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Failures on HPC systems

 Exponential growth in computational power
— Enables finer grained scientific simulations

 Overall failures rate increases accordingly

— Due to increasing complexity and system size
PFS, Core switch

j /7 Edge switch
PSUﬁ

Rack

TSUBAME2.0, 14" in Top500 (June 2012)

< Compute nodes 791

Rack 30 2.4 PFlops
13 hours 2953 CPU sockets
# PFS, Core switch 8 4264 GPUs
= Edge switch 6 197 switches
58 racks

Failure analysis on TSUBAME2.0  Period: 1.5 years (Nov 15, 2010 ~ April 6 2012)

Observations: 962 node failures in total

e System resiliency is becoming more important

— Without a viable resilience strategy, applications can not

run for even one day on such a large system
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Traditional Checkpoint/Restart [ ... |

Checkpoint Restart
Periodically save a snapshot of On a failure, restart the execution
an application state from the latest checkpoint
to a reliable storage I
e e —
v ' v

check check -
point point

‘ Parallel file system (PFS) |

Mostly these checkpoints are stored in the most reliable storage,

such as a shared parallel file system(PFS). 3
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XOR
checkpoint

Scalable checkpointing methods

* Diskless checkpoint: L o |
[F—

— Create redundant data across local storages .,

on compute nodes using a encoding @

Parity 4

technigue such as XOR

— Can restore lost checkpoints on a failure
caused by small # of nodes like RAID-5

XOR encoding example

* Most of failures comes from one node, or can recover from XOR checkpoint

— e.g. 1) TSUBAME2.0: 92% failures  Rest of failures still require a checkpoint on a reliable PFS
— e.g. 2) LLNL clusters: 85% failures

0 0
8% —~ 15%
- LOCAL/XOR/PARTNER checkpoint
PFS checkpoint

Diskleés.checkpointris 92% 850/0
promising approac / /

Failure analysis on TSUBAMEZ2.0 Failure analysis on LLNL clusters
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XOR
checkpoint

Multi-level checkpointing (MLC) Lo |

v 5 | | | | v |
o e ) 0] I
checkpoint ;
v
PFS ] Level-2
checkpoint
* Use storage levels hierarchically
— XOR checkpoint: Frequently
» forone node or a few node failure o Checkpoint
— PFS checkpoint: Less frequently 1 7 513%@
« for multi-node failure £ Z: 8X efflCleIle | e
» 8x efficiency improvement o msen
— With MLC implementation called SCR(Scalable B Lowrence Livermore
. . . National Laboratory
Checkpoint/Restart) library developed in LLNL o
—_— Com pa r‘ed to S|ng|e-|eve| CheCpr|nt| ng Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design,

Modeling, and Evaluation of a Scalable Multi-level Checkpointing System,” in
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 10).
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MLC Problems on Petascale or larger

Three potential problems

] TSUBAMEZ2.0 checkpoint time trend
1. PFS checkpoint overhead

— Even with MLC, PFS checkpoint still becomes big & 3:5 PF'S checkpoint
overhead s 3 3
2 2.5 ]
2. Inefficient PFS utilization . " Tax overhead
— Time between PFS checkpoints becomes long, é 1.5 .. [
PFS is not utilized during XOR checkpoints 2 1 ‘
_ ] ] °05 XOR checkpoint
3. Failure during PFS checkpoint 0 @:ﬁ:%*x

0 256 512 768 1024 1280 1536

— At scale, prolonged PFS checkpointing has a risk. # of nodes

of failures during checkpointing

3. Risk of failures _ . o

Blocking multi-level checkpointing

Computation >
local  [1 [1[] [l. 1. PFS checkpomt >H

checkpoint overhead

PFS
checkpoint
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Objective, Proposal and Contributions

* Objective: More efficient MLC
— Minimize PFS checkpoint overhead
— Improve PFS utilization
— Reduce a risk of failure during PFS checkpoint

* Proposal & Contributions:

— Developed an non-blocking checkpointing system as an
extension for SCR library

* PFS checkpoint with 0.5 ~ 2.5% overhead
— Modeled the non-blocking checkpointing

* Determine optimal multi-level checkpoint configuration
* 1.1~ 1.8x efficiency on current and future systems

LLNL-PRES-599833-DRAFT



Outline

* Design of a Non-blocking checkpointing system
 Modeling of the Non-blocking checkpointing

e Evaluation

* Summary
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Non-blocking checkpointing overview

Blocking multi-level checkpointing
Computation >
XOR
checkpoint H H H H H H
PFS
checkpoint
. . Write PFs

checkpoint in the

Non-blocking multi-level checkpointing background,
Computation ——————————— S minimize overhead
o DD DD DD DD DD | s
checl:alfsoint I . . I<[>I . . IIIII ii\r:r\gg:esjgleization

XOR checkpoint can be ‘ Next checkpoint
taken during PFS right after
checkpointing

 Reduce impact of
failures requiring
XOR checkpoint
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Challenges on Non-blocking checkpointing

Non-blocking multi-level checkpointing

TR '"uijuln il
1#[ Imman

checkpoint

e Utilize local SSDs for the additional space
— Write PFS checkpoint in the background which requires additional storage spaces
* Minimize resource contention

— PFS checkpointing is running in the background, inflate the runtime due to
resource contention

= Implementation: Use RDMA with checkpoint dedicated nodes

* Optimize configuration (e.g. checkpoint interval)
— On afailure requiring PFS, need “complete PFS checkpoint”
— On a failure requiring XOR, need to restore both XOR & PFS ckpt being written
= Modeling: Model a non-blocking multi-level checkpoint

LLNL-PRES-599833-DRAFT 10



Non-blocking checkpointing overview

 Between compute nodes and PFS, use staging nodes

— Dedicated extra nodes for transferring local checkpoints written by a SCR

library

— Read checkpoints from compute nodes using RDMA, write out to a PFS

2

Compute nodes

Staging nodes

ocal storage

Staging

client Stag|ng

server

ocal storage ‘

Staging

client Staging

server

Read

RDMA

Staging

ocal storage ‘

Staging server

client

N

Local checkpoint
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Non-blocking checkpointing using RDMA

1. Local storages to Local memory

— After SCR writes checkpoint to a local storage, staging clients running on compute
nodes read chunks of the checkpoint from the local storage to a buffer memory

2. Local memory to Remote memory

— Send RDMA Read requests to a mapped staging server running on a staging node,
staging server read the checkpoints from the buffer using RDMA

3. Remote memory to PFS

— Data writer threads running on Staging nodes write checkpoint chunks to PFS in parallel

Compute nodes Staging nodes

ocal storage Staging
client
— Thread
ocal storage X
Staging
—— server
ocal storage -
Staging
client N
ocal storage S Staging
client server
«_Local storage Staging
ocal storage Staging
client

LLNL-PRES-599s55=-KAF1

Thread

Thread

Staging

server




Modeling of Non-blocking checkpoint

more resilient but .«
huge overhead

Infrequent Low overhead but ...
checkpoint less resilient

Frequent
checkpoint
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Outline

 Modeling of Non-blocking checkpointing
e Evaluation

* Summary
more resilient but .« Frequent Infrequent Low overhead but ...
huge overhead checkpoint checkpoint less resilient
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Non-blocking MLC model overview

Non-blocking multi-level checkpointing

I FODRTay Trnnnl
* Input (each level of ..) l . - l l . . I

— Checkpoint time

Describe an application’s state
transitions as Markov model

>

y

— Restart time

— Failure rate
— Interval Non-blocking multi-level checkpoint model

=(2) B 2)>
* Qutput
— Expected runtime -~
* Find checkpoint intervals
that minimize runtime
T oil}

—
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Assumptions on the model

* Independent and identically distributed

=T

. . . . . ) po(T) = e
failure rate & Poisson distribution ;' W) = T
go.s . _ ﬁ T
— One failure does not increase the probability of & o= Ra )
i i N 1— (AT +1) e
successive failures A L e W vy
% 0.2 w=10
~
0 L 1

| L || 1 ] ]
0 2 4 6 8 10 12 14 16 18

e Stable write & read performance Nunrof s vt s s

— Checkpoint/Restart time significantly does not change
during overall the runtime

e Failure on Level-k recovery => Level-(k+1) checkpoint

— Another one node failure during XOR recovery requires a PFS checkpoint
— Assume PFS checkpoint can retry infinitely

Saved checkpoints are never lost on non-failed nodes and a PFS

— Guarantee failed job can restart from the latest checkpoint
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Two-level checkpoint example

* For simplicity, two-level checkpoint
— Level-

— Level-

1: XOR checkpoint
2: PFS checkpoint

Non-blocking multi-level checkpointing

Level-1: XOR

Level-2: PFS

e Describe state transitions as Markov model

—

Vertex

k)

P
(9
M1

\

)

Computation state
followed by level-k checkpoint

Recovery state

from level-k checkpoint /

LLNL-PRES-599833-DRAFT

Edge

—

Transition to
next computation state

Transition to
Recovery state

Successful recovery

>
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No failure & Level-"1" failure case

Level-"1” failure
e
A

i 1 1 1 I 1 1

PFS checkpointing is running in the
background during these compute states

LLNL-PRES-599833-DRAFT

L-2 ckpt: L-1 ckpt

=1:4

2

/(@ Compute state (t sec)}

—
@ Recovery state

-2  Recover transition

level-k checkpoint

Successful computation

from level-k checkpoint

Successful recovery/
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Level-"2” failure case

I T%%TD

>

L-2 ckpt: L-1 ckpt

=1:4

i - B - ——3  Successful computation
{ ) { ) ‘ ) { )
G,

C?\ Recovery state

&

-2  Recover transition

\—) Successful recovery/

/@{) Compute state (t se\

level-k checkpoint

from level-k checkpoint

LLNL-PRES-599833-DRAFT
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How to calculate expected _runtime ?

TR | 1
e e

: ¢ -level checkpoint time

C

. ¢ -level recovery time

C

Duration
I+cC I 7, T
(t+c,)
No failure @ Po ¢ Po (rk)
t,(t+c,) @ " 1(R)
Failure @ Pi (7+ Ck) @ % (rk)
t(t+c,) (7

pO (T) - No failure for T seconds P ; (T) : 1- level failure for T seconds
tO (T) : Expected time when P, (T) ti (T) : Expected time when pi(T)
LLNLPRE. o _RAET

po(T) — €—>\T
to(T) = T
pi(T) = (- e)
B 1— (AT +1)-e M
WT) = AT

).l. : 1-level checkpoint
time

A=Y A
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Overhead factor: ¢

* Quantify an overhead by our proposed non-blocking
checkpointing system

Kol |

/\ a0 /\1’3 A /\ /\/

(—l N6 _j/Ti_] f j T;j WF J ]—t;
i JT’I i

During these
compute states PFS
/ checkpointing is
. running in the
1 —> background, inflate
(—I/ the runtime due to
.

resource contention

(e | | Seee========

AN

t,(t+c, +lo- 1)

LLNL-PRES-599833-DRAFT
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Arbitrary N - level checkpointing model

a )
\
J
Z(k-1, k) Yo (K, k-1)
| @
Y (k k—1) Iu 1
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Non-blocking vs. Blocking MLC checkpointing

e Benchmark: Himeno benchmark

— Stencil application solving Poisson’s equation using Jacobi
iteration method

Blocking multi-level checkpointing

* Target System:
TSUBAME2.0 Thin nodes (1408 nodes) | |

CPU Intel Xeon X5670 2.93GHz (6cores x 2 sockets)

Memory DDR3 1333MHz (58GB)

Mellanox Technologie
Dual rail QDR Infiniband 4x (80Gbps)

Local storage 120GB Intel SSD (RAIDO/60GBx2)
Lustre (/workO )

Blocking multi-level checkpointing model

e Checkpoint Level: Two-level
- Level-l : XO R u SI ng Ioca I SS D Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski,
. “Design, Modeling, and Evaluation of a Scalable Multi-level
—_ Leve | -2 . P FS usil ng Lu St re Checkpointing System,” in Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 10).
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Model Parameters

Level-2 : PFS

0.1075
0.0806
02419
* Failure rates 0.4031

< Compute nodes

— 1.5 years (Nov 15t 2010 ~ Apr 6t" 2012) Rack

failure history l Level-1: XOR ' PSU

# PF'S, Core switch

10.62 = Edge switch
* Checkpoint size per node: 29GB /

— TSUBAME nodes memory: 58GB Failure rates (failures/week) on TSUBAME2.0
- 450
Level-1 | Q

e XOR throughput: 400MB/s FSO “ W ofnodes

§ | = 2 nodes

§_300 & 4 nodes

g 20 8 nodes

I . Tt W16 nodes

g 150 ~ 1 32nodes

& 8 100 7 64 nodes
g § 50 128 nodes

o
41

2 4 8 16 32 64 128
XOR group size

24
XOR encoding performance on TSUBAMEZ2.0 using local SSDs
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Model Parameters

 Failure rates

— 1.5 years (Nov 15t 2010 ~ Apr 6" 2012)

failure history

* Checkpoint size per node: 29GB

— TSUBAME nodes memory: 58GB

Level-1

* XOR throughput: 400MB/s

LLNL-PRES-599833-DRAFT

XOR

Level-2 : PFS
-6
0.1778 x10 j 0.1332 x105
0.3999 x106 ———  /
0.6665 x106 ——

Rack

« Compute nodes

| Level-1: XOR ' PsU
# PFS, Core switch

Failure rates (failures/second) on
TSUBAMEZ2.0

)

w
[$2]
o

w
o
o

N
(9]
o

- k 1 1 —
E:l.- i | _n |
2 4 8 16 32 64 128

XOR group size

[N
(€]
o

XOX encoding rate (MB/sec
o o
o o

(9]
o

o
-

0.1757 x10° m Edge switch

450 /
Q# of nodes

2 nodes
K 4 nodes
8 nodes
16 nodes
32 nodes
64 nodes
128 nodes

XOR encoding performance on TSUBAMEZ2.0 using local SSDs



Staging node tuning for TSUBAME?2.0

Level-2

« # of Staging nodes: 32 nodes * PFS throughput: 6.7GB/seconds

— 2.3% of TSUBAMEZ2.0 thin nodes — 209.5 MB/seconds* per Staging node
(1408 nodes) *6.7(GB/s) / 32(nodes) = 209.5

LLNL-PRES-599833-DRAFT

PFS throughput with different staging nodes

_ 10000
>
5
_§ J 6.7GB/sec | '/‘
z &—oouu l',
€3 f
> 4000 1
= o f
g ¥
% 2000 ol
<

0 .

0 32 | 100 150 200 250 300

# of Staging nodes
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Overhead factor

 Overhead factor: 0.00184 (0.184%)

— For Himeno bechmark

RDMA = No CPU cycle, No redundant memcpy
RDMA read speed = 209.5MB/s < Network & Memory bandwidth

Overhead factor (Himeno benchmark)

0.03
0.025
0.02 1 209.5 MB/sec |
0.015
0.01

) 0.005
0.00184 J8—

0 0.5 1 1.5 2 2.5 3
checkpoint rate per Staging node: x (GB/sec)

Overhead factor: a=f(x)

LLNL-PRES-599833-DRAFT
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Efficiency: Non-blocking vs. blocking

The non-blocking method always achieves higher efficiency than the blocking method

0.9 A

0.8 1

0.7 7

o o
[(6,] (o)}

Efficiency

0.3 A
0.2

0.1 -

One TSUBAME2.0 node MTBF: 2.57 years

J x1.1 i T—‘ }
1.3 x1.2 | .. ideal runtime
Efficiency = .
expected runtime
x1.8 ideal runtime : No failure and No checkpoint

expected runtime : Computed by the models

B PFS cost x1 / Non-blocking

B PFS cost x1 / Blocking

PFS cost x2 / Non-blocking
PFS cost x2 / Blocking
PFS cost x10 / Non-blocking

Failure rate x1

LLNL-PRES-599833-DRAFT

Failure rate x2 Failure rate x10 PFS cost x10 / Blocking

x10 scale-out

# of Nodes: 1408 nodes ﬁ

No computation
progresses !!
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Overhead factor: Non-blocking vs.
Blocking

If overhead factor is over 0.2, blocking

Other applications case whose checkpointing can become more
overhead factor becomes bigger efficient in current system
Non-blocking Blocking

Fx1, Cx1, Non-blocking

0.9 Fx1, Cx1, Blocking
0.8 \ . ===<Fx2, Cx2, Non-blocking
0.7 - P~ i o ====Fx2, Cx2, Blocking
3 06 | ~ _ \ %‘: Fx2, Cx10, Non-blocking
q:) ' ; A Fx2, Cx10, Blocking
E 0.5 . = — = Fx10, Cx2, Non-blocking
— [
w 0.4 7 Fx10, Cx2, Blocking
0.3 u>f F: Failure rate, C: PFS cost
0.2
0.1
0 1 .
0 ‘l' 0.2 0.4 06 0.8 1 In future systems where the failure rates and cost
Himeno : ' ' ' increase, non-blocking checkpointing can be effective
benchmark Overhead factor (a) even with a large overhead factor.

=> Blocking checkpoint overhead dominate the
runtime more than overhead factor by non-blocking
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Required PFS performance to meet given
application efficiency

When building a reliable data center or supercomputer, two major concerns are
monetary cost of the PFS and the PFS throughput required to maintain high efficiency ...
=> predict required PFS performance with the models

Blocking checkpoint requires extremely high 0 0 .
PFS performance to achieve 90% efficiency. For 80% and 70% efficiency,
non-blocking continue to scale

@ out well even for machines

| whose failure rates are over an
order of magnitude worse than
today

100
90
80
70
60
50
40
30
20
10

0

Non-Blocking(90%)
Non-Blocking(80%)
Non-Blocking(70%)

I Blocking (90%)

Blocking (80%)

For 80% efficiency at 3x failure rate, blocking
requires 100GB/s, but non-blocking is still
below 10GB/s

/ I Current PFS

Required PFS throughput (GB/sec)

performance range

A
:
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
1
|
|
}
|
|
|
|
|
|
|
|
|

@ T
0 (P 2 4 6 8 10 12 14 16

Scale factor of failure rate
Current failure rate
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Conclusion

 Developed an non-blocking checkpointing system
— Write checkpoint data in the background using RDMA

 Markov model of the non-blocking checkpointing

— Optimal multi-level checkpoint interval

— Non-blocking v.s. Blocking checkpoint
* Higher efficiency (1.1 ~ 1.8x) on current and future systems

— High efficiency (up to 80%) with low PFS throughput

LLNL-PRES-599833-DRAFT
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