime dynamically
resolve data dependencies. However, in general, the cost of
such operations is difficult to eliminate by static compilation
approaches like ours. Since our current framework prioritizes
efficiency of generated code over flexibility, the translator
does not accept code that violates the above restrictions.
Other standard C constructs such as branches and loops
can be used as usual.

4.3.2 Applying Stencils to Grids
Stencil functions can be applied to grids by using two

declarative intrinsics: PSStencilMap and PSStencilRun. Fig-
ure 2 illustrates how these intrinsics can be used to invoke



void diffusion(const int x, const int y,
PSGrid2DFloat g1, PSGrid2DFloat g2, float t) {

float v = PSGridGet(g1, x, y)
+ PSGridGet(g1, x+1, y) + PSGridGet(g1, x-1, y)
+ PSGridGet(g1, x, y+1) + PSGridGet(g1, x, y-1)
+ PSGridGet(g1, x+1, y+1) + PSGridGet(g1, x+1, y-1)
+ PSGridGet(g1, x-1, y+1) + PSGridGet(g1, x-1, y-1);

PSGridEmit(g2, v / 9.0 * t);
return;

}

Figure 1: Example 9-point stencil function

the diffusion stencil of Figure 1 on 3-D grids.
PSStencilMap creates an object of PSStencil, which en-

capsulates a given stencil function with its parameters bound
to actual arguments. It is analogous to closures in functional
programming.

PSStencil PSStencilMap(StencilFunctionType stencil,

PSDomain3D dom, ...)

The stencil parameter must be the name of a stencil func-
tion. We do not support specifying functions with function
pointers and other indirect references, and only an actual
name with its definition in the same compilation unit is ac-
cepted so that the translator can determine the actual stencil
function at translation time.

The type of the second parameter, PSDomain3D, is a new
data type to specify a 3-D rectangular range, which can be
instantiated by the following intrinsic:

PSDomain3D PSDomain3DNew(

size_t x_offset, size_t x_end,

size_t y_offset, size_t y_end,

size_t z_offset, size_t z_end)

Similar to grid types, Physis defines 1-D and 2-D variants of
the domain types (i.e., PSDomain1D and PSDomain2D). The
domain object can be used to restrict the region of grid
points where the stencil function is applied. For example,
when interior and boundary points have different compu-
tations to update their values, it can be implemented by
creating different stencil functions for interior and boundary
regions, and by selectively mapping them to the correspond-
ing regions using domain objects.
PSStencilRun executes PSStencil objects in a batch man-

ner, as defined as follows:

void PSStencilRun(PSStencil s1, PSStencil s2,

..., int iter)

It accepts any number of PSStencil objects, and executes
them in the given order for iter times. Each stencil function
may be executed in parallel, exhibiting implicit parallelism.

The combination of PSStencilMap and PSStencilRun forms
a natural unit of code translation. First, it allows for efficient
implementations on distributed environments, where we use
RPC-based controls that cause global synchronizations be-
tween the master node and every other compute nodes. A
PSStencilRun call is translated to a single RPC request from
the master node to the compute nodes, and the compute
nodes execute the stencil objects for the specified number of
times with no further RPC communications. Alternatively,
we could design a DSL without PSStencilRun and simply

PSInit(&argc, &argv, 3, NX, NY, NZ);
PSGrid3DFloat g1 = PSGrid3DFloatNew(NX, NY, NZ);
PSGrid3DFloat g2 = PSGrid3DFloatNew(NX, NY, NZ);
// initial_data is a pointer to input data
PSGridCopyin(g1, initial_data);
PSDomain3D d = PSDomain3DNew(0, NX, 0, NY, 0, NZ);
PSStencilRun(PSStencilMap(diffusion, d, g1, g2, 0.5),

PSStencilMap(diffusion, d, g2, g1, 0.5),
10);

// result is a pointer to hold result data
PSCopyout(g1, result);
PSFinalize();

Figure 2: Example code to declare grids and run the
diffusion functions

use PSStencilMap to execute a given stencil function with-
out creating closure-like objects. A straightforward transla-
tion, however, would yield one RPC for each stencil object,
resulting in more frequent RPCs than with PSStencilRun.

Second, the combination can be a unit of further code
optimizations. We plan to study such optimizations as fus-
ing and reordering of stencil functions. Explicit grouping
of stencil functions would simplify applying such aggressive
optimizations to user code at the translation time.

5. FRAMEWORK IMPLEMENTATION
Our framework implementation consists of a source-to-

source translator and runtime components for each target
platform. As translation targets, we currently generate C
for CPU execution and CUDA for GPU execution. In ad-
dition, for platforms involving multiple distributed compute
resources, we generate message-passing parallel code using
MPI. This paper first presents our baseline implementation
of the translator and its runtime for GPU clusters, followed
by a series of optimizations.

5.1 Runtime
The runtime for GPU clusters implements a virtual shared-

memory space for multidimensional grids. It is initialized
with the number of dimensions and the size of each dimen-
sion, which defines the global domain. The runtime uni-
formly decomposes the global domain over all the processes
as instructed by a user-controllable parameter. For exam-
ple, when 64 processes are used for 3-D domains, the user
can specify decompositions as, e.g., 4x4x4, 1x8x8, or 1x1x64.
Each process is assigned its offset and size for the subdomain
that the process is responsible for.

One of the runtime processes, which is the rank-0 pro-
cess in MPI, runs as the master process and accepts re-
quests on grid operations. The master process issues RPCs
to other processes to implement accepted RPC requests, and
also performs its own computation. The RPC-based master-
client parallel execution is chosen to maintain the semantics
that functions other than stencils are executed sequentially
only by one process.

The runtime provides APIs to implement the DSL intrin-
sics, including creating and deleting grids, bulk and point-
wise data accesses, and executing stencil functions. Newly
created grids are automatically decomposed over all the pro-
cesses based on the global domain decomposition defined at
the initialization time. The RPC master instructs the clients
to create a subgrid that overlaps with its subdomain. In ad-



dition to the subgrid container, we also allocate buffers for
the boundary data of neighbor processes. Note that since
our runtime uses GPU accelerators, grids are allocated on
GPU memory rather than host CPU memory.

Grid data can be accessed either by RPCs from the mas-
ter process or by direct array accesses from local processes.
The RPCs include bulk and point-wise RPC APIs; copyins
and copyouts basically perform scatter and gather over all
processes, and point-wise data accesses are implemented as
a trivial point-to-point message exchange between the mas-
ter and the client responsible for the specified coordinate.
The runtime also allows for each local process to obtain a
pointer to the continuous chunk of memory for its subgrid
data, so the grid reads and writes within stencil functions
can be translated to direct array accesses.

The RPC API also includes a function to execute a set
of stencils for a given number of times. The master ac-
cepts a list of PSStencil objects and iteration count, and
broadcasts them to the client processes. Once they become
available, all processes, including the master, start execution
of the functions designated by the PSStencil objects with
the given arguments. Note that the functions must be ordi-
nary C functions—offloading stencils to GPU is done by the
translator, which generates offloading stubs for stencil func-
tions. Once this RPC is initiated, all processes run with
no interference with one another until completion except for
boundary data exchange.

Boundary data exchange is implemented also using the
runtime API. It is not an RPC but rather a collective op-
eration where all processes call the same function with the
same set of arguments, including the identifier of the grid,
its halo forward and backward widths for each dimension,
and a boolean value indicating whether the diagonal points
need to be exchanged. Data exchanges are performed only
between neighbor processes; however, for grids with the pe-
riodic boundary condition, the runtime at each end of do-
main communicates with the processes with the other end
of domain to allow wrap-around data accesses.

We use the CUDA API and our own kernels to copy
boundaries between host and GPU memory, and MPI for
inter-process communication. More specifically, for bound-
aries that are accessible with unit stride, we simply use
cudaMemcpy to copy from GPU memory to host page-locked
memory. For non-unit stride cases, in order to avoid issuing
cudaMemcpy multiple times, we map a chunk of host mem-
ory to GPU memory space by cudaAllocHost and invoke
a CUDA kernel that reads boundaries with non-unit stride
and directly writes the data into host memory through the
mapped memory addresses. Once boundary data are avail-
able on host memory, we exchange them using MPI point-
to-point communication routines. Note that since the page-
locked memory for CUDA GPU memory copies may not
be used as MPI send/recv buffers when Infiniband is used,
the runtime manages data copies between CUDA and MPI
buffers automatically.

As described above, the runtime hides many of the details
involved in executing stencil applications on GPU-based het-
erogeneous clusters. While our current implementation only
supports CUDA, we do not see any significant technical diffi-
culties to implement the same interface on other accelerator
APIs such as OpenCL. Also, we will extend our runtime as
the underlying software and hardware evolves. For example,
the CUDA version 4, which will be released soon, supports

direct data transfers between node-local GPUs, potentially
reducing the pressure to host memory traffic, and even GPU-
NIC direct data transfers may become possible in future
GPU and network cards. We will optimize our runtime by
exploiting such new features so that the user program can
transparently benefit from them.

5.2 Translation
Our source-to-source translator builds on top of the ROSE

compiler infrastructure [26]. ROSE supports conversion of
standard C/C++ code into Abstract Syntax Tree and its
analyses and transformations. Once transformations are
completed, the final AST can be translated back to source
code, which can then be compiled by platform-native com-
pilers.

To use ROSE, we first must make the Physis DSL compat-
ible as an input language to ROSE. While most of the DSL
intrinsics are syntactically legal C, and thus can be accepted
by ROSE as is, some of the overloaded intrinsics are not, in-
cluding PSGridGet, PSGridEmit, PSGridSet, PSStencilMap,
and PSStencilRun. We use standard C preprocessor macros
to convert such intrinsics to syntactically legal C without
any loss of semantics.

Grid variables in Physis are translated to void* pointers,
which are then passed to appropriate functions of the RPC
master. The RPC master then executes the given requests
as described above. Most of the Physis intrinsics can be
directly supported by the runtime RPC API, including grid
creation and deletion, copyins and copyouts, and point-wise
data accesses from non-stencil functions. Stencil functions
and their invocations by PSStencilRun and PSStencilMap,
however, need significant rewrites as described below.

For each stencil map, we generate its stub function that
first performs boundary data exchanges using the runtime
API, and then invokes the stencil function given to the map
call. We translate the original stencil function to a CUDA
global function so that it can be executed on GPU. The
CUDA block size is 64 by 4 by default, and is controllable
by the user. Each CUDA thread computes all points along
with the third dimension (z). The grid writes, i.e., calls
to PSGridEmit intrinsic, are translated to accesses to the
subgrid linear array. For each grid read with PSGridGet,
we generate additional runtime conditional code that deter-
mines whether the read operation accesses its own subgrid
or the neighbor halo regions. This is required because we
allocate separate buffers for the regions, but can be a signif-
icant performance bottleneck since it involves several condi-
tional branches with extra usage of registers. We eliminate
it for reads with zero-offset index arguments, i.e., (x, y,

z) where each of the variables are the index parameters of
a stencil function, since in that case the coordinate can be
safely assumed to exist locally. Otherwise, we apply an op-
timization that attempts to eliminate the check from the
critical path as described below.

5.3 Optimizations
One of the common optimizations of stencils on large-scale

environments is to overlap stencil computations and bound-
ary exchanges so that the communication cost can be hidden
within the computation time. This is particularly important
on GPU clusters since they involve additional data copies
between GPU and CPU memory.

We extend the translator to generate overlapping code by
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Figure 3: Overlapped stencil computations and
neighbor exchanges.

dividing the subdomain of each process into its interior and
boundary regions, as illustrated in Figure 3. Since we en-
force that grid reads in stencil functions must have static off-
sets, we can statically identify the width of each halo bound-
ary that needs to be exchanged. Based on the information,
we generate separate kernels for the interior and boundary
regions and let the kernels and transfers run concurrently
as much as possible. For 3-D problems, we generate seven
GPU kernels for stencil computations: one for the interior
region and six for the six boundary planes. At each iter-
ation, we first launch boundary copy kernels for non-unit
stride boundaries, which directly copy the data from GPU
memory to mapped host memory. Then, the interior ker-
nel is launched and run asynchronously on GPU. Next, we
start asynchronous transfer of the remaining boundary data
using cudaMemcpyAsync. When both the interior kernel and
boundary transfers are finished, the boundary kernels start
to run. Since the boundary kernels typically compute only
a small fraction of the overall subdomain, each of them may
not have enough parallelism itself to fully exploit the GPU.
Our multi-stream optimization exploits the parallelism be-
tween boundary kernels as well by executing the six bound-
ary kernels in parallel using the concurrent kernel execution
feature available in Fermi GPUs.

Another optimization is to eliminate the runtime checking
of coordinate locations from interior kernels, since we can
safely assume that any of PSGridGet in interior kernels does
not fall into halo regions. This optimization is not applicable
to boundary kernels, since they may access the halo buffers
of neighbor subdomains.

Finally, we further optimize address computations of grid
points by common subexpression elimination. Stencil func-
tions typically use multiple neighbor grid points, for which
address calculations are done individually if no optimization
is applied. Instead, we pick one of the accesses as a reference
point, for which we compute its address normally, but for the
other accesses to the same grid, we replace their address cal-
culations with a mere addition of the reference address and
the offset from it. Since the address of reference point must
be calculated at a control flow node that dominates all of
the reads, we conservatively move it to the beginning of the
function. A similar optimization appears to be performed
by nvcc compiler v3.2 too; however, PTX output code indi-

cates that this is done only for the case when access indices
only differ at the first dimension.

6. EXPERIMENTAL EVALUATION
To evaluate our framework, we used three stencil codes as

benchmark programs.

Diffusion: 3-D 7-point stencil.

Himeno: 3-D Jacobi kernel of the Himeno benchmark [14].

Seismic: 3-D seismic wave simulation with 27 stencil func-
tions. The original code is written in Fortran and is de-
veloped by Takashi Furumura at University of Tokyo.

The first two codes are relatively small scale, consisting of
only one stencil function each, whereas the seismic code con-
sists of 27 stencils with staggered grids. Among the 27 sten-
cils, six are for computing the 2-D surfaces of the 3-D do-
main, which are implemented with PSDomain objects. All
benchmarks use single-precision floating-point data.

We use the TSUBAME2.0 supercomputer at Tokyo Insti-
tute of Technology, which consists of 1408 compute nodes.
Each node has two Intel Xeon Westmere-EP 2.9GHz CPUs
and three NVIDIA M2050 GPUs with 52GB and 3GB of
system and GPU memory, running SUSE Linux Enterprise
Server 11 SP1. The compute nodes are interconnected by
dual QDR Infiniband networks with a full bisection-bandwidth
fat-tree topology network. We use CUDA v3.2 for GPU code
and gcc/g++ v4.1.2 for CPU code.

We first illustrate the effectiveness of our framework in
improving programmer productivity by comparing the lines
of code of each benchmark, and show that programs writ-
ten in Physis can be as compact as sequential code. Next,
we evaluate the performance of the three benchmarks and
demonstrate the scalability of automatically generated par-
allel code. All of the performance results are obtained with
the CUDA block size fixed at 64x4.

6.1 Comparison of Code Size
Figure 4 compares the lines of code of each benchmark.

The baseline is the size of original sequential code, which is
160, 276, and 884 lines, respectively. Note that the original
diffusion and Himeno codes are written in C, while the seis-
mic is in Fortran. We can see that for diffusion and Himeno
the size of Physis source code is comparable to its sequential
version and is considerably less than the manually written
MPI version, indicating that Physis successfully maintains
a similar level of productivity as sequential programming.

The Physis version of the seismic code is larger than its
sequential version by approximately 50%, and is compara-
ble to the MPI version. We suspect that this is because
the manual codes are written in Fortran, and believe that
Fortran-binding of Physis would be able to achieve the sim-
ilar level of code size as the Fortran sequential code.

Although smaller code size does not necessarily mean higher
programmer productivity, it is still a useful and easy-to-
understand metric to compare program complexity and pro-
ductivity. While our study of code size is still limited to the
three sample codes, the above preliminary results present
promising results of our framework design.

6.2 Effects of Optimizations
Figure 5 shows the effects of framework optimizations in

the diffusion benchmark. We fix the problem size of each
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Figure 4: Comparison of lines of code, excluding
white spaces and comment lines. Y-axis shows rel-
ative increase of code size compared to the corre-
sponding sequential code.

GPU at 2563 and evaluated the weak scaling performance
from one GPU to four GPUs with 1-D decomposition along
the z-direction. The baseline is the performance with no
optimization, and the rest of the bars show performance
improvements by incrementally applying the optimizations.
The first optimization is to overlap the boundary data ex-
change and interior region computations. The second op-
timization is to decompose the boundary kernel into six
kernels, each of which is for one of the 2-D surface, and
executes them concurrently using the concurrent kernel exe-
cution feature of the Fermi GPU. The full optimization case
is to apply all the previous optimizations and the common
subexpression elimination on the address computations of
grid points. For the one-GPU case, we also show the perfor-
mance of a manually written CUDA code, which is imple-
mented straightforwardly without optimizations.

We can see that the overlapping optimization realizes mod-
est performance improvements with all the three problem
settings, including the single-GPU case. As described in Sec-
tion 5.3, for each read of grid points, the DSL translator by
default generates runtime conditional code that determines
whether the coordinate resides in halo regions or not, which
can be highly expensive in GPUs. Even the single-GPU case
is affected by this overhead since this experimentation uses
the same generated source in MPI and CUDA. One side
effect of the overlapping optimization is that we can stati-
cally determine that the interior kernel does not need such
runtime check since the kernel is exclusively used for inte-
rior points. Therefore, we can safely remove the overhead
from the interior kernel, which in fact resulted in consider-
able performance improvements. The actual improvements,
however, were relatively small because the boundary com-
putation kernel spent nearly the same time as the interior
kernel. This is greatly alleviated by the multi-stream op-
timization, which concurrently executes the six boundary
kernels for 3-D grids.

Overall, the auto-generated single GPU code achieved 77%
of the performance of the non-optimized manual code. Sec-
tion 6.5 presents performance comparisons with tuned ker-
nels.

6.3 Weak Scaling Evaluation
Figure 6 shows the results of weak scaling evaluation with

the diffusion code. The red and blue lines are the cases
where each GPU is assigned a subdomain of 256x128x128
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Figure 6: Weak scaling performance of Diffusion
benchmark with up to 256 GPUs.

and 512x256x256, respectively. In both cases, the 3-D do-
main is decomposed only over y and z dimensions. As ex-
pected, the larger problem size allowed for better perfor-
mance and scaling, which is almost linear scaling up to 256
GPUs, although even the smaller case achieved 11.64 times
speedup with 256 GPUs compared to the 16-GPU case.

Figure 7 shows the results of weak scaling evaluations with
the seismic code, where each GPU computes a subdomain
of 2563 region. Unlike the diffusion case, the problem do-
main is decomposed over x and y dimensions; in other words,
the domain is expanded in the x-y plane with the problem
size of each GPU fixed. The decomposition implies that
boundary exchanges involve non-unit stride data accesses,
thus resulting lower scalability than the diffusion code. The
performance of seismic benchmark exhibits significant drop
at 64 GPUs and relatively low scalability afterward, which
remains to be a subject of more detailed performance anal-
ysis.

6.4 Strong Scaling Evaluation
Figure 8 shows the strong scaling performance of the dif-

fusion stencil with the problem size fixed at 512x512x4096.
We evaluated 1-D, 2-D, and 3-D decompositions using up
to 128 GPUs. In the 1-D decomposition, we uniformly de-
composed the z-direction by the number of GPUs. In 2-D,
we also decomposed the y-direction by two GPUs and again
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Figure 7: Weak scaling performance of Seismic
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Figure 8: Performance of 512x512x4096 diffusion
with three different decompositions.

uniformly decomposed the z-direction with the rest of GPUs.
Similarly, in the 3-D decomposition, we decomposed the x-
direction into two GPUs in addition to the uniform y- and
z- direction decompositions. As expected, the 1-D and 2-D
cases performed better with a smaller number of GPUs, but
as the number increases, the 3-D version outperformed the
other two versions. While it is well known that 3-D decom-
position often performs better in large-scale settings, our
contribution is to allow application scientists to transpar-
ently enjoy such better performance and scalability without
investing significant amount of efforts.

Figure 9 shows the performance of the Jacobi kernel of the
Himeno benchmark of size XL (1024x512x512). We evalu-
ated 1-D, 2-D, and 3-D decompositions, each of which we
used the experimentally obtained best decompositions, such
as 4x4x8 for the 3-D decomposition with 128 GPUs. As
seen in the graph, 2-D and 3-D decompositions scale well
up to 128 GPUs. More specifically, the 2-D decomposition
with 16 GPUs achieved 468 GFLOPS, and reached 2224
GFLOPS with 128 GPUs; the 3-D decomposition with 16
GPUs achieved 456 GFLOPS, and reached 2506 GFLOPS
with 128 GPUs. The parallel efficiency when the number
of GPUs is increased from 16 to 128 is 59.3% with 2-D and
67.5% with 3-D decomposition. While in these experiments
we used experimentally obtained best decomposition, au-
tomating such manual processes is a subject of our future
research.
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Figure 9: Strong scale performance of the Ja-
cobi kernel of Himeno benchmark of size XL
(1024x512x512). Each line shows the performance
of 1-D, 2-D, or 3-D uniform decomposition.

6.5 Comparison with Other Implementations
One of the fastest implementations of the 7-point stencil

is reported by Nguyen et al. [19], achieving 117 GFLOPS
on a GeForce GTX285 GPU for single precision with spatial
blocking optimization. On the other hand, Physis perfor-
mance of the same kernel is 67 GFLOPS on Tesla M2050.
Because the kernel is memory bound and also because the
memory bandwidth of the two devices are quite similar (159
GB/s and 148 GB/s, respectively), we can see that the
performance of our auto-generated version is approximately
60% of hand-tuned code. In addition to spatial blocking,
Nguyen et al. reported 220 GFLOPS performance when
temporal blocking is also employed. We expect that once it
is implemented in our DSL translator, it would also be able
to substantially improve the performance of Physis code.

7. LIMITATIONS
Although the current realization of the proposed frame-

work has demonstrated promising results, it is by no means
complete. In addition to more sophisticated optimizations
and platform support (e.g., OpenCL), there are several tech-
nical restrictions and limitations that need to be carefully
examined before applying the framework to applications.

Data Models: Not all stencil-based simulations can be
expressed in our framework since it specifically focuses on
dense multidimensional Cartesian grids. For example, dis-
crete modeling with complex unstructured grids is not pos-
sible to implement in this framework. As in Chapel [4],
where multiple different types of data models are supported
as first-class language citizens, it would be possible to intro-
duce different types of grids into the DSL by extending its
translator and support runtime.

Limited Data Accesses: The framework supports limited
data access operations on grids. They are most efficiently
accessed within stencil functions, which have several restric-
tions how they are written as described in Section 4.3.1. For
example, stencil sizes and directions must be statically deter-
mined. This restriction implies that the framework cannot
efficiently implement applications with irregular data access
patterns, although it significantly simplifies automatic par-
allelization of our target computation patterns.

Interoperability : The framework lacks well-defined inter-
operability with existing parallelization methods such as MPI.



External sequential programs can use Physis-generated pro-
grams with the standard C function call convention, since
the DSL translator simply generates C code with the same
function signatures as its input. However, we assume paral-
lel resources are exclusively available to Physis, and thus the
generated code may not correctly interoperate with already
parallelized code. This is not desirable for certain cases, e.g.,
incremental porting of existing parallel applications with a
large code base. To improve the interoperability, we plan to
define interfaces to work with common parallelization meth-
ods such as MPI.

8. RELATED WORK
Recent developments of GPU accelerators for scientific

computing have enabled low-cost power-efficient approaches
to increase compute performances. However, one of the side
effects of this trend is the significant decrease of program-
mer productivity due to the complexities involved in pro-
gramming heterogeneous architecture. Although little work
has been done for large-scale heterogeneous supercomputers,
several recent projects attempted to solve the problem.

Mint is a high-level directive-based framework for stencil
computations [28]. It allows for regular loop-based sten-
cil programs to be annotated with its custom directives so
that stencil loops can be executed on GPUs. Ypnos is a
Haskell-based DSL for stencil computations that is designed
so that compiler-based automatic parallelization is possi-
ble [22]. Both of them share common objectives with ours,
such as automatic parallelization, but so far they are lim-
ited to single-GPU platforms, whereas our primary focus is
to realize scalable multi-GPU implementations.

Listz is a DSL for unstructured mesh-based simulations [6].
As in our framework, actual implementations of the mesh in-
terface are hidden from the programmer, which allows Listz
to perform aggressive domain-specific optimizations. The
implementation of the Listz is based on Scala’s extensive
language features, which facilitate developments of DSLs.
Listz could be use to implement structured-grid stencil ap-
plications; however, since it targets unstructured meshes, it
may not be able to fully exploit the optimization opportu-
nities of structured data.

Designing a new programing language for improving pro-
grammer productivity in high performance computing has
been pursued by projects such as X10 [7], Chapel [4], and
Fortress [1]. X10 and Chapel provide a rich set of paral-
lel programming constructs such as controlling data affinity
as in other PGAS languages such as UPC [5] and CoAr-
ray Fortran [20]. While these languages are designed to
support general purpose programming, Fortress allows for
higher level programming by supporting intuitive mathe-
matical notations in program source code. We could also
support higher level of notations for expressing simulation
code. For example, partial differential equations can be more
naturally expressed with mathematical notations than C or
Fortran, so extending Physis with such notations would be
of more useful for domain scientists.

Programmer productivity may be improved by library-
based approaches as well. A library of numerical methods
may be able to provide a clear separation between applica-
tion logic and its implementation. This approach is widely
successful in some of common scientific code, such as BLAS
for linear algebra [17] and FFTW for fast Fourier trans-
form [11]. Similarly, there have been attempts to provide

libraries for the same application domain as ours, such as
OpenFOAM [21]. Our DSL-based framework is more gen-
eral in the sense that it can be used to implement such
libraries as an architecture-neutral implicitly parallel pro-
gramming substrate. Our framework can also be compared
with more general software toolkits such as PETSc [3]. While
such packages support a much wider variety of scientific ap-
plications than our stencil framework, we realize more ad-
vanced software-based techniques, including automatic par-
allelization, architecture-neutral programming, and automatic
optimizations.

9. CONCLUSION
In order to improve programmer productivity on large-

scale heterogeneous GPU clusters, we have designed and
implemented the Physis framework that supports portable
programming of stencil computations with structured grids.
The C-based DSL represents a high-level declarative pro-
gramming model for stencil computations. The DSL transla-
tor and runtime together realize an efficient implementation
of the programming model with optimizations such as au-
tomatic overlapping of computations and communications.
This paper presented our current framework implementa-
tion and evaluations of its productivity and performance.
We have shown that our framework successfully generates
scalable code for up to 256 GPUs.

We are currently working on the following directions. First,
we need to experiment with more applications to fully un-
derstand and evaluate the expressiveness of the DSL and its
implementation. For example, we are currently working on
3-D Lattice Boltzmann Method. Our preliminary study in-
dicates that LBM can be implemented with the Physis DSL
rather straightforwardly. Second, performance evaluations
with the current three sample codes are limited to 256 GPUs,
although TSUBAME has more than 4000 GPUs. We will
evaluate scalability of our implementations with larger scale
experiments. Third, we will implement more performance
optimizations such as stencil fusing and tuning of CUDA
block sizes and domain decompositions. Finally, we plan to
extend the backend targets to include other architectures,
such as multicore CPUs and other accelerators. A promis-
ing approach would be to generate code in OpenCL; how-
ever, since best performing optimization strategies would
depend on the target architecture, architecture-specific op-
timizations should be applied for optimal performance. Ph-
ysis would be able to encapsulate such optimizations within
the framework so that the programmer can develop applica-
tions in a performance-portable way.
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