Design and Modeling of

a Non-blocking Checkpointing System

Kento Satot12, Adam Moody3, Kathryn Mohror?3, Todd Gamblinf3,
Bronis R. de Supinskit3, Naoya Maruyama®> and Satoshi Matsuokat1.5.6.7

71 Tokyo Institute of Technology
12 Research Fellow of the Japan Society for the Promotion of Science

13 Lawrence Livermore National Laboratory

74 RIKEN Advanced institute for Computational Science
#5 Global Scientific information and Computing Center
16 National Institute of Informatics

+7 JST/CREST

LLg Lawrence Livermore B{LPHAMR
National Laboratory I.& RIKEN '

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52- 07NA27344. LLNL-PRES-599833-DRAFT

November 13th, 2012
LLNL-PRES-599833-DRAFT



Failures on HPC systems

 Exponential growth in computational power
— Enables finer grained scientific simulations

 Overall failures rate increases accordingly

— Due to increasing complexity and system size
PFS, Core switch

j /7 Edge switch
PSUﬁ

Rack

TSUBAME2.0, 14" in Top500 (June 2012)

< Compute nodes 791

Rack 30 2.4 PFlops
13 hours 2953 CPU sockets
# PFS, Core switch 8 4264 GPUs
= Edge switch 6 197 switches
58 racks

Failure analysis on TSUBAME2.0  Period: 1.5 years (Nov 15, 2010 ~ April 6 2012)

Observations: 962 node failures in total

e System resiliency is becoming more important

— Without a viable resilience strategy, applications can not

run for even one day on such a large system
LLNL-PRES-599833-DRAFT 2



Traditional Checkpoint/Restart [ ... |

Checkpoint Restart
Periodically save a snapshot of On a failure, restart the execution
an application state from the latest checkpoint
to a reliable storage I
e e —
v ' v

check check -
point point

‘ Parallel file system (PFS) |

Mostly these checkpoints are stored in the most reliable storage,

such as a shared parallel file system(PFS). 3
LLNL-PRES-599833-DRAFT



XOR
checkpoint

Scalable checkpointing methods

* Diskless checkpoint: L o |
[F—

— Create redundant data across local storages .,

on compute nodes using a encoding @

Parity 4

technigue such as XOR

— Can restore lost checkpoints on a failure
caused by small # of nodes like RAID-5

XOR encoding example

* Most of failures comes from one node, or can recover from XOR checkpoint

— e.g. 1) TSUBAME2.0: 92% failures  Rest of failures still require a checkpoint on a reliable PFS
— e.g. 2) LLNL clusters: 85% failures

0 0
8% —~ 15%
- LOCAL/XOR/PARTNER checkpoint
PFS checkpoint

Diskleés.checkpointris 92% 850/0
promising approac / /

Failure analysis on TSUBAMEZ2.0 Failure analysis on LLNL clusters

LLNL-PRES-599833-DRAFT



XOR
checkpoint

Multi-level checkpointing (MLC) Lo |

v 5 | | | | v |
o e ) 0] I
checkpoint ;
v
PFS ] Level-2
checkpoint
* Use storage levels hierarchically
— XOR checkpoint: Frequently
» forone node or a few node failure o Checkpoint
— PFS checkpoint: Less frequently 1 7 513%@
« for multi-node failure £ Z: 8X efflCleIle | e
» 8x efficiency improvement o msen
— With MLC implementation called SCR(Scalable B Lowrence Livermore
. . . National Laboratory
Checkpoint/Restart) library developed in LLNL o
—_— Com pa r‘ed to S|ng|e-|eve| CheCpr|nt| ng Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design,

Modeling, and Evaluation of a Scalable Multi-level Checkpointing System,” in
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 10).

LLNL-PRES-599833-DRAFT



MLC Problems on Petascale or larger

Three potential problems

] TSUBAMEZ2.0 checkpoint time trend
1. PFS checkpoint overhead

— Even with MLC, PFS checkpoint still becomes big & 3:5 PF'S checkpoint
overhead s 3 3
2 2.5 ]
2. Inefficient PFS utilization . " Tax overhead
— Time between PFS checkpoints becomes long, é 1.5 .. [
PFS is not utilized during XOR checkpoints 2 1 ‘
_ ] ] °05 XOR checkpoint
3. Failure during PFS checkpoint 0 @:ﬁ:%*x

0 256 512 768 1024 1280 1536

— At scale, prolonged PFS checkpointing has a risk. # of nodes

of failures during checkpointing

3. Risk of failures _ . o

Blocking multi-level checkpointing

Computation >
local  [1 [1[] [l. 1. PFS checkpomt >H

checkpoint overhead

PFS
checkpoint

LLNL-PRES-599833-DRAFT



Objective, Proposal and Contributions

* Objective: More efficient MLC
— Minimize PFS checkpoint overhead
— Improve PFS utilization
— Reduce a risk of failure during PFS checkpoint

* Proposal & Contributions:

— Developed an non-blocking checkpointing system as an
extension for SCR library

* PFS checkpoint with 0.5 ~ 2.5% overhead
— Modeled the non-blocking checkpointing

* Determine optimal multi-level checkpoint configuration
* 1.1~ 1.8x efficiency on current and future systems

LLNL-PRES-599833-DRAFT



Outline

* Design of a Non-blocking checkpointing system
 Modeling of the Non-blocking checkpointing

e Evaluation

* Summary

LLNL-PRES-599833-DRAFT



Non-blocking checkpointing overview

Blocking multi-level checkpointing
Computation >
XOR
checkpoint H H H H H H
PFS
checkpoint
. . Write PFs

checkpoint in the

Non-blocking multi-level checkpointing background,
Computation ——————————— S minimize overhead
o DD DD DD DD DD | s
checl:alfsoint I . . I<[>I . . IIIII ii\r:r\gg:esjgleization

XOR checkpoint can be ‘ Next checkpoint
taken during PFS right after
checkpointing

 Reduce impact of
failures requiring
XOR checkpoint

LLNL-PRES-599833-DRAFT 9



Challenges on Non-blocking checkpointing

Non-blocking multi-level checkpointing

TR '"uijuln il
1#[ Imman

checkpoint

e Utilize local SSDs for the additional space
— Write PFS checkpoint in the background which requires additional storage spaces
* Minimize resource contention

— PFS checkpointing is running in the background, inflate the runtime due to
resource contention

= Implementation: Use RDMA with checkpoint dedicated nodes

* Optimize configuration (e.g. checkpoint interval)
— On afailure requiring PFS, need “complete PFS checkpoint”
— On a failure requiring XOR, need to restore both XOR & PFS ckpt being written
= Modeling: Model a non-blocking multi-level checkpoint

LLNL-PRES-599833-DRAFT 10



Non-blocking checkpointing overview

 Between compute nodes and PFS, use staging nodes

— Dedicated extra nodes for transferring local checkpoints written by a SCR

library

— Read checkpoints from compute nodes using RDMA, write out to a PFS

2

Compute nodes

Staging nodes

ocal storage

Staging

client Stag|ng

server

ocal storage ‘

Staging

client Staging

server

Read

RDMA

Staging

ocal storage ‘

Staging server

client

N

Local checkpoint

LLNL-PRES-599833-DRAFT

PFS checkpoint

Write

11



Non-blocking checkpointing using RDMA

1. Local storages to Local memory

— After SCR writes checkpoint to a local storage, staging clients running on compute
nodes read chunks of the checkpoint from the local storage to a buffer memory

2. Local memory to Remote memory

— Send RDMA Read requests to a mapped staging server running on a staging node,
staging server read the checkpoints from the buffer using RDMA

3. Remote memory to PFS

— Data writer threads running on Staging nodes write checkpoint chunks to PFS in parallel

Compute nodes Staging nodes

ocal storage Staging
client
— Thread
ocal storage X
Staging
—— server
ocal storage -
Staging
client N
ocal storage S Staging
client server
«_Local storage Staging
ocal storage Staging
client

LLNL-PRES-599s55=-KAF1

Thread

Thread

Staging

server




Modeling of Non-blocking checkpoint

more resilient but .«
huge overhead

Infrequent Low overhead but ...
checkpoint less resilient

Frequent
checkpoint

LLNL-PRES-599833-DRAFT



Outline

 Modeling of Non-blocking checkpointing
e Evaluation

* Summary
more resilient but .« Frequent Infrequent Low overhead but ...
huge overhead checkpoint checkpoint less resilient

LLNL-PRES-599833-DRAFT



Non-blocking MLC model overview

Non-blocking multi-level checkpointing

I FODRTay Trnnnl
* Input (each level of ..) l . - l l . . I

— Checkpoint time

Describe an application’s state
transitions as Markov model

>

y

— Restart time

— Failure rate
— Interval Non-blocking multi-level checkpoint model

=(2) B 2)>
* Qutput
— Expected runtime -~
* Find checkpoint intervals
that minimize runtime
T oil}

—

LLNL-PRES-599833-DRAFT 15



Assumptions on the model

* Independent and identically distributed

=T

. . . . . ) po(T) = e
failure rate & Poisson distribution ;' W) = T
go.s . _ ﬁ T
— One failure does not increase the probability of & o= Ra )
i i N 1— (AT +1) e
successive failures A L e W vy
% 0.2 w=10
~
0 L 1

| L || 1 ] ]
0 2 4 6 8 10 12 14 16 18

e Stable write & read performance Nunrof s vt s s

— Checkpoint/Restart time significantly does not change
during overall the runtime

e Failure on Level-k recovery => Level-(k+1) checkpoint

— Another one node failure during XOR recovery requires a PFS checkpoint
— Assume PFS checkpoint can retry infinitely

Saved checkpoints are never lost on non-failed nodes and a PFS

— Guarantee failed job can restart from the latest checkpoint

LLNL-PRES-599833-DRAFT



Two-level checkpoint example

* For simplicity, two-level checkpoint
— Level-

— Level-

1: XOR checkpoint
2: PFS checkpoint

Non-blocking multi-level checkpointing

Level-1: XOR

Level-2: PFS

e Describe state transitions as Markov model

—

Vertex

k)

P
(9
M1

\

)

Computation state
followed by level-k checkpoint

Recovery state

from level-k checkpoint /

LLNL-PRES-599833-DRAFT

Edge

—

Transition to
next computation state

Transition to
Recovery state

Successful recovery

>

17



No failure & Level-"1" failure case

Level-"1” failure
e
A

i 1 1 1 I 1 1

PFS checkpointing is running in the
background during these compute states

LLNL-PRES-599833-DRAFT

L-2 ckpt: L-1 ckpt

=1:4

2

/(@ Compute state (t sec)}

—
@ Recovery state

-2  Recover transition

level-k checkpoint

Successful computation

from level-k checkpoint

Successful recovery/

18



Level-"2” failure case

I T%%TD

>

L-2 ckpt: L-1 ckpt

=1:4

i - B - ——3  Successful computation
{ ) { ) ‘ ) { )
G,

C?\ Recovery state

&

-2  Recover transition

\—) Successful recovery/

/@{) Compute state (t se\

level-k checkpoint

from level-k checkpoint

LLNL-PRES-599833-DRAFT

19



How to calculate expected _runtime ?

TR | 1
e e

: ¢ -level checkpoint time

C

. ¢ -level recovery time

C

Duration
I+cC I 7, T
(t+c,)
No failure @ Po ¢ Po (rk)
t,(t+c,) @ " 1(R)
Failure @ Pi (7+ Ck) @ % (rk)
t(t+c,) (7

pO (T) - No failure for T seconds P ; (T) : 1- level failure for T seconds
tO (T) : Expected time when P, (T) ti (T) : Expected time when pi(T)
LLNLPRE. o _RAET

po(T) — €—>\T
to(T) = T
pi(T) = (- e)
B 1— (AT +1)-e M
WT) = AT

).l. : 1-level checkpoint
time

A=Y A

20



Overhead factor: ¢

* Quantify an overhead by our proposed non-blocking
checkpointing system

Kol |

/\ a0 /\1’3 A /\ /\/

(—l N6 _j/Ti_] f j T;j WF J ]—t;
i JT’I i

During these
compute states PFS
/ checkpointing is
. running in the
1 —> background, inflate
(—I/ the runtime due to
.

resource contention

(e | | Seee========

AN

t,(t+c, +lo- 1)

LLNL-PRES-599833-DRAFT

21



Arbitrary N - level checkpointing model

a )
\
J
Z(k-1, k) Yo (K, k-1)
| @
Y (k k—1) Iu 1

LLNL-PRES-599833-DRAFT



Non-blocking vs. Blocking MLC checkpointing

e Benchmark: Himeno benchmark

— Stencil application solving Poisson’s equation using Jacobi
iteration method

Blocking multi-level checkpointing

* Target System:
TSUBAME2.0 Thin nodes (1408 nodes) | |

CPU Intel Xeon X5670 2.93GHz (6cores x 2 sockets)

Memory DDR3 1333MHz (58GB)

Mellanox Technologie
Dual rail QDR Infiniband 4x (80Gbps)

Local storage 120GB Intel SSD (RAIDO/60GBx2)
Lustre (/workO )

Blocking multi-level checkpointing model

e Checkpoint Level: Two-level
- Level-l : XO R u SI ng Ioca I SS D Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski,
. “Design, Modeling, and Evaluation of a Scalable Multi-level
—_ Leve | -2 . P FS usil ng Lu St re Checkpointing System,” in Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 10).

LLNL-PRES-599833-DRAFT 23



Model Parameters

Level-2 : PFS

0.1075
0.0806
02419
* Failure rates 0.4031

< Compute nodes

— 1.5 years (Nov 15t 2010 ~ Apr 6t" 2012) Rack

failure history l Level-1: XOR ' PSU

# PF'S, Core switch

10.62 = Edge switch
* Checkpoint size per node: 29GB /

— TSUBAME nodes memory: 58GB Failure rates (failures/week) on TSUBAME2.0
- 450
Level-1 | Q

e XOR throughput: 400MB/s FSO “ W ofnodes

§ | = 2 nodes

§_300 & 4 nodes

g 20 8 nodes

I . Tt W16 nodes

g 150 ~ 1 32nodes

& 8 100 7 64 nodes
g § 50 128 nodes

o
41

2 4 8 16 32 64 128
XOR group size

24
XOR encoding performance on TSUBAMEZ2.0 using local SSDs

LLNL-PRES-599833-DRAFT



Model Parameters

 Failure rates

— 1.5 years (Nov 15t 2010 ~ Apr 6" 2012)

failure history

* Checkpoint size per node: 29GB

— TSUBAME nodes memory: 58GB

Level-1

* XOR throughput: 400MB/s

LLNL-PRES-599833-DRAFT

XOR

Level-2 : PFS
-6
0.1778 x10 j 0.1332 x105
0.3999 x106 ———  /
0.6665 x106 ——

Rack

« Compute nodes

| Level-1: XOR ' PsU
# PFS, Core switch

Failure rates (failures/second) on
TSUBAMEZ2.0

)

w
[$2]
o

w
o
o

N
(9]
o

- k 1 1 —
E:l.- i | _n |
2 4 8 16 32 64 128

XOR group size

[N
(€]
o

XOX encoding rate (MB/sec
o o
o o

(9]
o

o
-

0.1757 x10° m Edge switch

450 /
Q# of nodes

2 nodes
K 4 nodes
8 nodes
16 nodes
32 nodes
64 nodes
128 nodes

XOR encoding performance on TSUBAMEZ2.0 using local SSDs



Staging node tuning for TSUBAME?2.0

Level-2

« # of Staging nodes: 32 nodes * PFS throughput: 6.7GB/seconds

— 2.3% of TSUBAMEZ2.0 thin nodes — 209.5 MB/seconds* per Staging node
(1408 nodes) *6.7(GB/s) / 32(nodes) = 209.5

LLNL-PRES-599833-DRAFT

PFS throughput with different staging nodes

_ 10000
>
5
_§ J 6.7GB/sec | '/‘
z &—oouu l',
€3 f
> 4000 1
= o f
g ¥
% 2000 ol
<

0 .

0 32 | 100 150 200 250 300

# of Staging nodes
26



Overhead factor

 Overhead factor: 0.00184 (0.184%)

— For Himeno bechmark

RDMA = No CPU cycle, No redundant memcpy
RDMA read speed = 209.5MB/s < Network & Memory bandwidth

Overhead factor (Himeno benchmark)

0.03
0.025
0.02 1 209.5 MB/sec |
0.015
0.01

) 0.005
0.00184 J8—

0 0.5 1 1.5 2 2.5 3
checkpoint rate per Staging node: x (GB/sec)

Overhead factor: a=f(x)

LLNL-PRES-599833-DRAFT

27



Efficiency: Non-blocking vs. blocking

The non-blocking method always achieves higher efficiency than the blocking method

0.9 A

0.8 1

0.7 7

o o
[(6,] (o)}

Efficiency

0.3 A
0.2

0.1 -

One TSUBAME2.0 node MTBF: 2.57 years

J x1.1 i T—‘ }
1.3 x1.2 | .. ideal runtime
Efficiency = .
expected runtime
x1.8 ideal runtime : No failure and No checkpoint

expected runtime : Computed by the models

B PFS cost x1 / Non-blocking

B PFS cost x1 / Blocking

PFS cost x2 / Non-blocking
PFS cost x2 / Blocking
PFS cost x10 / Non-blocking

Failure rate x1

LLNL-PRES-599833-DRAFT

Failure rate x2 Failure rate x10 PFS cost x10 / Blocking

x10 scale-out

# of Nodes: 1408 nodes ﬁ

No computation
progresses !!

28



Overhead factor: Non-blocking vs.
Blocking

If overhead factor is over 0.2, blocking

Other applications case whose checkpointing can become more
overhead factor becomes bigger efficient in current system
Non-blocking Blocking

Fx1, Cx1, Non-blocking

0.9 Fx1, Cx1, Blocking
0.8 \ . ===<Fx2, Cx2, Non-blocking
0.7 - P~ i o ====Fx2, Cx2, Blocking
3 06 | ~ _ \ %‘: Fx2, Cx10, Non-blocking
q:) ' ; A Fx2, Cx10, Blocking
E 0.5 . = — = Fx10, Cx2, Non-blocking
— [
w 0.4 7 Fx10, Cx2, Blocking
0.3 u>f F: Failure rate, C: PFS cost
0.2
0.1
0 1 .
0 ‘l' 0.2 0.4 06 0.8 1 In future systems where the failure rates and cost
Himeno : ' ' ' increase, non-blocking checkpointing can be effective
benchmark Overhead factor (a) even with a large overhead factor.

=> Blocking checkpoint overhead dominate the
runtime more than overhead factor by non-blocking

LLNL-PRES-599833-DRAFT



Required PFS performance to meet given
application efficiency

When building a reliable data center or supercomputer, two major concerns are
monetary cost of the PFS and the PFS throughput required to maintain high efficiency ...
=> predict required PFS performance with the models

Blocking checkpoint requires extremely high 0 0 .
PFS performance to achieve 90% efficiency. For 80% and 70% efficiency,
non-blocking continue to scale

@ out well even for machines

| whose failure rates are over an
order of magnitude worse than
today

100
90
80
70
60
50
40
30
20
10

0

Non-Blocking(90%)
Non-Blocking(80%)
Non-Blocking(70%)

I Blocking (90%)

Blocking (80%)

For 80% efficiency at 3x failure rate, blocking
requires 100GB/s, but non-blocking is still
below 10GB/s

/ I Current PFS

Required PFS throughput (GB/sec)

performance range

A
:
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
1
|
|
}
|
|
|
|
|
|
|
|
|

@ T
0 (P 2 4 6 8 10 12 14 16

Scale factor of failure rate
Current failure rate

LLNL-PRES-599833-DRAFT



Conclusion

 Developed an non-blocking checkpointing system
— Write checkpoint data in the background using RDMA

 Markov model of the non-blocking checkpointing

— Optimal multi-level checkpoint interval

— Non-blocking v.s. Blocking checkpoint
* Higher efficiency (1.1 ~ 1.8x) on current and future systems

— High efficiency (up to 80%) with low PFS throughput

LLNL-PRES-599833-DRAFT

31



Q&A

Speaker:

Kento Sato (& B 3})

kent@matsulab.is.titech.ac.jp
Tokyo Institute of Technology (Tokyo Tech)
Research Fellow of the Japan Society for the Promotion of Science
http://matsu-www.is.titech.ac.jp/~kent/index en.html

Co-authers

Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R de. Supinski,
Naoya Maruyama, Satoshi Matsuoka

Acknowledgement

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52- 07TNA27344. LLNL-
PRES-599833-DRAFT.This work was also supported by Grant-in-Aid for Research Fellow
of the Japan Society for the Promotion of Science (JSPS Fellows) 24008253, and Grant-in-
Aid for Scientific Research S 23220003.

LLNL-PRES-599833-DRAFT



