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Abstract—As the capability and component count of systems
increase, the MTBF decreases. Typically, applications tolerate
failures with checkpoint/restart to a parallel file system (PFS).
While simple, this approach can suffer from contention for
PFS resources. Multi-level checkpointing is a promising solution.
However, while multi-level checkpointing is successful on today ’
s machines, it is not expected to be sufficient for exascale class
machines, which are predicted to have orders of magnitude
larger memory sizes and failure rates. Our solution combines
the benefits of non-blocking and multi-level checkpointing. In
this paper, we present the design of our system and model its
performance. OQur experiments show that our system can improve
efficiency by 1.1 to 2.0x on future machines. Additionally,
applications using our checkpointing system can achieve high
efficiency even when using a PFS with lower bandwidth.
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I. INTRODUCTION

The computational power of High Performance Computing
(HPC) systems is growing exponentially, which enables finer
grained scientific simulations. However, the overall failure rate
of HPC systems increases with their size. For example, in the
year and a half from November 1st 2010 to April 6th 2012,
TSUBAME?2.0, ranking 5th in the Top500 list [1] (November
2011), experienced 962 node failures ranging from memory
errors to whole rack failures [2]. Thus, a failure occurred every
13.0 hours on average. Further, the MTBF (mean time between
failure) of future systems is projected to shrink to tens of
minutes [3]. Without a viable resilience strategy, applications
will be unable to run for even one day on such a large machine.
Thus, resilience in HPC has become more important than ever
as we plan for future systems.

Checkpointing is an indispensable fault tolerance technique,
commonly used by HPC applications that run continuously
for hours or days at a time. A checkpoint is a snapshot
of application state that can be used to restart execution if
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a failure occurs. However, when checkpointing large-scale
systems, tens of thousands of compute nodes write check-
points to a parallel file system (PES) concurrently, and the
low I/0O throughput becomes a bottleneck. Although simple,
this straightforward checkpointing scheme can impose huge
overheads on application run times.

Multi-level checkpointing [4], [5] is a promising approach
for addressing these problems. This approach uses multiple
storage levels, such as RAM, local disk, and the PFS, ac-
cording to the different degrees of resiliency and the cost
of checkpointing in those storage levels. Multi-level check-
pointing systems typically rely on node-local storage levels
for restarting from more common failures, such as single-
node failures, and the PFS for more catastrophic failures. By
taking frequent, inexpensive node-local checkpoints, and less
frequent, high-cost checkpoints to the PFS, applications can
achieve both high resilience and better efficiency.

However, computational capabilities are increasing faster
than PFS bandwidths. This imbalance in performance means
applications can be blocked for tens of minutes for a single
checkpoint [4]. Thus, the overhead of checkpointing to the PFS
can dominate overall application run time even with infrequent
PFS checkpoints. Further, the huge numbers of concurrent
I/O operations from large-scale jobs burden the PFS and are
themselves a major source of failures. Thus, we must reduce
the PFS load in order to achieve high reliability and efficiency.

Our non-blocking checkpointing system solves this prob-
lem through agents running on additional nodes that asyn-
chronously transfer checkpoints from the compute nodes to
the PFS. Our approach has two key advantages. It lowers ap-
plication checkpoint overhead by overlapping computation and
writing checkpoints to the PFS. Also, it reduces PFS load by
using fewer concurrent writers and moderating the rate of PFS
I/O operations. In particular, our non-blocking checkpointing



system maintains a given application efficiency with signifi-
cantly lower PFS requirements than blocking checkpointing.
We make the following major contributions:

o The design of a non-blocking checkpointing system;

o A detailed failure analysis of a petascale supercomputer;

o A Markov model of non-blocking checkpointing on top
of an existing multi-level checkpointing system;

o A comprehensive exploration of non-blocking check-
pointing on current and future systems.

Our results show that combining non-blocking and multi-level
checkpointing results in highly efficient application runs with
low PFS bandwidth requirements.

II. THE SCALABLE CHECKPOINT/RESTART (SCR)
LIBRARY

Our non-blocking checkpointing system is developed as an
extension to the SCR library [6]. Our system asynchronously
transfers node-local checkpoints written by SCR to the PFS.

A. Checkpoint/Restart Scheme

SCR is a checkpoint/restart library that production LLNL
applications use. It supports globally-coordinated checkpoints
that the application writes, primarily as a file per MPI process
— a common checkpointing technique in large-scale codes.
SCR uses hierarchically distributed storage to implement a
multi-level checkpointing system. For instance, SCR can cache
the most recent checkpoints in RAM disks or SSDs that are
local to the compute nodes on which the application is running,
and it can also store checkpoints on the PFS.

SCR applies redundancy schemes to the distributed storage
devices such that the application can recover from most fail-
ures using the cached checkpoints. When these storage devices
are local to and scale with the number of compute nodes,
the cost to cache a checkpoint is low, so the application can
checkpoint frequently. However, this approach cannot handle
failures involving many nodes so SCR periodically copies
(flushes) a cached checkpoint to the PFS in order to recover
from those more severe, but less frequent failures. After a
failure, SCR tries to restart from the most recent checkpoint
in cache. If it cannot, it fetches and restarts from the most
recent checkpoint on the PFS.

B. SCR Flush

As mentioned, to withstand catastrophic failures, such as
a rack-level failure or a data center-wide power outage, SCR
periodically flushes a checkpoint from node-local storage to
the PFS. SCR supports two types of flush operations: syn-
chronous and asynchronous. When SCR copies a checkpoint
to the PFS synchronously, it blocks the application until
the copy has completed. In large-scale computations on tens
of thousands or more compute nodes, the total checkpoint
size can reach multiple terabytes, which may take tens of
minutes to complete. Thus, synchronous flushes can dominate
application run time. SCR also supports an asynchronous flush
in which it starts the flush and immediately returns control to
the application. An external and independent process that runs

774
Z772
§
§ 770 SCR Synchronous flush -
2768 A SCR /o flush
2 766
764
E
£ 762 >
§
2 760
H
§ 758 9 " ‘ . .
E756 . A A& A A A A
& 754 o

752

0 1 2 3 4 5 6 7 8 9 10 11 12

SCR Asynchronous flush

»

# of used cores per compute node

Fig. 1: IOR run time on a 12-core machine with SCR

TABLE I: TSUBAME?2.0 Failure Category

FC | # of nodes | Failure points Failure rate MTBF
affected (failures/sec)
5 1408 PES, Core switch | 0.1778 x 10~ 9 65.10 days
4 32 Rack 0.1332 x 1076 | 86.90 days
3 16 Edge switch 0.6665 x 10=6 | 17.37 days
2 4 PSU 0.3999 x 106 | 28.94 days
1 1 Compute nodes 0.1757 x 10=% | 15.8 hours

in the background then copies the checkpoint to the PFS, so
the application is not blocked during this transfer.

In the existing asynchronous flush implementation, an ad-
ditional process runs on each compute node to read data from
node-local storage and to write data to the PFS. Even though
this process self-throttles its run time, it uses CPU time and
other resources that can impact the application. Figure 1 shows
the run time of the IOR benchmark [7] using SCR with
synchronous flush, asynchronous flush, and no flush on the
LLNL Sierra system, a 1944-node Linux cluster with 12 cores
per node. The result shows, if we consume a core to conduct
asynchronous checkpointing, then we contend with and slow
down the application. The net cost to the application when it
uses all 12 cores is similar to the cost of simply halting the
application until it finishes writing a synchronous checkpoint
to the PFS. Motivated by this result, in this work we develop
a lighter weight asynchronous checkpoint method to minimize
the impact on application run time.

III. RESILIENCY ON A PETA-SCALE SUPERCOMPUTER

We analyzed the failure history of TSUBAMEZ2.0 [2] during
the period of November 1, 2010 to April 6, 2012 to obtain its
failure rate. In Table I, we show the categories of failures that
occurred. The failures are ranked highest to lowest in terms
of how many compute nodes are affected by a failure in a
particular category. For example, failures of the PFS are at
category 5, because the PFS is shared by all compute nodes;
if it fails, all running processes that access the PFS fail.

Category 5 failures include failures of the PFS and core
switches. Core switches are upper level switches, which con-
nect lower level edge switches. A core switch is redundantly
connected to edge switches in order to ensure quality of
service. On a core switch failure, the running job using
that switch fails. However, routing is updated and later jobs
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Fig. 2: Break-down of failure rates

can communicate across processes without it. We categorize
rack failures at level 4. These failures affect 32 nodes at
a time. Rack failures are usually caused by a faulty water
cooling unit sensor. Because the water cooling unit sensors are
independent from computing components, running jobs do not
fail immediately. However, a job running on the rack will fail
at some point, assuming the faulty sensor is not fixed. Failure
categories 3, 2, and 1 include edge switch, PSU (power supply
unit) and compute node failures. A category 3 component is
shared by 4 category 2 components, which are connected to
4 compute nodes. Thus, on a category 2 failure, 4 compute
nodes fail, and on a category 3 failure, 16 (4x4) compute nodes
concurrently fail.

Most failures are in category 1, affecting only single node.
The rate is two orders of magnitude larger than the rates of the
other categories. Because compute nodes are becoming more
complex with increasing computational power, node failures
are becoming more frequent. Figure 2 shows failure rates of
each component on a compute node; approximately half of
the failures on a compute node arise from GPU failures. On
TSUBAME?2.0, the GPU usage is high, as more applications
use the GPUs through CUDA, OpenCL or OpenACC. This
burdens GPUs and increases the overall temperature, which
results in high failure rate of GPUs.

Although failures can disable one or more nodes, our
checkpoint/restart system can often mitigate them by caching
redundant copies of checkpoints on the compute nodes. For
example, on a PFS failure, node-local checkpoints are not lost
and the failed job can recover using the cached checkpoints. In
addition, HPC systems usually manage a redundant PFS, e.g.,
TSUBAME?2.0 has 1 Lustre and 1 GPFS file system and LLNL
clusters have multiple Lustre file systems. Thus, we can restart
the failed job by recovering from node-local checkpoints and
using a different PFS for checkpoint storage. Similarly, we
can use node-local checkpoints to recover from core and edge
switch failures. For failures that disable the compute node
itself, the job can be restarted using redundant copies of the
checkpoints that are cached on non-failed compute nodes.

The most efficient redundancy scheme applied by our sys-
tem in terms of size is XOR. With XOR, small sets of nodes
collectively compute and store redundancy data, similarly to
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Fig. 3: The non-blocking checkpointing system

RAID-5 [8], [9]. XOR withstands node failures as long as two
or more nodes from the same set do not fail concurrently. Since
most failures affect a single node at a time, these failures can
be recovered fairly reliably from an XOR checkpoint. With
multi-level checkpointing, the role of PFS checkpoints shifts
from primary to secondary checkpoint storage.

IV. NON-BLOCKING CHECKPOINTING SYSTEM

Overlapping I/O with computation by delegating operations
to dedicated I/O nodes improves application performance and
mitigates PFS workload [10], [11]. Further, multi-level check-
pointing reduces the frequency of PFS checkpoints. By com-
bining long intervals between consecutive PFS checkpoints
with asynchronous flushes (i.e., non-blocking checkpoints), we
can copy data to the PFS at a slow rate to reduce the impact
on the application as well as the PFS. This section details the
design of our non-blocking checkpointing system.

A. Architecture

As Figure 3 shows, our non-blocking checkpointing system
has two types of nodes: compute nodes and staging nodes.
The compute nodes are the nodes on which the application
executes. The staging nodes are a group of nodes that we
use to transfer checkpoints from the compute nodes to the
PFS. The staging nodes asynchronously read checkpoint data
from the compute nodes and write data to the PFS while
the application continues to execute and to write node-local
checkpoints. Generally, each staging node handles multiple
compute nodes; we determine the exact ratio through modeling
and experimental testing (See Sections V and VI).

A staging client process runs on each compute node, and a
staging server process runs on each staging node. When SCR
finishes caching a checkpoint (node-local checkpoint) that is to
be flushed to the PFS, it signals the staging client process via
a library function call. The staging client then sends a request
to the staging server and the two processes execute a protocol
to transfer the checkpoint; details appear in Section IV-B. The
staging server reads checkpoints from the compute nodes using
Remote Direct Memory Access (RDMA) to minimize CPU
usage on the compute nodes.

Using additional nodes to transfer checkpoint data with
RDMA provides our non-blocking checkpointing system with
two advantages. First, it minimizes compute node CPU usage.
On a flush operation, even asynchronous checkpointing can
impact application runtime as Figure 1 shows. With RDMA,



Compute node Staging node

— Application
Checkpoint 1 i .
LN SCR library 2
L J 5
T 2 . "z
4+ @ Data write threads > 2
3
=
I
o

RDMA Buffers

DMA server
i ©

RDMA Read

RDMA client

Staging server

-

Staging client

Fig. 4: Non-blocking checkpointing client/server using RDMA

the asynchronous checkpointing system drains a checkpoint
from compute nodes to the PFS while minimizing the impact
on application runtime. Because staging nodes are independent
from compute nodes, we can coordinate between the staging
nodes to throttle the RDMA read rate without impacting the
performance of the running application.

Second, staging nodes can support balancing overall data
center I/0. A PFS is often a shared resource. Ill-timed I/O pat-
terns between two applications accessing the PFS can reduce
the performance of both applications, which is particularly
likely with checkpointing since it is one of the most /O
intensive operations. Staging nodes write checkpoints to the
PFS independently of compute node activities, which allows
us to throttle I/O to the PFS without directly throttling the
application I/O rate on the compute nodes. This paper focuses
on minimizing CPU usage; we leave I/O throttling techniques
for optimizing overall data center I/O as future work.

B. RDMA Checkpoint Transfers

We implement an RDMA transfer system for asynchronous
checkpointing based on the SCR library [6]. The existing SCR
asynchronous flush implementation executes an extra process
on each compute node, which reads a checkpoint from local
storage and directly writes that checkpoint to the PFS. This
extra process does substantial work on the compute node, and
so it contends with and slows down the application. In contrast,
our staging client process that runs on the compute node does
minimal work, and most of the effort is delegated to the
staging server process on the staging node. Other checkpoint
management, such as versioning, checkpoint location, and
redundancy scheme, relies on the original SCR library.

Figure 4 illustrates the architecture of our design with an
example. First, assume that SCR has cached a checkpoint in
local storage (Step 1). After applying its redundancy scheme
to this checkpoint, SCR writes information into a file called
transfer.info requesting that the checkpoint be copied to the
PFS (Step 2). Among other information, the transfer.info file
includes the source path of the checkpoint files in local storage
as well as the destination paths to which the files should be
written on the PFS.

The staging client periodically checks the transfer.info file
for requests, and sleeps for the rest of the time. Thus, our
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Fig. 5: Non-blocking checkpointing can hide L2 checkpoint overhead

design does minimal work on the compute node (Step 3). If
the staging client detects a new request, it reads the checkpoint
file from the source path and copies the data to a local RDMA
buffer (Step 4). Once the staging client fills the buffer, it calls
an RDMA client function to initiate the data transfer (Step 5).
Since the RDMA client function returns control immediately,
the staging client can read the next chunk to one of the buffer
entries in the buffer pool (Figure 4 shows the double-buffering
case) while the RDMA client transfers checkpoint chunks to
the staging server. The RDMA client sends a short message
containing details about the checkpoint and the RDMA buffer
to the RDMA server (Step 6). When the RDMA server receives
this message, it issues an RDMA read request to read a chunk
of the remote buffer space into a local buffer (Step 7). Then
it sends an acknowledgment message to the RDMA client
(Step 8), and it copies the data to the staging server buffer
(Step 9). This protocol continues until all checkpoint data
has been copied from the staging client to the staging server.
Finally, data writer threads write the checkpoint to the PFS
in parallel with RDMA reads by the RDMA server (Steps 10
and 11).

An RDMA operation can only read or write remote memory
regions of a few MB of data. Thus, we divide a checkpoint
into smaller chunks, which the RDMA server remotely reads
one by one. To reduce the number of staging nodes, a
transfer server can concurrently handle RDMA requests from
multiple transfer clients. However, a large amount of incoming
checkpoint data can cause buffer overflow on a staging node.
Thus, our staging client, which runs on the compute node,
reads a small chunk of data from the compute node storage
to a registered memory region for RDMA. The staging server
then pulls the chunk (incoming) region to its own space and
writes to the PFS (outgoing). If buffered checkpoint data on a
staging node exceeds a specified buffer size limit, the staging
server throttles the RDMA read rate (incoming) to balance
incoming and outgoing checkpoint data. To avoid imbalance
in incoming and outgoing data, we determine the number of
staging nodes according to outgoing PFS throughput.



C. Blocking and Non-blocking Checkpointing

Figure 5 shows the difference between blocking and non-
blocking checkpointing. To clarify the differences, we charac-
terize both schemes with two metrics, checkpoint overhead and
checkpoint latency. Checkpoint overhead (C') is the increased
execution time of an application because of checkpointing.
Checkpoint latency (L) is the time to complete a checkpoint.

During blocking checkpointing, each process writes its
checkpoint data to the PFS, and blocks until the checkpoint
operation completes. Thus, the checkpoint overhead is identi-
cal to the checkpoint latency, i.e., Cypip = Lpjp = tp — tq. N
iterations of blocking checkpointing increase application run
time by N x Cyik.

With non-blocking checkpointing, each process contin-
ues computation during the PFS checkpoint so checkpoint
overhead (,,p1) is generally smaller than checkpoint latency
(Lnpik = te —tg). Application characteristics determine C',px
and L,,p;%. If an application is computation or network bound,
Crur and L, increase due to resource contention, and
L,p15; can become larger than Ly;g. To initiate a non-blocking
checkpoint, the application must write its checkpoint data to
local storage. During the write operations, the application is
blocked so we add this overhead to C,,p;%.

Non-blocking checkpointing has advantages over blocking
checkpointing. We can minimize C,p;; by slowly writing
checkpoint data to the PFS, thereby alleviating resource con-
tention. Because lower-level checkpoints can continue to be
cached on the compute nodes during a non-blocking check-
point, the application can take more frequent checkpoints and
increase resiliency with low checkpoint overhead. In contrast,
when an application takes a blocking PFS checkpoint, the
application loses Cp;;, potential computation time and it is
significantly more vulnerable to failure, as heavy PFS load
increases the likelihood of PFS failures.

Thus, we intuitively expect non-blocking checkpointing to
be more efficient than blocking checkpointing. However, non-
blocking checkpointing has a disadvantage. In Figure 5, the
blocking checkpoint completes at t;, while the non-blocking
checkpoint finishes at t.. If a failure that requires a PFS
checkpoint occurs in the period between ¢, and t., a non-
blocking checkpointing system incurs a catastrophic rollback
to an older checkpoint. Alternatively, blocking checkpointing
only rollbacks to t;. Therefore, with non-blocking checkpoint-
ing, the checkpoint interval, Cpp, Lnbik, and the frequency
of each level of checkpoint must be optimized to lower the
risk of the catastrophic rollback.

V. NON-BLOCKING CHECKPOINTING MODEL

As mentioned previously, with non-blocking checkpointing,
several factors are critical to performance: checkpoint interval,
Chbiks Lnbik, and frequency of each level of checkpoint. To
determine the optimal values, we extend an existing model
of a multi-level checkpointing system [4] to support our non-
blocking checkpointing system.
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Fig. 6: The basic structure of the non-blocking checkpointing model

A. Assumptions

For simplicity, we make several assumptions in our non-
blocking checkpointing model. Because we build on an ex-
isting model, we include that model’s assumptions [4]. We
highlight the important assumptions here.

We assume that failures are independent across components
and occur following a Poisson distribution. Thus, a failure
within a job does not increase the probability of successive
failures. In reality, some failures can be correlated. For exam-
ple, failure of a PSU can take out multiple nodes. However,
topology-aware techniques can provide very low probability
of those failures affecting processes in the same XOR set,
which eliminates the need to restart from the PFS. SCR also
excludes problematic nodes from restarted runs. Thus, the
assumption implies that the average failure rates do not change
and dynamic checkpoint interval adjustment is not required
during application execution.

We also assume that the costs to write and to read check-
points are constant throughout job execution. In reality, I/O
performance can fluctuate because of contention for shared
PFS resources. However, staging nodes serve as a buffer
between the compute nodes and the PFS. Thus, our system
mitigates PFS performance variability.

If a failure occurs during non-blocking checkpointing, we
assume that checkpoints cached on failed nodes have not
been written to the PFS. Thus, we must recover the lost
checkpoint data from redundant stores on the compute nodes,
if possible, and if not, locate an older checkpoint to restart the
application. We can use either an older checkpoint cached on
compute nodes, assuming multiple checkpoints are cached, or
a checkpoint on the PFS.

B. Basic model structure

As in the existing model [4], we use a Markov model
to describe run time states of an application. We construct
the model by combining the basic structures that Figure 6
shows. The basic structure has computation (white circle)
and recovery (blue circle) states labeled by a checkpoint
level. The computation states represent periods of application
computation followed by a checkpoint at the labeled level.
The recovery state represents the period of restoring from a
checkpoint at the labeled level.



If no failures occur during a compute state, the application
transitions to the next right compute state (gray arrow). We
denote the checkpoint interval between checkpoints as ¢, the
cost of a level ¢ checkpoint as c., and rate of failure requiring
level k checkpoint as Ag. The probability of transitioning to
the next right compute state and the expected time before
transition are po(t + c.) and to(t + c.) where:

po(T) — e—)\T
t(T) = T

We denote A as the summation of all levels of failure rates,
ie, A\ = ZiL:1 A; where L represents the highest checkpoint
level. If a failure occurs during a compute state, the application
transitions to the most recent recovery state that can handle the
failure (blue arrow). If the failure requires a level ¢ checkpoint
or less to recover and the most recent recover state is at level &
where ¢ < k, the application transitions to the level k recovery
state. The expected probability of a level ¢ failure in an interval
t+ c., and the run time before the transition from the compute
state ¢ to the recovery state k are p;(t+c.) and ¢;(t+c.) where:

Ai

pi(T) = T(l —e M)
1— (AT 41)-e T
t(T) = )\(. (1 i_ e),\T)

During recovery, if no failures occur, the application tran-
sitions to the compute state at the restored checkpoint. If the
recovery cost from a level k checkpoint is 7y, the expected
probability of the transition and the expected run time are
po(ry) and to(rg). If a failure requiring a level 4 checkpoint
occurs while recovering, and 7 < k, we assume the current
recovery state can retry the recovery. However, if ¢ > k,
we assume the application must transition to a higher-level
recovery state. The expected probabilities and times of failure
during recovery are p;(ry) and ¢;(rx). We also assume that the
highest level recovery state (level L), which uses checkpoints
on the PFS, can be restarted in the event of any failure ¢ < L.

C. Non-blocking checkpoint model

Our model of non-blocking checkpointing combines the
basic structures from Figure 6. Figure 7 shows a two level
example. If no failures occur during execution, the application
transitions across the compute states in sequence (Figure
7(a)). In this example, level 1 (L1) checkpoints (e.g., XOR
checkpoints) are blocking and level 2 (L2) checkpoints (e.g.,
PFS checkpoints) are non-blocking. With blocking check-
pointing, the checkpoint is available when the corresponding
compute state completes. Thus, if an L1 failure occurs, the
application transitions to the most recent L1 recovery state
(Figure 7(b)). Alternatively, with non-blocking checkpointing,
the L2 checkpoint is not finished when the L2 compute
state completes. Thus, we divide compute states into two
segment types: incomplete segments and complete segments.
A computation state in an incomplete segment represents a
period when the L2 checkpoint has started but is not yet
completed. For example, if an L2 failure occurs in incomplete
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segment 1, the application transitions to the recovery state
for the last completed L2 checkpoint (L2-0 in Figure 7(c)).
When an L2 failure occurs in a complete segment 2, the
application transitions to the recovery state for the completed
L2 checkpoint (L2-1 in Figure 7(c)).

Interference from other asynchronous operations can inflate
the time in compute states before transitions. An overhead
factor, «, quantifies the overhead on compute states in incom-



plete segments. We define the time spent in compute states
in an incomplete segment as (1 + a)t, where ¢ is the sum of
the computation time and the time to complete a checkpoint.
Thus, the expected probability and time for compute states
in an incomplete segment, become pg (T), to (T'), p; (T') and
t; (T) where T = (1 + )t + c..

Throughout our evaluation (Section VI), we employ two-
level checkpointing, but our model can be extended to an
arbitrary N-level checkpointing model. Figure 8 shows the
general structure of our non-blocking checkpointing model.
Our model is composed of hierarchical states, with the outer-
most state denoted as a W (k) state. The definition of Z(k, c¢)
and its expected probabilities and times for transition to other
states were defined in the existing model [12]. To distinguish
compute states in complete and incomplete segments, we
extend the definition of Y (k,c) to reflect the interference
as Y (k,c), where x denotes the overhead factor. Using the
model, we can compute the expected time to complete a
given number of compute states with an arbitrary number of
checkpointing levels.

VI. EVALUATION

This section compares our non-blocking checkpointing sys-
tem to the existing SCR implementation [4]. For illustration,
we model a two-level system in which the first level uses SSD
on the compute nodes with a RAID-5-like redundancy scheme
and the second level is a PFS.

A. Tuning of Non-blocking Checkpointing

Checkpoint efficiency highly depends on I/O throughput
so we must tune I/O operations such that staging nodes
fully exploit the available I/O performance. Generally, we can
increase /O throughput to a PFS by writing with multiple
threads, so we multi-thread our staging server process. Our
goal is to find the optimal numbers of threads and staging
nodes such that we can obtain near peak PFS performance.
As a target PFS, we use the Lustre file system [13] on
TSUBAME2.0. A TSUBAME2.0 node has two sockets of
Intel Xeon X5670, 58GB of DDR3 1333MHz memory, 120GB
of local SSD and three Tesla M2050 GPUs. The nodes are
connected through Dual-Rail QDR Infiniband(x4).

Figure 9 shows the write throughput of one staging node
with different numbers of data writer threads. We achieve
the highest performance (1.6 GB/s) on a single staging node
with 16 threads. We then explore how many staging nodes
can exploit the Lustre file system. Figure 10 presents aggregate
write throughput with different staging node counts, each using
16 data writers. Aggregate write throughput rapidly increases
from 1 to 32 staging nodes but then quickly saturates around 8
GB/s beyond 32 staging nodes. Thus, we use 32 staging nodes
and set the staging server to run with 16 data writer threads.
Under this set up, checkpoint data can be transferred to the
PFS at a rate of 6.4 GB/s via 32 staging nodes, which is only
2.3% of the 1408 TSUBAME?2.0 thin nodes.

Whenever the staging client and server processes read
checkpoint data from compute nodes in the background,

significant overhead is added to the application runtime due
to resource contention. The amount of overhead depends
on the read rate. To estimate this overhead, we transferred
checkpoints while running the Himeno benchmark [14] as a
target application. This benchmark solves Poisson’s equation
using the Jacobi iteration method. The Himeno benchmark is
a stencil application in which each grid point is repeatedly
updated using only neighbor points in a domain. This com-
putational pattern frequently appears in numerical simulation
codes for solving partial differential equations. Many fluid
dynamics phenomena can be described by partial differential
equations over multi-dimensional Cartesian grids, including
weather, seismic waves, heat flow, and electric charge and
magnetic field distribution in a domain.

Figure 11 shows the overhead factor imposed on the Himeno
benchmark while varying the checkpoint read rate of a staging
node. We find that the overhead factor roughly increases
linearly with the read rate. Based on the result, we model
the overhead factor (o) of the Himeno benchmark as o = cx
where c is 0.008768, and x represents the checkpoint read rate
of a staging node in GB/s. The parameter c is derived from
the slope of fitting a line to the data in Figure 11. With 32
staging nodes, we calculate the read rate per staging node to be
209.5 MB/s, which is derived by dividing the aggregate write
throughput when using 32 nodes in Figure 10 by 32, the num-
ber of staging nodes. Thus, the overhead factor model gives
us the overhead factor of 0.00184 (= 0.008768 x 0.20905).
We add this overhead to the cost of computation in our model
when we compute efficiency of asynchronous checkpointing.

SCR can adjust the degree of resiliency by changing the
number of processes in each XOR group used to compute
redundancy data. Figure 12 shows encoding throughput for
different XOR group sizes. Resiliency improves with smaller
XOR groups, but XOR encoding throughput decreases. For an
XOR checkpoint, SCR computes the parity of each block as
in RAID-5 [8], [9], which creates S = B + % bytes of
encoded checkpoint data from B bytes of original checkpoint
data within NV members of an XOR group. Since the encoding
time increases linearly with the encoded checkpoint size, the
large XOR group size, N.S, saturates the XOR encoding rate.
As Section III showed, most failures affect just one node.
Thus, we use XOR checkpoints only to handle failure cat-
egory | in Table I, and we handle the other failure categories
k =2,3,4...5 by a PFS checkpoint. Thus, we set the XOR
encoding rate as the saturated maximal rate, 400MB/s.

B. Efficiency Comparison

As future systems will be larger and will have larger
memory sizes, failure rates and checkpoint size are expected
to increase. To explore the effects, we increase failure rates
and checkpoint costs by factors of 1, 2, and 10, and compare
efficiency between blocking and non-blocking checkpointing.
We use 29 GB for the checkpoint size per compute node,
which is half of the memory of a TSUBAME?2.0 thin node. As
Figure 12 shows, an XOR encoding rate is constant regardless
of the number of compute nodes, which means XOR encoding
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scales with system size. Thus, when we increase checkpoint
costs, we increase only PFS checkpoint cost.

Figure 13 shows the efficiency of both checkpointing meth-
ods under different failure rates and checkpoint costs. We
define the efficiency as ex’g:gtle%. The ideal_time is the
run time if the application encounters no failures and takes
no checkpoints, while expected_time is the expected run time
computed from our model for non-blocking checkpointing
and the original model [4] for blocking checkpointing. When
we compute efficiency, we optimize Level 1 counts between
Level 2 checkpoints, and the interval between checkpoints,
given failure rates and checkpoint costs, which yields the
maximal efficiency. The non-blocking method always achieves
higher efficiency than the blocking method. The efficiency gap

Overhead rate (a)

Fig. 14: Efficiency under varying the overhead factor: «

becomes more apparent with higher failure rates and higher
checkpoint cost. This is because the long time to take a
PFS checkpoint during blocking checkpointing increases the
likelihood of a lower level failure occuring during the PFS
checkpoint, so the application must rollback to the beginning.
However, with non-blocking checkpointing, the application
can rollback to the most recent XOR checkpoint. Further, since
overhead of a blocking checkpoint is identical to checkpoint
latency, which is directly added to application run time, the
efficiency decreases more quickly than with non-blocking
checkpointing.

Since staging nodes write checkpoints to the PFS indepen-
dently of compute node activities, they can throttle their write
rate without reducing application performance. We found that
we could read checkpoints from compute nodes at half of the
maximum bandwidth (i.e., PFS cost x2), but still maintain
90% efficiency with current failure rates.

Because a non-blocking checkpoint overlaps with appli-
cation computation, non-blocking checkpointing can impact
the application run time depending on the overhead factor,
«, in different applications. If the overhead factor increases
enough, our non-blocking checkpointing could be less efficient
than blocking checkpointing. Figure 14 shows efficiency with
increasing overhead factor and different failure rates and PFS
checkpoint costs. F' and C' denote the base failure rate and PFS
checkpoint cost. Blocking checkpointing can become more
efficient than non-blocking with a larger overhead factor at cur-
rent failure rates and cost. However, in future systems where
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the failure rates and cost increase, non-blocking checkpointing
can be effective even with a large overhead factor. With
large failure rates and checkpointing costs, the checkpointing
interval decreases so that checkpointing overhead dominates
the overall run time. Since an application is blocked with
blocking checkpointing, the checkpoint latency impacts ap-
plication run time more than with non-blocking checkpointing
in future systems. As for different systems, we observed that
three clusters at LLNL show similar failure rates [4], where
system failures can be recovered from level 1 checkpoints
and frequent level 2 checkpoints are not required. Thus, non-
blocking checkpointing would benefit other systems.

C. Building an Efficient and Resilient System

When building a reliable data center or supercomputer, two
major concerns are cost of the PFS and the PFS throughput
required to maintain high efficiency. Generally, we want to
minimize cost, but not sacrifice performance. Using our model,
we can predict the required PFS bandwidth to achieve high
system efficiency when using our checkpointing system.

Figure 15 shows the PFS bandwidth required to main-
tain 90%, 80%, and 70% efficiency under increasing failure
rates, scaled from 1x up to 16x today’s rates. Overall, our
checkpointing system outperforms blocking checkpointing.
Failure rates can increase by 16x and still require modest
PFS throughputs for 80% application efficiency. However, at
90% efficiency, the bandwidth requirement rises sharply with
failure rates larger than 5 x. Here, as failure rates increase, the
optimal checkpoint interval decreases, increasing the overhead
contribution of the L1 checkpoints. As the overhead of L1
checkpoints approaches 10%, the allowed overhead for writing
PFS checkpoints approaches 0%. Therefore, achieving 90%
efficiency at higher failure rates requires throughput values
approaching infinity. The curve for blocking checkpointing
at 90% efficiency follows the same trend, but is much more
severe, so much so that it does not appear in the figure. These
trends imply that reducing the overhead of L1 checkpoints will
be necessary on machines with higher failure rates.

With blocking checkpointing, systems require higher PFS

throughput to minimize the risk of failure during a PFS
checkpoint. Further, blocking checkpointing uses the PFS
only when taking a PFS checkpointing, which means the
PFS underutilized during most of the application run. With
our checkpointing system, we not only hide PFS checkpoint
overhead, but use PFS throughout application execution.

VII. RELATED WORK

Multi-level checkpointing [4], [5] is a promising technique
for fault-tolerant execution. Bautista-Gomez et al. [5] proposed
multi-level checkpointing using local SSDs and a PFS. They
use Reed-Solomon (RS) encoding for highly resilient cached
checkpoints to reduce PFS usage. Generally, PFS usage is
costly when compared to local storage, and the PFS is accessed
less often in multi-level checkpointing. However, increasing
failure rates require checkpoints to a PFS more frequently.
Thus, even with multi-level checkpointing, checkpointing to a
PFS is crucial for future systems.

Asynchronous I/O has long been used to hide I/O bottle-
necks [11], [15]-[17]. These techniques enable applications to
parallelize I/O with computation to increase CPU utilization
and to enhance I/O performance. Patrick et al. [15] presented
a comprehensive study of different techniques of overlapping
I/O, communication, and computation, and showed the per-
formance benefits of asynchronous I/O. Nawab et al. [16]
asynchronously transfer multiple striped TCP data streams
to increase I/O performance in Grid environments. An asyn-
chronous staging service using RDMA proposed by Hasan et
al. [11] is the closest research to ours. The authors achieved
high I/O throughput by using additional nodes. As we ob-
served, optimizing performance requires determination of the
proper number of staging nodes for a given number of compute
nodes. However, the comprehensive study on the problem is
not shown nor do they present their solution. To deal with
bursty I/O requests, Liu et al. [17] simulated a system design
that integrates SSD storage on I/O nodes as burst buffers. They
found that such a system could deliver high I/O bandwidth to
an application while reducing the demands on the parallel file
system. In this work, we effectively implement a system with
burst buffers on the compute nodes, and through experiment
and modeling, we arrive at the same conclusions regarding the
need for and benefits of asynchronous I/O to the parallel file
system.

Optimization of checkpoint interval is critical, because
checkpointing is an expensive operation. Several optimization
techniques have been studied. Young [18] proposed a method
to determine the optimal checkpoint interval for single-level,
blocking checkpoints. Vaidya extended the model to support
non-blocking checkpoints, called forked checkpoints [19], and
two-level checkpoints [20]. Vaidya also combined both meth-
ods to support a two-level non-blocking checkpoint system to
achieve higher efficiency [21]. Vaidya’s model assumes that
at most one fast-level checkpoint is taken between each slow-
level checkpoint. However, in current multi-level checkpoint-
ing systems, the fastest checkpoints, which are often saved
to node-local storage, are orders of magnitude faster than the



slowest checkpoints saved to the PFS. To account for this, we
extend prior work to model an arbitrary number of node-local
checkpoints between consecutive PFS checkpoints.

VIII. CONCLUSION

We have designed and modeled a non-blocking checkpoint-
ing system that extends an existing multi-level checkpointing
system. Our non-blocking checkpointing system enables ap-
plications to save checkpoints to fast, scalable storage located
on the compute nodes and then continue with their execution
while dedicated staging nodes copy the checkpoint to the PFS
in the background. This capability simultaneously increases
system efficiency and decreases required PFS bandwidth.
Since applications spend less time in defensive I/O, we find
that our non-blocking checkpointing system can improve
machine efficiency by 1.1 to 2.0 times on future systems.
Further, our model predicts that non-blocking checkpointing
significantly reduces the PFS bandwidth required to maintain
application efficiency. For example, to maintain 80% efficiency
at 4x today’s failure rates, the PFS bandwidth required for
non-blocking checkpointing is an order of magnitude less
than that required by blocking checkpointing. Additionally,
our non-blocking checkpointing system can maintain 80%
efficiency with only modest PFS bandwidth requirements even
when failure rates are 16x higher than on current petascale
systems.
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