1. Background

Multi-level checkpoint/restart (MLC)
- Promising approach to address the problem
 - Uses multiple storage levels
 - Inexpensive local storage frequently
- Even with MLC, some checkpoints to the PFS are required to survive multi-node failures
 - e.g. 1) Rack level failure every 12 days on average in TSUBAME2.0
 - e.g. 2) 15% of production applications runs on Coastal, Hera and Atlas required to restart from a checkpoint in the PFS

Checkpoint to PFS with the SCR library
- Blocking checkpoint
 - Blocks the application until the flush has completed
- Non-blocking checkpoint
 - Another process flushes the checkpoint to the PFS in the background

2. Non-blocking checkpointing system

Failure rates in HPC systems
- Overall failure rate is increasing
 - e.g.) TSUBAME2.0@Tokyo Tech
 - About 962 node failures (Period: Nov, 2010 ~ April, 2012)
- In exascale systems, MTTI is projected to shrink to a few minutes
- Reliability of HPC systems is becoming more important for post-peta/exascale systems
- Checkpoint/Restart techniques are widely used in HPC systems

Problems in Checkpoint/Restart
- Checkpointing overhead to parallel file system (PFS)
 - 50GB checkpoint x 1408 thin nodes on TSUBAME2.0, Lustre (20GB/s) => About 5 hours for a checkpoint
- Huge workload by a large number of concurrent checkpoints

Objective
- Reduce checkpointing overhead & workload to PFS

3. Evaluation

CPU-intensive application case
- **Purpose**
 - To examine the impact on CPU-intensive applications with the non-blocking checkpointing system
- **Benchmark** IOR + CPU-intensive loop
- **Evaluation environment:** Sierra cluster at LLNL

<table>
<thead>
<tr>
<th>Sierra cluster</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.8 GHz 6-core Intel Xeon 5660 processor x 2 (= 12 cores)</td>
</tr>
<tr>
<td>Memory</td>
<td>128GB</td>
</tr>
<tr>
<td>Network</td>
<td>Infiniband QLogic 1322 QDR InfiniBand (4× = 32 GB/s)</td>
</tr>
<tr>
<td>File system (cache)</td>
<td>RAM 8 (tmp)</td>
</tr>
<tr>
<td>File system (PFS)</td>
<td>Lustre (block/striped throughput: 30 GB/s)</td>
</tr>
</tbody>
</table>

Efficiency
- **Model parameters**
 - Failure rate:
 - L1: 3.3309e-8 (A single node failure: System board, CPU, Memory etc.)
 - L2: 1.0186e-9 (multiple node failure: Shared PSU, Switch etc.)
 - Checkpoint size: 10Gbytes per node
 - PFS throughput: 200GB/s

Evaluation environment: Sierra cluster at LLNL

Runtime with the different number of compute nodes per a transfer node

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344. LLNL-POST-561176