
LLNL#PRES#599833#DRAFT0

Kento0Sato†1,2,0Adam0Moody†3,0Kathryn0Mohror†3,0Todd0Gamblin†3,00
Bronis0R.0de0Supinski†3,0Naoya0Maruyama†4,50and0Satoshi0Matsuoka†1,5,6,70

0
†1 Tokyo Institute of Technology  

†2 Research Fellow of the Japan Society for the Promotion of Science  
†3 Lawrence Livermore National Laboratory  

†4 RIKEN Advanced institute for Computational Science  
†5 Global Scientific information and Computing Center"

†6 National Institute of Informatics"
†7 JST/CREST"

This0work0performed0under0the0auspices0of0the0U.S.0Department0of0Energy0by0Lawrence0Livermore0NaQonal0Laboratory00
under0Contract0DE#AC52#007NA27344.0LLNL#PRES#599833#DRAFT0

November013th,020120

LLNL#PRES#599833#DRAFT0

Failures0on0HPC0systems0
•  0ExponenQal0growth0in0computaQonal0power0

–  Enables00finer0grained00scienQfic0simulaQons0
•  0Overall0failures0rate0increases0accordingly0

–  Due0to0increasing0complexity0and0system0size0

•  0System0resiliency0is0becoming0more0important0
–  Without0a0viable0resilience0strategy,0applicaQons0can0not0

run0for0even0one0day0on0such0a0large0system0
20

2.4 PFlops"
1442 nodes"
2953 CPU sockets"
4264 GPUs"
197 switches"
58 racks"

TSUBAME2.0, 14th in Top500 (June 2012)"

Failure analysis on TSUBAME2.0 Period: 1.5 years (Nov 1st, 2010 ~ April 6th 2012)
Observations: 962 node failures in total

Overall0MTBF0
130hours0

Compute nodes

Rack

PSU

PFS, Core switch

Edge switch

7910

300

180

80

60

Compute
nodes

Rack
PSU

PFS, Core switch
Edge switch

LLNL#PRES#599833#DRAFT0

TradiQonal0Checkpoint/Restart0
0
0

30

check
point0

check
point0

check
point0

failure
0

Checkpoint0
Periodically0save0a0snapshot0of0

an0applicaQon0state00
to0a0reliable0storage0

Restart00
On0a0failure,0restart0the0execuQon0

from0the0latest0checkpoint00

Mostly0these0checkpoints0are0stored0in0the0most0reliable0storage,00
such0as0a0shared0parallel0file0system(PFS).00

Parallel0file0system0(PFS)0

CheckpoinQng0overhead0

XOR0
checkpoint0

PFS0
checkpoint0

LLNL#PRES#599833#DRAFT0

8% 15%

Scalable0checkpoinQng0methods0
40

ckpt0A30

ckpt0A20

ckpt0A10

Parity010

ckpt0B30

ckpt0B20

Parity020

ckpt0B10

ckpt0C30

Parity030

ckpt0C20

ckpt0C10

Parity040

ckpt0D30

ckpt0D20

ckpt0D10

Node%1% Node%2% Node%3% Node%4%

XOR0encoding0example0

failure
0

Failure analysis on TSUBAME2.0

•  Most0of0failures0comes0from0one0node,0or0can0recover0from0XOR0checkpoint0
–  e.g.01)0TSUBAME2.0:092%0failures0
–  e.g.02)0LLNL0clusters:085%0failures0

•  Diskless0checkpoint:0
–  Create0redundant0data0across0local0storages0

on0compute0nodes0using0a0encoding0
technique0such0as0XOR0

–  Can0restore0lost0checkpoints0on0a0failure0
caused0by0small0#0of0nodes0like0RAID#50

XOR0
checkpoint0

PFS0
checkpoint0

40Failure analysis on LLNL clusters

LOCAL/XOR/PARTNER checkpoint
PFS checkpoint

92% 85% Diskless0checkpoint0is0
promising0approach0

Rest0of0failures0sQll0require0a0checkpoint0on0a0reliable0PFS0

LLNL#PRES#599833#DRAFT0

MulQ#level0checkpoinQng0(MLC)0

•  Use0storage0levels0hierarchically0
–  XOR0checkpoint:0Frequently0

•  0for0one0node0or0a0few0node0failure0

–  PFS0checkpoint:0Less0frequently0
•  0for0mulQ#node0failure0

•  08x0efficiency0improvement0
–  With0MLC0implementaQon0called0SCR(Scalable0

Checkpoint/Restart)0library0developed0in0LLNL0
–  Compared0to0single#level0checkpoinQng0
0

0

Table 4: Expected and observed e⇤ciency

System Expected Observed Duration of
E⇤ciency E⇤ciency Observation

Coastal 95.2% 94.68% 716,613 node-hours
Atlas 96.7% 92.39% 553,829 node-hours

Figure 9: Optimal e⇤ciency for single- and multi-level checkpointing

We now use the model to explore multi-level checkpointing in a more general context. In the following experi-
ments, we simulated a three level checkpointing system (L = 3) and varied the length of the compute interval, the
number of level 1 and level 2 checkpoints per level 3 period, the failure rates, and the cost of level 3 checkpoints.

For checkpoint costs, we use the times recorded in Table 1 for checkpointing pF3D on Coastal using LOCAL on
RAM, XOR on RAM, and Lustre, which gives us costs of 0.5 seconds, 4.5 seconds, and 1052 seconds, respectively.
We set recovery costs to be the same as checkpoint costs. Using the failure data for pF3D on Coastal in Table 2,
we express the failure rates in units of failures per job-second, i.e., average number of failures at a given level per
node-hour, multiplied by the number of nodes used in the job, divided by 3,600 seconds per hour. This leads to
failure rates of 2 · 10�7 for level 1, 1.8 · 10�6 for level 2, and 4 · 10�7 for level 3.

As future systems become larger, failure rates are expected to increase, and as the system memory size grows
faster than the performance of the parallel file system, the cost of accessing the parallel file system is expected to
increase. To explore these e�ects, we increase the base failure rates and the level L checkpoint costs by factors of
2, 10, and 50. We do not adjust the costs of lower-level checkpoints, since the performance of node-local storage is
expected to scale with system size. For each combination, we identified the compute interval and the level 1 and
level 2 checkpoint counts that provide the highest e⇤ciency. For comparison, we performed the same experiment
for single-level checkpointing, assuming only the parallel file system is available.

Figure 9 presents the e⇤ciency achieved for each configuration, and Figure 10(a) shows the time between level
L checkpoints. We label the results for the multi-level system as “Multi” and those for the single-level system as
“Single.” The groupings of bars along the x-axis correspond to failure rates that are one, two, ten, or fifty times
the base values. Within each grouping, we increase the cost of the level L checkpoint by one, two, ten, and fifty
times the base value.

In all cases, the multi-level system results in higher e⇤ciencies, and it increases the time between checkpoints
to the parallel file system. Moreover, both advantages increase with either increasing failure rates or higher parallel
file system costs. The gain in machine e⇤ciency ranges from a few percent up to 35%, and, as can be seen in
Figure 10(b), the load on the parallel file system is reduced by a factor ranging from 2x-4x. Thus, compared to
single-level checkpointing, multi-level checkpointing simultaneously increases e⇤ciency while reducing load on the
parallel file system. These results highlight the benefits of multi-level checkpointing on current and future systems.

Overall, we find that multi-level checkpointing is essential for future systems. Even with systems that are
50⇥ less reliable, a three level checkpointing system achieves e⇤ciencies over 75%, so long as we maintain relative

21

Source:0A.0Moody,0G.0Bronevetsky,0K.0Mohror,0and0B.0R.0de0Supinski,0“Design,0
Modeling,0and0EvaluaQon0of0a0Scalable0MulQ#level0CheckpoinQng0System,”0in0
Proceedings0of0the020100ACM/IEEE0InternaQonal0Conference0for0High0Performance0
CompuQng,0Networking,0Storage0and0Analysis0(SC010).0

8x efficiency

Level#10

Level#20

XOR0
checkpoint0

PFS0
checkpoint0

50

XOR0
checkpoint0

PFS0
checkpoint0

LLNL#PRES#599833#DRAFT0

MLC0Problems0on0Petascale0or0larger0

1.  0PFS0checkpoint0overhead00
–  Even0with0MLC,0PFS0checkpoint0sQll0becomes0big0

overhead0

2.  0Inefficient0PFS0uQlizaQon0
–  Time0between0PFS0checkpoints0becomes0long,0

PFS0is0not0uQlized0during0XOR0checkpoints0

3.  0Failure0during0PFS0checkpoint0
–  At0scale,0prolonged0PFS0checkpoinQng0has0a0risk0

of0failures0during0checkpoinQng0
0

60

00
0.50
10

1.50
20

2.50
30

3.50

00 2560 5120 7680 10240 12800 15360

PF
S2
ch
ec
kp

oi
nt
23
m
e2
(h
ou

rs
)2

#2of2nodes2

1.0PFS0checkpoint0
overhead0

2.0UnuQlized0PFS0

72x overhead

PFS checkpoint

XOR checkpoint

TSUBAME2.0 checkpoint time trend

3.0Risk0of0failures0

Three0potenQal0problems00

Local0
checkpoint0

PFS0
checkpoint0

ComputaQon0
Blocking0mulQ#level0checkpoinQng0

LLNL#PRES#599833#DRAFT0

ObjecQve,0Proposal0and0ContribuQons0

•  Objec3ve:0More0efficient0MLC0
–  0Minimize0PFS0checkpoint0overhead0
–  0Improve0PFS0uQlizaQon0
–  0Reduce0a0risk0of0failure0during0PFS0checkpoint0

0
•  Proposal2&2Contribu3ons:0

–  Developed0an0non#blocking0checkpoinQng0system0as0an0
extension0for0SCR0library0
•  PFS0checkpoint0with00.50~02.5%0overhead0

–  Modeled0the0non#blocking0checkpoinQng0
•  Determine0opQmal0mulQ#level0checkpoint0configuraQon0
•  1.10~01.8x0efficiency0on0current0and0future0systems0

70

LLNL#PRES#599833#DRAFT0

Outline0

•  IntroducQon0
•  Design0of0a0Non#blocking0checkpoinQng0system0
•  Modeling0of0the0Non#blocking0checkpoinQng0
•  EvaluaQon0
•  Summary0

80

LLNL#PRES#599833#DRAFT0

Non#blocking0mulQ#level0checkpoinQng0

XOR0
checkpoint0

PFS0
checkpoint0

ComputaQon0

Non#blocking0checkpoinQng0overview0
Blocking0mulQ#level0checkpoinQng0

90

XOR0
checkpoint0

PFS0
checkpoint0

ComputaQon0

Next0checkpoint0
right0ajer00

XOR0checkpoint0can0be0
taken0during0PFS0
checkpoinQng0

•  Write0PFS0
checkpoint0in0the0
background,0
minimize0overhead0

•  By0iniQaQng0next0
ckpt0right0ajer0
previous0one,0
increase0uQlizaQon0

•  Reduce0impact0of0
failures0requiring0
XOR0checkpoint0

LLNL#PRES#599833#DRAFT0

•  UQlize0local0SSDs0for0the0addiQonal0space0
–  Write0PFS0checkpoint0in0the0background0which0requires0addiQonal0storage0spaces0

•  Minimize0resource0contenQon0
–  PFS0checkpoinQng0is0running0in0the0background,0inflate0the0runQme0due0to0

resource0contenQon0
�00ImplementaQon:0Use0RDMA0with0checkpoint0dedicated0nodes0

•  OpQmize0configuraQon0(e.g.0checkpoint0interval)0
–  On0a0failure0requiring0PFS0,00need0“complete0PFS0checkpoint”0
–  On0a0failure0requiring0XOR,00need0to0restore0both0XOR0&0PFS0ckpt0being0wrimen0
�0Modeling:0Model0a0non#blocking0mulQ#level0checkpoint00

Non#blocking0mulQ#level0checkpoinQng0

XOR0
checkpoint0

PFS0
checkpoint0

ComputaQon0

Challenges0on0Non#blocking0checkpoinQng0

100

ContenQon0

LLNL#PRES#599833#DRAFT0

Non#blocking0checkpoinQng0overview�

110

•  Between0compute0nodes0and0PFS,0use0staging0nodes0
–  Dedicated0extra0nodes0for0transferring0local0checkpoints0wrimen0by0a0SCR0

library0
–  Read0checkpoints00from0compute0nodes0using0RDMA,0write0out00to0a0PFS0
0

PFS0checkpoint0

Compute0nodes�

Local0storage�

Local0storage�

Local0storage�

Staging0nodes�

PFS�

Local0checkpoint0

Staging00
client�

Staging00
client�

Staging00
client�

Staging00
server�

Staging00
server�

Staging00
server�

RD
M
A0

Re
ad
�

W
rit
e�

LLNL#PRES#599833#DRAFT0

Non#blocking0checkpoinQng0using0RDMA�

120

Compute0nodes� Staging0nodes�

Staging00
client�

Staging00
client�

Staging00
client�

Staging00
server�

Local0storage�

Local0storage�

Local0storage�

Staging00
client�

Local0storage�

Staging00
client�

Local0storage�

Staging00
client�

Local0storage�

PFS�
Staging00
server�

Staging00
server�

1.  Local0storages0to0Local0memory0
–  Ajer0SCR0writes0checkpoint0to0a0local0storage,0staging0clients0running0on0compute0

nodes0read0chunks0of0the0checkpoint0from0the0local0storage0to0a0buffer0memory0

2.  Local0memory0to0Remote0memory0
–  Send0RDMA0Read0requests0to0a0mapped0staging0server0running0on0a0staging0node,0

staging0server0read0the0checkpoints0from0the0buffer0using0RDMA0

3.  Remote0memory0to0PFS0
–  Data0writer0threads0running0on0Staging0nodes0write0checkpoint0chunks0to0PFS0in0parallel0

Thread� Thread�

Thread�Thread�

Thread� Thread�

Thread�Thread�

Thread� Thread�

Thread�Thread�

LLNL#PRES#599833#DRAFT0

Modeling0of0Non#blocking0checkpoint0

130

Frequent00
checkpoint0

Infrequent0
checkpoint0

Low0overhead0but0…0
less0resilient0

more0resilient0but0…0
huge0overhead0

LLNL#PRES#599833#DRAFT0

Outline0

•  IntroducQon0
•  Design0of0Non#blocking0checkpoinQng0system0
•  Modeling0of0Non#blocking0checkpoinQng0
•  EvaluaQon0
•  Summary0

140

Frequent00
checkpoint0

Infrequent0
checkpoint0

Low0overhead0but0…0
less0resilient0

more0resilient0but0…0
huge0overhead0

LLNL#PRES#599833#DRAFT0

Non#blocking0MLC0model0overview0

150

Non#blocking0mulQ#level0checkpoinQng0

Non#blocking0mulQ#level0checkpoint0model0

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

•  Describe0an0applicaQon’s0state0
transiQons0as0Markov0model0

0

•  Input0(each0level0of0..)0
–  Checkpoint0Qme0
–  Restart0Qme0
–  Failure0rate0
–  Interval0

•  Output0
–  Expected0runQme0
0

•  Find0checkpoint0intervals0
that0minimize0runQme0
0

150

LLNL#PRES#599833#DRAFT0

AssumpQons0on0the0model0
•  0Independent0and0idenQcally0distributed0

00000000000000failure0rate0&0Poisson0distribuQon0
–  One0failure0does0not0increase0the0probability0of00

successive0failures0
0

•  0Stable0write0&0read0performance0
–  Checkpoint/Restart0Qme0significantly0does0not0change00

during0overall00the0runQme0

•  0Failure0on0Level#k recovery0=>0Level#(k+1)0checkpoint0
–  Another0one0node0failure0during0XOR0recovery0requires0a0PFS0checkpoint0
–  Assume0PFS0checkpoint0can0retry0infinitely0

•  0Saved0checkpoints0are0never0lost0on0non#failed0nodes0and0a0PFS0
–  Guarantee0failed0job0can0restart0from0the0latest0checkpoint0

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6
160

LLNL#PRES#599833#DRAFT0

Non#blocking0mulQ#level0checkpoinQng0

Two#level0checkpoint0example0
•  For0simplicity,0two#level0checkpoint0

–  0Level#1:0XOR0checkpoint0
–  0Level#2:0PFS0checkpoint0

•  Describe0state0transiQons0as0Markov0model0

170

Level#1:0XOR0

Level#2:0PFS0

k

Recovery0state00
from0level#k0checkpoint%

ComputaQon0state00
followed0by0level#k0checkpoint0

TransiQon0to0
next0computaQon0state0

TransiQon0to0
Recovery0state0

Successful0recovery0

Vertex0 Edge0

21

LLNL#PRES#599833#DRAFT0

1 1 1

No0failure0&0Level#”1”0failure0case0

180

2 1 1 1 1 2 1 1 1 1

1

1 1
2

L#20ckpt:0L#10ckpt00

00000=01:040

k Compute0state00(t0sec)0+0
level#k0checkpoint0

Successful0computaQon0

Recovery0state00
from0level#k0checkpoint%

Recover0transiQon0

Successful0recovery0

1 11 1 1 1

Level#”1”0failure0

PFS0checkpoinQng0is0running0in0the0
background0during0these0compute0states0

21

LLNL#PRES#599833#DRAFT0 190

1 1 2 1 1 1 1

1 1 1

2 1 1

1 11 1

2
1 1

Level#”2”0failure0case0

L#20ckpt:0L#10ckpt00

00000=01:040

k Compute0state00(t0sec)0+0
level#k0checkpoint0

Successful0computaQon0

Recovery0state00
from0level#k0checkpoint%

Recover0transiQon0

Successful0recovery0

21

LLNL#PRES#599833#DRAFT0 200

How0to0calculate0000000000000000000000000000000000?00expected _ runtime

p0 (T)
t0 (T)

: No failure for T seconds

: Expected time when p0 (T)

pi (T)

ti (T)
: i - level failure for T seconds

: Expected time when pi (T)

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

λi :0i0#level0checkpoint0
Qme0

λ = λi∑

k
p0 (t + ck)
t0 (t + ck)

k pi (t + ck)
ti (t + ck)

i

k

k i

p0 (rk)

pi (rk)

p0 (rk)
t0 (rk)

ti (rk)

Duration t + ck rk
No failure

Failure

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

t : Interval

: c -level checkpoint time

rc : c -level recovery time
cc

LLNL#PRES#599833#DRAFT0

Overhead0factor:00

210

2 1 1 1 1 2 1 1 1 1

1 1 11 1 1 1

1 1 1 1 1 1

1 1

2

1 1

2

α

k
p0 (t + ck +α ⋅ t)
t0 (t + ck +α ⋅ t)

•  QuanQfy0an0overhead0by0our0proposed0non#blocking0
checkpoinQng0system0

During these
compute states PFS
checkpointing is
running in the
background, inflate
the runtime due to
resource contention

ContenQon0 ContenQon0

LLNL#PRES#599833#DRAFT0

Arbitrary N #0level0checkpoinQng0model

220

10 20 10 10 10

1 1 1 1

10 10 10

2
1 1

10 20 10 10 10

1 1 1 1

10 10 10

2
1 1

10 20 10 10 10

1 1 1 1

10 10 10

2
1 1

10 20 10 10 10

1 1 1 1

10 10 10

2
1 1

10 20 10 10 10

1 1 1 1

10 10 10

2
1 1

10 20 10 10 10

1 1 1 1

10 10 10

2
1 1

2 1 1 1 1 2 1 1 1 1

1 1 11 1 1

1 1 1 1 1 1

1 1

2

1 1

2

Y0(k,0k0–01)0

Z0(k–1,0k)0 Y000(k,0k#1)0

Z0 Y’0

Y0

pZ 0
tZ 0

pY 0
tY 0

R=RL0

pZL
tZL

pYL
tYL

PRY
TRY

PY 0
TY 0

PYR
TYR

α

LLNL#PRES#599833#DRAFT0

Non#blocking0vs.0Blocking0MLC0checkpoinQng0

•  Benchmark:0Himeno0benchmark0
–  Stencil0applicaQon0solving0Poisson’s0equaQon0using0Jacobi0

iteraQon0method00
•  Target2System:00

000TSUBAME2.00Thin0nodes0(14080nodes)0

•  Checkpoint2Level:0Two#level0
–  0Level#1:0XOR0using0local0SSD0
–  0Level#2:0PFS0using0Lustre0

0

1 1 1

2

1

11 1 1 2

Blocking0mulQ#level0checkpoinQng0

Blocking0mulQ#level0checkpoinQng0model0

CPU� Intel0Xeon0X567002.93GHz0(6cores0x020sockets)�

Memory� DDR301333MHz0(58GB)�

Network� Mellanox0Technologie0
Dual0rail0QDR0Infiniband04x0(80Gbps)0�

Local2storage� 120GB0Intel0SSD0(RAID0/60GBx2)�

PFS� Lustre0(/work00)�

230

Source:0A.0Moody,0G.0Bronevetsky,0K.0Mohror,0and0B.0R.0de0Supinski,0
“Design,0Modeling,0and0EvaluaQon0of0a0Scalable0MulQ#level0
CheckpoinQng0System,”0in0Proceedings0of0the020100ACM/IEEE0
InternaQonal0Conference0for0High0Performance0CompuQng,0Networking,0
Storage0and0Analysis0(SC010).0

LLNL#PRES#599833#DRAFT0

Model0Parameters0

•  Failure2rates2
–  01.50years0(Nov01st020100~0Apr06th02012)0

failure0history0

2
•  Checkpoint2size2per2node:029GB0

–  TSUBAME0nodes0memory:058GB2
2
•  XOR2throughput:0400MB/s0

!"

#!!"

$!!!"

$#!!"

%!!!"

!" $!" %!" &!"

!
"#$
%&
$'
"(
)*
'+

)$
&+
%"
&&,
$-
*#
.*
&

.(
/%

&01
23
4%
56
&

7&(8&$'"%-/4&

Figure 9: Write throughputs under varying number
of data write thread

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

!" (!" '!!" '(!" #!!" #(!")!!"

!"
"#
$"
%&
$'
(
#)&
$'
&*
#+
,*

"-
,&
''

./
01
2$
34
'

5'+6'7&%")8"'8+9$2'

Figure 10: Aggregate write throughputs under differ-
ent number of nodes

!"

!#!!$"

!#!%"

!#!%$"

!#!&"

!#!&$"

!#!'"

!" !#$" %" %#$" &" &#$" '"

!
"#
$%
#&
'(
)&
*+
,$
-(.

/)
01
2(

*%#*34,56+($&+#(4#$(7+&8568(6,'#-(1(09:;<#*2(

Figure 11: overhead factor under varying checkpoint
rate

aggregate write throughput with different numbers of staging
nodes all using 16 data writer threads. The result shows
that aggregate write throughput rapidly increases from 1 to
32 staging nodes, but then quickly saturates around 8 GB/s
beyond 32 staging nodes. Based on these results, we choose
32 staging nodes and set the staging server to run with 16
data writer threads as an optimal configuration. Under this
condition, checkpoint data can be transferred to the PFS at
a rate of 6.4 GB/s via 32 staging nodes, which is only 2.3%
of TSUBAME2.0 thin nodes (1408 nodes).

Whenever the staging client and server processes read
checkpoint data from compute nodes in the background, a
measurable amount of overhead is added to the application
runtime due to resource contention, and the degree of this
overhead depends on the read rate. To estimate this over-
head, we transferred checkpoints while running the Himeno
benchmark [14] as a target application. This benchmark
solves Poisson’s equation using the Jacobi iteration method.
The Himeno benchmark is a stencil application in which
each grid point is repeatedly updated using only neighbor
points in a domain. Such a computational pattern frequently
appears in numerical simulation codes for solving partial
differential equations. Many fluid dynamics phenomena can
be described by partial differential equations over multi-
dimensional Cartesian grids, including weather, seismic
waves, heat flow, and electric charge and magnetic field
distribution in a domain.

Figure 11 shows the overhead factor imposed on the
Himeno benchmark while varying the checkpoint read rate
of a staging node. The result shows that the overhead factor
roughly increases linearly with the read rate. Based on the
result, we model the overhead factor (α) of the Himeno
benchmark as α = cx where c is 0.008768, and x represents
the checkpoint read rate of a staging node in units of GB/s.
The parameter c is derived from the slope of the fitting
line in Figure 11. With 32 staging nodes, we calculate
the read rate per staging node to be 209.5 MB/seconds,
which is derived by dividing the aggregate write throughput
when using 32 nodes in Figure 10 by 32, the number of
staging nodes. Thus, the overhead factor model gives us the

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

%" '" (" $)" &%")'" $%("

!"
!#
$%

&'
()
%*
#+,

-$
#./

01
2$
&'
%(

23
#

!"4#*+'56#2)7$#

8#'9#%'($2#

%"*+,-."

'"*+,-."

("*+,-."

$)"*+,-."

&%"*+,-."

)'"*+,-."

$%("*+,-."

Figure 12: XOR encoding performance under varying # of nodes and
XOR group size

overhead factor of 0.00184 (= 0.008768×0.20905). We add
this overhead to the cost of computation in our model when
computing efficiency whenver transferring checkpoint data
in the background.

With the SCR library, an application can adjust a degree
of resiliency by changing the number of processes in each
XOR group used to compute redundancy data. Figure 12
shows encoding throughput for different XOR group sizes.
Resiliency is improved with smaller XOR groups, but at the
cost of decreased XOR encoding throughput. On a XOR
checkpoint, SCR compute a parity of each block in the
same way as RAID-5 [8], [9], and S = B + B

N−1 bytes
of encoded checkpoint data is created from B bytes of
original checkpoint data within N members of a XOR group.
Since the encoding time increase linearly with the encoded
checkpoint data size, S, XOR encoding rate is saturated in
the large XOR group size, N . As we seen in Section III,
most of failures affect just on node. Therefore, we use XOR
checkpoint to handle only failure category 1 in Table I,
and we handle the rest failure category k (k = 2, 3, 4 . . . 5)
failures by a PFS checkpoint. Thus, we set XOR encoding
rate as the saurated maximal rate, 400MB/s.

B. Efficiency comparison
As future systems become larger and have more memory

size, failure rates and checkpoint size are expected to in-

8

XOR encoding performance on TSUBAME2.0 using local SSDs

XO
R0

240

Failure rates (failures/week) on TSUBAME2.0

Compute nodes

Rack

PSU

PFS, Core switch

Edge switch 10.62

Level#1:0XOR0

Level#20:0PFS0

0.2419

0.4031

0.0806 0.1075

Level#10

LLNL#PRES#599833#DRAFT0

Model0Parameters0
•  Failure2rates2

–  01.50years0(Nov01st020100~0Apr06th02012)0
failure0history0

2
•  Checkpoint2size2per2node:029GB0

–  TSUBAME0nodes0memory:058GB2
2
2
•  XOR2throughput:0400MB/s0

!"

#!!"

$!!!"

$#!!"

%!!!"

!" $!" %!" &!"

!
"#$
%&
$'
"(
)*
'+

)$
&+
%"
&&,
$-
*#
.*
&

.(
/%

&01
23
4%
56
&

7&(8&$'"%-/4&

Figure 9: Write throughputs under varying number
of data write thread

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

!" (!" '!!" '(!" #!!" #(!")!!"

!"
"#
$"
%&
$'
(
#)&
$'
&*
#+
,*

"-
,&
''

./
01
2$
34
'

5'+6'7&%")8"'8+9$2'

Figure 10: Aggregate write throughputs under differ-
ent number of nodes

!"

!#!!$"

!#!%"

!#!%$"

!#!&"

!#!&$"

!#!'"

!" !#$" %" %#$" &" &#$" '"

!
"#
$%
#&
'(
)&
*+
,$
-(.

/)
01
2(

*%#*34,56+($&+#(4#$(7+&8568(6,'#-(1(09:;<#*2(

Figure 11: overhead factor under varying checkpoint
rate

aggregate write throughput with different numbers of staging
nodes all using 16 data writer threads. The result shows
that aggregate write throughput rapidly increases from 1 to
32 staging nodes, but then quickly saturates around 8 GB/s
beyond 32 staging nodes. Based on these results, we choose
32 staging nodes and set the staging server to run with 16
data writer threads as an optimal configuration. Under this
condition, checkpoint data can be transferred to the PFS at
a rate of 6.4 GB/s via 32 staging nodes, which is only 2.3%
of TSUBAME2.0 thin nodes (1408 nodes).

Whenever the staging client and server processes read
checkpoint data from compute nodes in the background, a
measurable amount of overhead is added to the application
runtime due to resource contention, and the degree of this
overhead depends on the read rate. To estimate this over-
head, we transferred checkpoints while running the Himeno
benchmark [14] as a target application. This benchmark
solves Poisson’s equation using the Jacobi iteration method.
The Himeno benchmark is a stencil application in which
each grid point is repeatedly updated using only neighbor
points in a domain. Such a computational pattern frequently
appears in numerical simulation codes for solving partial
differential equations. Many fluid dynamics phenomena can
be described by partial differential equations over multi-
dimensional Cartesian grids, including weather, seismic
waves, heat flow, and electric charge and magnetic field
distribution in a domain.

Figure 11 shows the overhead factor imposed on the
Himeno benchmark while varying the checkpoint read rate
of a staging node. The result shows that the overhead factor
roughly increases linearly with the read rate. Based on the
result, we model the overhead factor (α) of the Himeno
benchmark as α = cx where c is 0.008768, and x represents
the checkpoint read rate of a staging node in units of GB/s.
The parameter c is derived from the slope of the fitting
line in Figure 11. With 32 staging nodes, we calculate
the read rate per staging node to be 209.5 MB/seconds,
which is derived by dividing the aggregate write throughput
when using 32 nodes in Figure 10 by 32, the number of
staging nodes. Thus, the overhead factor model gives us the

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

%" '" (" $)" &%")'" $%("

!"
!#
$%

&'
()
%*
#+,

-$
#./

01
2$
&'
%(

23
#

!"4#*+'56#2)7$#

8#'9#%'($2#

%"*+,-."

'"*+,-."

("*+,-."

$)"*+,-."

&%"*+,-."

)'"*+,-."

$%("*+,-."

Figure 12: XOR encoding performance under varying # of nodes and
XOR group size

overhead factor of 0.00184 (= 0.008768×0.20905). We add
this overhead to the cost of computation in our model when
computing efficiency whenver transferring checkpoint data
in the background.

With the SCR library, an application can adjust a degree
of resiliency by changing the number of processes in each
XOR group used to compute redundancy data. Figure 12
shows encoding throughput for different XOR group sizes.
Resiliency is improved with smaller XOR groups, but at the
cost of decreased XOR encoding throughput. On a XOR
checkpoint, SCR compute a parity of each block in the
same way as RAID-5 [8], [9], and S = B + B

N−1 bytes
of encoded checkpoint data is created from B bytes of
original checkpoint data within N members of a XOR group.
Since the encoding time increase linearly with the encoded
checkpoint data size, S, XOR encoding rate is saturated in
the large XOR group size, N . As we seen in Section III,
most of failures affect just on node. Therefore, we use XOR
checkpoint to handle only failure category 1 in Table I,
and we handle the rest failure category k (k = 2, 3, 4 . . . 5)
failures by a PFS checkpoint. Thus, we set XOR encoding
rate as the saurated maximal rate, 400MB/s.

B. Efficiency comparison
As future systems become larger and have more memory

size, failure rates and checkpoint size are expected to in-

8

XOR encoding performance on TSUBAME2.0 using local SSDs

XO
R0

250

Failure rates (failures/second) on
TSUBAME2.0

Compute nodes

Rack

PSU

PFS, Core switch

Edge switch 0.1757 x10-4

Level#1:0XOR0

Level#20:0PFS0

0.3999 x10-6

0.6665 x10-6

0.1332 x10-6 0.1778 x10-6

Level#10

LLNL#PRES#599833#DRAFT0

Staging0node0tuning0for0TSUBAME2.00

•  #2of2Staging2nodes:0320nodes0
–  2.3%0of0TSUBAME2.00thin0nodes0

(14080nodes)0
0

0

!"

#!!"

$!!!"

$#!!"

%!!!"

!" $!" %!" &!"

!
"#$
%&
$'
"(
)*
'+

)$
&+
%"
&&,
$-
*#
.*
&

.(
/%

&01
23
4%
56
&

7&(8&$'"%-/4&

Figure 9: Write throughputs under varying number
of data write thread

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

!" (!" '!!" '(!" #!!" #(!")!!"

!"
"#
$"
%&
$'
(
#)&
$'
&*
#+
,*

"-
,&
''

./
01
2$
34
'

5'+6'7&%")8"'8+9$2'

Figure 10: Aggregate write throughputs under differ-
ent number of nodes

!"

!#!!$"

!#!%"

!#!%$"

!#!&"

!#!&$"

!#!'"

!" !#$" %" %#$" &" &#$" '"

!
"#
$%
#&
'(
)&
*+
,$
-(.

/)
01
2(

*%#*34,56+($&+#(4#$(7+&8568(6,'#-(1(09:;<#*2(

Figure 11: overhead factor under varying checkpoint
rate

aggregate write throughput with different numbers of staging
nodes all using 16 data writer threads. The result shows
that aggregate write throughput rapidly increases from 1 to
32 staging nodes, but then quickly saturates around 8 GB/s
beyond 32 staging nodes. Based on these results, we choose
32 staging nodes and set the staging server to run with 16
data writer threads as an optimal configuration. Under this
condition, checkpoint data can be transferred to the PFS at
a rate of 6.4 GB/s via 32 staging nodes, which is only 2.3%
of TSUBAME2.0 thin nodes (1408 nodes).

Whenever the staging client and server processes read
checkpoint data from compute nodes in the background, a
measurable amount of overhead is added to the application
runtime due to resource contention, and the degree of this
overhead depends on the read rate. To estimate this over-
head, we transferred checkpoints while running the Himeno
benchmark [14] as a target application. This benchmark
solves Poisson’s equation using the Jacobi iteration method.
The Himeno benchmark is a stencil application in which
each grid point is repeatedly updated using only neighbor
points in a domain. Such a computational pattern frequently
appears in numerical simulation codes for solving partial
differential equations. Many fluid dynamics phenomena can
be described by partial differential equations over multi-
dimensional Cartesian grids, including weather, seismic
waves, heat flow, and electric charge and magnetic field
distribution in a domain.

Figure 11 shows the overhead factor imposed on the
Himeno benchmark while varying the checkpoint read rate
of a staging node. The result shows that the overhead factor
roughly increases linearly with the read rate. Based on the
result, we model the overhead factor (α) of the Himeno
benchmark as α = cx where c is 0.008768, and x represents
the checkpoint read rate of a staging node in units of GB/s.
The parameter c is derived from the slope of the fitting
line in Figure 11. With 32 staging nodes, we calculate
the read rate per staging node to be 209.5 MB/seconds,
which is derived by dividing the aggregate write throughput
when using 32 nodes in Figure 10 by 32, the number of
staging nodes. Thus, the overhead factor model gives us the

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

%" '" (" $)" &%")'" $%("

!"
!#
$%

&'
()
%*
#+,

-$
#./

01
2$
&'
%(

23
#

!"4#*+'56#2)7$#

8#'9#%'($2#

%"*+,-."

'"*+,-."

("*+,-."

$)"*+,-."

&%"*+,-."

)'"*+,-."

$%("*+,-."

Figure 12: XOR encoding performance under varying # of nodes and
XOR group size

overhead factor of 0.00184 (= 0.008768×0.20905). We add
this overhead to the cost of computation in our model when
computing efficiency whenver transferring checkpoint data
in the background.

With the SCR library, an application can adjust a degree
of resiliency by changing the number of processes in each
XOR group used to compute redundancy data. Figure 12
shows encoding throughput for different XOR group sizes.
Resiliency is improved with smaller XOR groups, but at the
cost of decreased XOR encoding throughput. On a XOR
checkpoint, SCR compute a parity of each block in the
same way as RAID-5 [8], [9], and S = B + B

N−1 bytes
of encoded checkpoint data is created from B bytes of
original checkpoint data within N members of a XOR group.
Since the encoding time increase linearly with the encoded
checkpoint data size, S, XOR encoding rate is saturated in
the large XOR group size, N . As we seen in Section III,
most of failures affect just on node. Therefore, we use XOR
checkpoint to handle only failure category 1 in Table I,
and we handle the rest failure category k (k = 2, 3, 4 . . . 5)
failures by a PFS checkpoint. Thus, we set XOR encoding
rate as the saurated maximal rate, 400MB/s.

B. Efficiency comparison
As future systems become larger and have more memory

size, failure rates and checkpoint size are expected to in-

8

3200

6.7GB/sec0

PFS throughput with different staging nodes

260

•  PFS2throughput:006.7GB/seconds0
–  0209.50MB/seconds*0per0Staging0node0

*06.7(GB/s)0/032(nodes)0=0209.500

0

0

Level#200

LLNL#PRES#599833#DRAFT0

Overhead0factor0
•  Overhead2factor:000.001840(0.184%)0

–  For0Himeno0bechmark�0
0

0

!"

#!!"

$!!!"

$#!!"

%!!!"

!" $!" %!" &!"

!
"#$
%&
$'
"(
)*
'+

)$
&+
%"
&&,
$-
*#
.*
&

.(
/%

&01
23
4%
56
&

7&(8&$'"%-/4&

Figure 9: Write throughputs under varying number
of data write thread

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

!" (!" '!!" '(!" #!!" #(!")!!"

!"
"#
$"
%&
$'
(
#)&
$'
&*
#+
,*

"-
,&
''

./
01
2$
34
'

5'+6'7&%")8"'8+9$2'

Figure 10: Aggregate write throughputs under differ-
ent number of nodes

!"

!#!!$"

!#!%"

!#!%$"

!#!&"

!#!&$"

!#!'"

!" !#$" %" %#$" &" &#$" '"

!
"#
$%
#&
'(
)&
*+
,$
-(.

/)
01
2(

*%#*34,56+($&+#(4#$(7+&8568(6,'#-(1(09:;<#*2(

Figure 11: overhead factor under varying checkpoint
rate

aggregate write throughput with different numbers of staging
nodes all using 16 data writer threads. The result shows
that aggregate write throughput rapidly increases from 1 to
32 staging nodes, but then quickly saturates around 8 GB/s
beyond 32 staging nodes. Based on these results, we choose
32 staging nodes and set the staging server to run with 16
data writer threads as an optimal configuration. Under this
condition, checkpoint data can be transferred to the PFS at
a rate of 6.4 GB/s via 32 staging nodes, which is only 2.3%
of TSUBAME2.0 thin nodes (1408 nodes).

Whenever the staging client and server processes read
checkpoint data from compute nodes in the background, a
measurable amount of overhead is added to the application
runtime due to resource contention, and the degree of this
overhead depends on the read rate. To estimate this over-
head, we transferred checkpoints while running the Himeno
benchmark [14] as a target application. This benchmark
solves Poisson’s equation using the Jacobi iteration method.
The Himeno benchmark is a stencil application in which
each grid point is repeatedly updated using only neighbor
points in a domain. Such a computational pattern frequently
appears in numerical simulation codes for solving partial
differential equations. Many fluid dynamics phenomena can
be described by partial differential equations over multi-
dimensional Cartesian grids, including weather, seismic
waves, heat flow, and electric charge and magnetic field
distribution in a domain.

Figure 11 shows the overhead factor imposed on the
Himeno benchmark while varying the checkpoint read rate
of a staging node. The result shows that the overhead factor
roughly increases linearly with the read rate. Based on the
result, we model the overhead factor (α) of the Himeno
benchmark as α = cx where c is 0.008768, and x represents
the checkpoint read rate of a staging node in units of GB/s.
The parameter c is derived from the slope of the fitting
line in Figure 11. With 32 staging nodes, we calculate
the read rate per staging node to be 209.5 MB/seconds,
which is derived by dividing the aggregate write throughput
when using 32 nodes in Figure 10 by 32, the number of
staging nodes. Thus, the overhead factor model gives us the

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

%" '" (" $)" &%")'" $%("

!"
!#
$%

&'
()
%*
#+,

-$
#./

01
2$
&'
%(

23
#

!"4#*+'56#2)7$#

8#'9#%'($2#

%"*+,-."

'"*+,-."

("*+,-."

$)"*+,-."

&%"*+,-."

)'"*+,-."

$%("*+,-."

Figure 12: XOR encoding performance under varying # of nodes and
XOR group size

overhead factor of 0.00184 (= 0.008768×0.20905). We add
this overhead to the cost of computation in our model when
computing efficiency whenver transferring checkpoint data
in the background.

With the SCR library, an application can adjust a degree
of resiliency by changing the number of processes in each
XOR group used to compute redundancy data. Figure 12
shows encoding throughput for different XOR group sizes.
Resiliency is improved with smaller XOR groups, but at the
cost of decreased XOR encoding throughput. On a XOR
checkpoint, SCR compute a parity of each block in the
same way as RAID-5 [8], [9], and S = B + B

N−1 bytes
of encoded checkpoint data is created from B bytes of
original checkpoint data within N members of a XOR group.
Since the encoding time increase linearly with the encoded
checkpoint data size, S, XOR encoding rate is saturated in
the large XOR group size, N . As we seen in Section III,
most of failures affect just on node. Therefore, we use XOR
checkpoint to handle only failure category 1 in Table I,
and we handle the rest failure category k (k = 2, 3, 4 . . . 5)
failures by a PFS checkpoint. Thus, we set XOR encoding
rate as the saurated maximal rate, 400MB/s.

B. Efficiency comparison
As future systems become larger and have more memory

size, failure rates and checkpoint size are expected to in-

8

Overhead factor (Himeno benchmark)

209.50MB/sec0

0.001840

270

RDMA0�0No0CPU0cycle,0No0redundant0memcpy0
RDMA0read0speed0�0209.5MB/s0<0Network0&0Memory0bandwidth0

LLNL#PRES#599833#DRAFT0

Efficiency:0Non#blocking0vs.0blocking00

280

Efficiency = ideal runtime
expected runtime

expected runtime
ideal runtime :00No0failure0and0No0checkpoint0

Computed0by0the0models0:

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./0123"2.43"5$"" -./0123"2.43"5%" -./0123"2.43"5$!"

67
8/
39

8:
" ;-<"8=>4"5$"?"@=9AB0=8C/9D"

;-<"8=>4"5$"?"E0=8C/9D"

;-<"8=>4"5%"?"@=9AB0=8C/9D"

;-<"8=>4"5%"?"E0=8C/9D"

;-<"8=>4"5$!"?"@=9AB0=8C/9D"

;-<"8=>4"5$!"?"E0=8C/9D"

Figure 13: Efficiency comparison: Blocking vs. Non-blocking check-
pointing

crease. To explore the effects, we increase failure rates and
checkpoint costs by factors of 1, 2, and 10, and compare
efficiency between both a blocking checkpointing and a non-
blocking one. As for checkpoint size per compute node,
we employ 29GB, which is just a half of memory size
of TSUBAME2.0 thin nodes. As show in Figure 12, a
XOR encoding rate is constant regardless of the number
of compute nodes, which means XOR encoding scales with
system size. Thus, when we increase checkpoint costs, we
increase only PFS checkpoint cost.

Figure 13 shows that efficiency of both checkpointing
methods under different failure rates and checkpoint costs.
We define the efficiency as ideal time

expected time . Here, ideal time is
the runtime assuming the application encounters no failures
and take no checkpoints, while expected time is the ex-
pected runtime computed from our model for a non-blocking
method and an existing model [4] for a blocking one.
When we compute the efficiency, we optimize (1) Level 1
counts between Level 2 checkpoints, and (2) the interval
between checkpoints, given failure rates and checkpoint
costs. The efficiency can be maximal efficiency. We found
that the non-blocking method achieves higher efficiency than
a blocking method in any cases. Especially, the efficiency
gap become more apparent in higher failure rate and higher
checkpoint cost because longer PFS checkpoint time on a
blocking checkpointing is easy to encounter a lower level
failure during the PFS checkpoint, and rollback to the
beginning, while a non-blocking method can rollback to
the recent XOR checkpoint. Moreover, since overhead of a
blocking checkpoint is identical to checkpoint latency, which
is directlly added to an application runtime, the efficiency
become lower than a non-blocking checkpointing.

Because a non-blocking checkpointing overlaps with an
application computation, the checkpointing method can
imapct the application runtime depending on overhead fac-
tor, α. If the overhead factor becomes larger, our non-
blocking checkpointing can introduce lower efficiency than
a blocking checkpointing. Figure 14 shows efficiency of
systems with increasing overhead rate in different failure

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" !#%" !#'" !#)" !#+" $"

!"
#$
%&

#'
(

)*%+,%-.(+-/%(012((

-.$/"0.$/"12345678"

-.$/"0.$/"937:;2345678"

-.%/"0.%/"12345678"

-.%/"0.%/"937:;2345678"

-.%/"0.$!/"12345678"

-.%/"0.$!/"937:;2345678"

-.$!/"0.%/"12345678"

-.$!/"0.%/"937:;2345678"

Figure 14: Efficiency under varying the overhead factor: α

!"
#!"
$!"
%!"
&!"
'!"
(!"
)!"
*!"
+!"
#!!"

!" $" &" (" *" #!" #$" #&" #("

!"
#$

%&"
'(
)*
+(
,-
&.
$/
-0

$,
(12

34
5"
67
(

+689"(:86,.&(.:(:8%9$&"(&8,"((

,-./01-234.56+!78"
,-./01-234.56*!78"
,-./01-234.56)!78"
01-234.5"6+!78"
01-234.5"6*!78"
01-24.56)!78"

Figure 15: Required PFS throughput at different failure rates

rates factor and PFS checkpoint cost factor. We found that a
blocking checkpointing can become more efficient than our
non-blocking with larger overhead factor in current failure
rates and cost. However, in future systems where the failure
rates and cost become larger, a non-blocking checkpointing
can be effective even with large overhead factor. In large
failure rate and checkpoint cost factors, checkpoint interval
become short and the overhead dominate to the overall
runtime. Especially, since an application is blocked with a
blocking checkpointing, the checkpiont latency impacts an
application runtime rather than a non-blocking one in future
systems.

C. Building an efficient and resilient system

When building a reliable data center or supercomputer,
two major concerns are cost of the PFS and how much
throughput a PFS should have to maintain high efficiency.
Generally, we want to minimize cost, but not sacrifice
performance. Using our model, we can predict the required
PFS bandwidth for achieving high system efficiency when
using our checkpointing system.

Figure 15 presents the required PFS bandwidth to main-
tain 90%, 80%, and 70% efficiency under increasing failure

9

x1.10 x1.20

x1.80

x1.10 x1.30

x1.80

One0TSUBAME2.00node0MTBF:002.570years0
0000000000000000000000000000000000000#0of0Nodes:014080nodes0

x100scale#out0 No0computaQon0
progresses0!!0

0"

500"

1000"

1500"

2000"

0" 10" 20" 30"

w
rit
e&
th
ro
ug
hp

ut
&p
er
&&S
ta
gi
ng
&

no
de

&(M
B/
se
c)
&

#&of&threads&

Fig. 9: Impact of varying data writer count

0"

2000"

4000"

6000"

8000"

10000"

0" 50" 100" 150" 200" 250" 300"

Ag
gr
eg
at
e'
w
rit
e'
th
ro
ug
hp

ut
'

(M
B/
se
c)
'

#'of'Staging'nodes'

Fig. 10: Aggregate write throughputs

0"

0.005"

0.01"

0.015"

0.02"

0.025"

0.03"

0" 0.5" 1" 1.5" 2" 2.5" 3"

O
ve
rh
ea
d(
fa
ct
or
:(α

=f
(x
)(

checkpoint(rate(per(Staging(node:(x((GB/sec)(

Fig. 11: Empirical overhead factor

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

2" 4" 8" 16" 32" 64" 128"

XO
X#
en

co
di
ng
#ra

te
#(M

B/
se
co
nd

s)
#

XOR#group#size#

##of#nodes#

2"nodes"

4"nodes"

8"nodes"

16"nodes"

32"nodes"

64"nodes"

128"nodes"

Fig. 12: XOR encoding performance per node

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

Failure"rate"x1"" Failure"rate"x2" Failure"rate"x10"

Effi
ci
en

cy
"

PFS"cost"x1"/"NonAblocking"

PFS"cost"x1"/"Blocking"

PFS"cost"x2"/"NonAblocking"

PFS"cost"x2"/"Blocking"

PFS"cost"x10"/"NonAblocking"

PFS"cost"x10"/"Blocking"

Fig. 13: Efficiency of blocking and non-blocking checkpointing

scales with system size. Thus, when we increase checkpoint
costs, we increase only PFS checkpoint cost.

Figure 13 shows the efficiency of both checkpointing meth-
ods under different failure rates and checkpoint costs. We
define the efficiency as ideal time

expected time . The ideal time is the
run time if the application encounters no failures and takes
no checkpoints, while expected time is the expected run time
computed from our model for non-blocking checkpointing
and the original model [4] for blocking checkpointing. When
we compute efficiency, we optimize Level 1 counts between
Level 2 checkpoints, and the interval between checkpoints,
given failure rates and checkpoint costs, which yields the
maximal efficiency. The non-blocking method always achieves
higher efficiency than the blocking method. The efficiency gap

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.2" 0.4" 0.6" 0.8" 1"

Effi
ci
en

cy
(

Overhead(rate((α)((

Fx1,"Cx1,"Non4blocking"

Fx1,"Cx1,"Blocking"

Fx2,"Cx2,"Non4blocking"

Fx2,"Cx2,"Blocking"

Fx2,"Cx10,"Non4blocking"

Fx2,"Cx10,"Blocking"

Fx10,"Cx2,"Non4blocking"

Fx10,"Cx2,"Blocking"

Fig. 14: Efficiency under varying the overhead factor: α

becomes more apparent with higher failure rates and higher
checkpoint cost. This is because the long time to take a
PFS checkpoint during blocking checkpointing increases the
likelihood of a lower level failure occuring during the PFS
checkpoint, so the application must rollback to the beginning.
However, with non-blocking checkpointing, the application
can rollback to the most recent XOR checkpoint. Further, since
overhead of a blocking checkpoint is identical to checkpoint
latency, which is directly added to application run time, the
efficiency decreases more quickly than with non-blocking
checkpointing.

Since staging nodes write checkpoints to the PFS indepen-
dently of compute node activities, they can throttle their write
rate without reducing application performance. We found that
we could read checkpoints from compute nodes at half of the
maximum bandwidth (i.e., PFS cost ×2), but still maintain
90% efficiency with current failure rates.

Because a non-blocking checkpoint overlaps with appli-
cation computation, non-blocking checkpointing can impact
the application run time depending on the overhead factor,
α, in different applications. If the overhead factor increases
enough, our non-blocking checkpointing could be less efficient
than blocking checkpointing. Figure 14 shows efficiency with
increasing overhead factor and different failure rates and PFS
checkpoint costs. F and C denote the base failure rate and PFS
checkpoint cost. Blocking checkpointing can become more
efficient than non-blocking with a larger overhead factor at cur-
rent failure rates and cost. However, in future systems where

8

The0non#blocking0method0always0achieves0higher0efficiency0than0the0blocking0method0

LLNL#PRES#599833#DRAFT0

Overhead0factor:0Non#blocking0vs.0
Blocking0

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./0123"2.43"5$"" -./0123"2.43"5%" -./0123"2.43"5$!"

67
8/
39

8:
"

;-<"8=>4"5$"?"@=9AB0=8C/9D"

;-<"8=>4"5$"?"E0=8C/9D"

;-<"8=>4"5%"?"@=9AB0=8C/9D"

;-<"8=>4"5%"?"E0=8C/9D"

;-<"8=>4"5$!"?"@=9AB0=8C/9D"

;-<"8=>4"5$!"?"E0=8C/9D"

Figure 13: Efficiency comparison: Blocking vs. Non-blocking check-
pointing

crease. To explore the effects, we increase failure rates and
checkpoint costs by factors of 1, 2, and 10, and compare
efficiency between both a blocking checkpointing and a non-
blocking one. As for checkpoint size per compute node,
we employ 29GB, which is just a half of memory size
of TSUBAME2.0 thin nodes. As show in Figure 12, a
XOR encoding rate is constant regardless of the number
of compute nodes, which means XOR encoding scales with
system size. Thus, when we increase checkpoint costs, we
increase only PFS checkpoint cost.

Figure 13 shows that efficiency of both checkpointing
methods under different failure rates and checkpoint costs.
We define the efficiency as ideal time

expected time . Here, ideal time is
the runtime assuming the application encounters no failures
and take no checkpoints, while expected time is the ex-
pected runtime computed from our model for a non-blocking
method and an existing model [4] for a blocking one.
When we compute the efficiency, we optimize (1) Level 1
counts between Level 2 checkpoints, and (2) the interval
between checkpoints, given failure rates and checkpoint
costs. The efficiency can be maximal efficiency. We found
that the non-blocking method achieves higher efficiency than
a blocking method in any cases. Especially, the efficiency
gap become more apparent in higher failure rate and higher
checkpoint cost because longer PFS checkpoint time on a
blocking checkpointing is easy to encounter a lower level
failure during the PFS checkpoint, and rollback to the
beginning, while a non-blocking method can rollback to
the recent XOR checkpoint. Moreover, since overhead of a
blocking checkpoint is identical to checkpoint latency, which
is directlly added to an application runtime, the efficiency
become lower than a non-blocking checkpointing.

Because a non-blocking checkpointing overlaps with an
application computation, the checkpointing method can
imapct the application runtime depending on overhead fac-
tor, α. If the overhead factor becomes larger, our non-
blocking checkpointing can introduce lower efficiency than
a blocking checkpointing. Figure 14 shows efficiency of
systems with increasing overhead rate in different failure

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" !#%" !#'" !#)" !#+" $"

!"
#$
%&

#'
(

)*%+,%-.(+-/%(012((

-.$/"0.$/"12345678"

-.$/"0.$/"937:;2345678"

-.%/"0.%/"12345678"

-.%/"0.%/"937:;2345678"

-.%/"0.$!/"12345678"

-.%/"0.$!/"937:;2345678"

-.$!/"0.%/"12345678"

-.$!/"0.%/"937:;2345678"

Figure 14: Efficiency under varying the overhead factor: α

!"
#!"
$!"
%!"
&!"
'!"
(!"
)!"
*!"
+!"
#!!"

!" $" &" (" *" #!" #$" #&" #("

!"
#$

%&"
'(
)*
+(
,-
&.
$/
-0

$,
(12

34
5"
67
(

+689"(:86,.&(.:(:8%9$&"(&8,"((

,-./01-234.56+!78"
,-./01-234.56*!78"
,-./01-234.56)!78"
01-234.5"6+!78"
01-234.5"6*!78"
01-24.56)!78"

Figure 15: Required PFS throughput at different failure rates

rates factor and PFS checkpoint cost factor. We found that a
blocking checkpointing can become more efficient than our
non-blocking with larger overhead factor in current failure
rates and cost. However, in future systems where the failure
rates and cost become larger, a non-blocking checkpointing
can be effective even with large overhead factor. In large
failure rate and checkpoint cost factors, checkpoint interval
become short and the overhead dominate to the overall
runtime. Especially, since an application is blocked with a
blocking checkpointing, the checkpiont latency impacts an
application runtime rather than a non-blocking one in future
systems.

C. Building an efficient and resilient system

When building a reliable data center or supercomputer,
two major concerns are cost of the PFS and how much
throughput a PFS should have to maintain high efficiency.
Generally, we want to minimize cost, but not sacrifice
performance. Using our model, we can predict the required
PFS bandwidth for achieving high system efficiency when
using our checkpointing system.

Figure 15 presents the required PFS bandwidth to main-
tain 90%, 80%, and 70% efficiency under increasing failure

9

290

F:0Failure0rate,0C:0PFS0cost0Sy
st
em

0sc
al
e#
ou

t0

Blocking0Non#blocking0

Himeno0
benchmark0 Overhead0factor0(α)0

0"

500"

1000"

1500"

2000"

0" 10" 20" 30"

w
rit
e&
th
ro
ug
hp

ut
&p
er
&&S
ta
gi
ng
&

no
de

&(M
B/
se
c)
&

#&of&threads&

Fig. 9: Impact of varying data writer count

0"

2000"

4000"

6000"

8000"

10000"

0" 50" 100" 150" 200" 250" 300"

Ag
gr
eg
at
e'
w
rit
e'
th
ro
ug
hp

ut
'

(M
B/
se
c)
'

#'of'Staging'nodes'

Fig. 10: Aggregate write throughputs

0"

0.005"

0.01"

0.015"

0.02"

0.025"

0.03"

0" 0.5" 1" 1.5" 2" 2.5" 3"

O
ve
rh
ea
d(
fa
ct
or
:(α

=f
(x
)(

checkpoint(rate(per(Staging(node:(x((GB/sec)(

Fig. 11: Empirical overhead factor

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

2" 4" 8" 16" 32" 64" 128"

XO
X#
en

co
di
ng
#ra

te
#(M

B/
se
co
nd

s)
#

XOR#group#size#

##of#nodes#

2"nodes"

4"nodes"

8"nodes"

16"nodes"

32"nodes"

64"nodes"

128"nodes"

Fig. 12: XOR encoding performance per node

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

Failure"rate"x1"" Failure"rate"x2" Failure"rate"x10"

Effi
ci
en

cy
"

PFS"cost"x1"/"NonAblocking"

PFS"cost"x1"/"Blocking"

PFS"cost"x2"/"NonAblocking"

PFS"cost"x2"/"Blocking"

PFS"cost"x10"/"NonAblocking"

PFS"cost"x10"/"Blocking"

Fig. 13: Efficiency of blocking and non-blocking checkpointing

scales with system size. Thus, when we increase checkpoint
costs, we increase only PFS checkpoint cost.

Figure 13 shows the efficiency of both checkpointing meth-
ods under different failure rates and checkpoint costs. We
define the efficiency as ideal time

expected time . The ideal time is the
run time if the application encounters no failures and takes
no checkpoints, while expected time is the expected run time
computed from our model for non-blocking checkpointing
and the original model [4] for blocking checkpointing. When
we compute efficiency, we optimize Level 1 counts between
Level 2 checkpoints, and the interval between checkpoints,
given failure rates and checkpoint costs, which yields the
maximal efficiency. The non-blocking method always achieves
higher efficiency than the blocking method. The efficiency gap

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.2" 0.4" 0.6" 0.8" 1"

Effi
ci
en

cy
(

Overhead(rate((α)((

Fx1,"Cx1,"Non4blocking"

Fx1,"Cx1,"Blocking"

Fx2,"Cx2,"Non4blocking"

Fx2,"Cx2,"Blocking"

Fx2,"Cx10,"Non4blocking"

Fx2,"Cx10,"Blocking"

Fx10,"Cx2,"Non4blocking"

Fx10,"Cx2,"Blocking"

Fig. 14: Efficiency under varying the overhead factor: α

becomes more apparent with higher failure rates and higher
checkpoint cost. This is because the long time to take a
PFS checkpoint during blocking checkpointing increases the
likelihood of a lower level failure occuring during the PFS
checkpoint, so the application must rollback to the beginning.
However, with non-blocking checkpointing, the application
can rollback to the most recent XOR checkpoint. Further, since
overhead of a blocking checkpoint is identical to checkpoint
latency, which is directly added to application run time, the
efficiency decreases more quickly than with non-blocking
checkpointing.

Since staging nodes write checkpoints to the PFS indepen-
dently of compute node activities, they can throttle their write
rate without reducing application performance. We found that
we could read checkpoints from compute nodes at half of the
maximum bandwidth (i.e., PFS cost ×2), but still maintain
90% efficiency with current failure rates.

Because a non-blocking checkpoint overlaps with appli-
cation computation, non-blocking checkpointing can impact
the application run time depending on the overhead factor,
α, in different applications. If the overhead factor increases
enough, our non-blocking checkpointing could be less efficient
than blocking checkpointing. Figure 14 shows efficiency with
increasing overhead factor and different failure rates and PFS
checkpoint costs. F and C denote the base failure rate and PFS
checkpoint cost. Blocking checkpointing can become more
efficient than non-blocking with a larger overhead factor at cur-
rent failure rates and cost. However, in future systems where

8

If0overhead0factor0is0over00.2,0blocking0
checkpoinQng0can0become0more0
efficient0in0current0system0

In0future0systems0where0the0failure0rates0and0cost0
increase,0non#blocking0checkpoinQng0can0be0effecQve0
even0with0a0large0overhead0factor.00
0=>0Blocking0checkpoint0overhead0dominate0the0
runQme0more0than0overhead0factor0by0non#blocking0

Other0applicaQons0case0whose0
overhead0factor0becomes0bigger0

290

LLNL#PRES#599833#DRAFT0

!"
#!"
$!"
%!"
&!"
'!"
(!"
)!"
*!"
+!"

#!!"

!" $" &" (" *" #!" #$" #&" #("

!"
#$

%&"
'(
)*
+(
,-
&.
$/
-0

$,
(12

34
5"
67
(

+689"(:86,.&(.:(:8%9$&"(&8,"((

,-./01-234.56+!78"
,-./01-234.56*!78"
,-./01-234.56)!78"
01-234.5"6+!78"
01-234.5"6*!78"
01-24.56)!78"

Fig. 15: Required PFS throughput at different failure rates

in future systems. As for different systems, we observed that
three clusters at LLNL show similar failure rates [4], where
system failures can be recovered from level 1 checkpoints
and frequent level 2 checkpoints are not required. Thus, non-
blocking checkpointing would benefit other systems.

C. Building an Efficient and Resilient System
When building a reliable data center or supercomputer, two

major concerns are cost of the PFS and the PFS throughput
required to maintain high efficiency. Generally, we want to
minimize cost, but not sacrifice performance. Using our model,
we can predict the required PFS bandwidth to achieve high
system efficiency when using our checkpointing system.

Figure 15 shows the PFS bandwidth required to maintain
90%, 80%, and 70% efficiency under increasing failure rates.
The failure rates are scaled from 1× up to 16× today’s rates.
Because blocking checkpointing requires extremely high PFS
bandwidth to achieve 90% efficiency, we omit that line from
the figure. Alternatively, our non-blocking checkpointing sys-
tem achieves 90% efficiency with a mere 10GB/s bandwidth
for failure rates up to 4× today’s rates.

Overall, our checkpointing system outperforms blocking
checkpointing. However, at 90% efficiency, the bandwidth
requirement rises sharply with failure rates larger than 5×
because the time for L1 checkpoints begins to dominate appli-
cation run time due to shortened optimal checkpoint intervals.
Here, increased PFS bandwidth cannot increase efficiency.
However, we found that current levels of PFS throughput are
adequate for maintaining 80% and 70% efficiency.

With blocking checkpointing, systems require higher PFS
throughput to minimize the risk of failure during a PFS
checkpoint. Further, blocking checkpointing uses the PFS
only when taking a PFS checkpointing, which means the
PFS underutilized during most of the application run. With
our checkpointing system, we not only hide PFS checkpoint
overhead, but use PFS throughout application execution.

VII. RELATED WORK

Multi-level checkpointing [4], [5] is a promising technique
for fault-tolerant execution. Moody et al. [4] modeled a multi-

level checkpointing system and optimized the checkpoint
frequency based on collected failure rates and checkpointing
costs. We extend their model in this work. Bautista-Gomez et
al. [5] proposed multi-level checkpointing using local SSDs
and a PFS. They use Reed-Solomon (RS) encoding for highly
resilient cached checkpoints to reduce PFS usage. Generally,
PFS usage is costly when compared to local storage, and
the PFS is accessed less often in multi-level checkpointing.
However, increasing failure rates require checkpoints to a PFS
more frequently. Thus, even with multi-level checkpointing,
checkpointing to a PFS is crucial for future systems.

Asynchronous I/O has long been used to hide I/O bottle-
necks [11], [15]–[17]. These techniques enable applications to
parallelize I/O with computation to increase CPU utilization
and to enhance I/O performance. Patrick et al. [15] pre-
sented a comprehensive study of different techniques of over-
lapping I/O, communication, and computation, and showed
the performance benefits of asynchronous I/O. Nawab et
al. [16] asynchronously transfer multiple striped TCP data
streams to increase I/O performance in Grid environments.
An asynchronous staging service using RDMA proposed by
Hasan et al. [11] is the closest research to ours. The authors
achieved high I/O throughput by using additional nodes. As
we observed, optimizing performance requires determination
of the proper number of staging nodes for a given number
of compute nodes. However, the comprehensive study on the
problem is not shown nor do they present their solution. To
deal with bursty I/O requests, Liu et al. [17] proposed a storage
system design that integrates SSD buffers on I/O nodes. The
system achieved high aggregate I/O bandwidth. As Figure 14
showed, if we apply asynchronous I/O to checkpointing, we
must consider the interference with the running application,
i.e., the overhead factor, to acheive high system efficiency.

Optimization of checkpoint interval is critical, because
checkpointing is an expensive operation. Several optimization
techniques have been studied. Young [18] proposed a method
to determine the optimal checkpoint interval for single-level,
blocking checkpoints. Vaidya extended the model to support
non-blocking checkpoints, called fork checkpoint [19] , and
two-level checkpoints [20]. Vaidya also combined both meth-
ods to support a two-level non-blocking checkpoint system to
achieve higher efficiency [21]. Vaidya’s model assumes that
at most one fast-level checkpoint is taken between each slow-
level checkpoint. However, in current multi-level checkpoint-
ing systems, the fastest checkpoints, which are often saved
to node-local storage, are orders of magnitude faster than the
slowest checkpoints saved to the PFS. To account for this, we
extend prior work to model an arbitrary number of node-local
checkpoints between consecutive PFS checkpoints.

VIII. CONCLUSION

We have designed and modeled a non-blocking checkpoint-
ing system that extends an existing multi-level checkpointing
system. Our non-blocking checkpointing system enables ap-
plications to save checkpoints to fast, scalable storage located
on the compute nodes and then continue with their execution

9

For080%0and070%0efficiency,0
non#blocking0conQnue0to0scale0
out0well0even0for0machines0
whose0failure0rates0are0over0an0
order0of0magnitude0worse0than0
today0

Blocking0checkpoint0requires0extremely0high0
PFS0performance0to0achieve090%0efficiency.0

Required0PFS0performance0to0meet0given0
applicaQon0efficiency0

300

Current0PFS00
performance0range0

When0building0a0reliable0data0center0or0supercomputer,0two0major0concerns0are0
monetary0cost0of0the0PFS0and0the0PFS0throughput0required0to0maintain0high0efficiency0…0
0000000=>0predict0required0PFS0performance0with0the0models0

Current0failure0rate0

!"
#!"
$!"
%!"
&!"
'!"
(!"
)!"
*!"
+!"

#!!"

!" $" &" (" *" #!" #$" #&" #("

!"
#$

%&"
'(
)*
+(
,-
&.
$/
-0

$,
(12

34
5"
67
(

+689"(:86,.&(.:(:8%9$&"(&8,"((

,-./01-234.56+!78"
,-./01-234.56*!78"
,-./01-234.56)!78"
01-234.5"6+!78"
01-234.5"6*!78"
01-24.56)!78"

Fig. 15: Required PFS throughput at different failure rates

in future systems. As for different systems, we observed that
three clusters at LLNL show similar failure rates [4], where
system failures can be recovered from level 1 checkpoints
and frequent level 2 checkpoints are not required. Thus, non-
blocking checkpointing would benefit other systems.

C. Building an Efficient and Resilient System
When building a reliable data center or supercomputer, two

major concerns are cost of the PFS and the PFS throughput
required to maintain high efficiency. Generally, we want to
minimize cost, but not sacrifice performance. Using our model,
we can predict the required PFS bandwidth to achieve high
system efficiency when using our checkpointing system.

Figure 15 shows the PFS bandwidth required to maintain
90%, 80%, and 70% efficiency under increasing failure rates.
The failure rates are scaled from 1× up to 16× today’s rates.
Because blocking checkpointing requires extremely high PFS
bandwidth to achieve 90% efficiency, we omit that line from
the figure. Alternatively, our non-blocking checkpointing sys-
tem achieves 90% efficiency with a mere 10GB/s bandwidth
for failure rates up to 4× today’s rates.

Overall, our checkpointing system outperforms blocking
checkpointing. However, at 90% efficiency, the bandwidth
requirement rises sharply with failure rates larger than 5×
because the time for L1 checkpoints begins to dominate appli-
cation run time due to shortened optimal checkpoint intervals.
Here, increased PFS bandwidth cannot increase efficiency.
However, we found that current levels of PFS throughput are
adequate for maintaining 80% and 70% efficiency.

With blocking checkpointing, systems require higher PFS
throughput to minimize the risk of failure during a PFS
checkpoint. Further, blocking checkpointing uses the PFS
only when taking a PFS checkpointing, which means the
PFS underutilized during most of the application run. With
our checkpointing system, we not only hide PFS checkpoint
overhead, but use PFS throughout application execution.

VII. RELATED WORK

Multi-level checkpointing [4], [5] is a promising technique
for fault-tolerant execution. Moody et al. [4] modeled a multi-

level checkpointing system and optimized the checkpoint
frequency based on collected failure rates and checkpointing
costs. We extend their model in this work. Bautista-Gomez et
al. [5] proposed multi-level checkpointing using local SSDs
and a PFS. They use Reed-Solomon (RS) encoding for highly
resilient cached checkpoints to reduce PFS usage. Generally,
PFS usage is costly when compared to local storage, and
the PFS is accessed less often in multi-level checkpointing.
However, increasing failure rates require checkpoints to a PFS
more frequently. Thus, even with multi-level checkpointing,
checkpointing to a PFS is crucial for future systems.

Asynchronous I/O has long been used to hide I/O bottle-
necks [11], [15]–[17]. These techniques enable applications to
parallelize I/O with computation to increase CPU utilization
and to enhance I/O performance. Patrick et al. [15] pre-
sented a comprehensive study of different techniques of over-
lapping I/O, communication, and computation, and showed
the performance benefits of asynchronous I/O. Nawab et
al. [16] asynchronously transfer multiple striped TCP data
streams to increase I/O performance in Grid environments.
An asynchronous staging service using RDMA proposed by
Hasan et al. [11] is the closest research to ours. The authors
achieved high I/O throughput by using additional nodes. As
we observed, optimizing performance requires determination
of the proper number of staging nodes for a given number
of compute nodes. However, the comprehensive study on the
problem is not shown nor do they present their solution. To
deal with bursty I/O requests, Liu et al. [17] proposed a storage
system design that integrates SSD buffers on I/O nodes. The
system achieved high aggregate I/O bandwidth. As Figure 14
showed, if we apply asynchronous I/O to checkpointing, we
must consider the interference with the running application,
i.e., the overhead factor, to acheive high system efficiency.

Optimization of checkpoint interval is critical, because
checkpointing is an expensive operation. Several optimization
techniques have been studied. Young [18] proposed a method
to determine the optimal checkpoint interval for single-level,
blocking checkpoints. Vaidya extended the model to support
non-blocking checkpoints, called fork checkpoint [19] , and
two-level checkpoints [20]. Vaidya also combined both meth-
ods to support a two-level non-blocking checkpoint system to
achieve higher efficiency [21]. Vaidya’s model assumes that
at most one fast-level checkpoint is taken between each slow-
level checkpoint. However, in current multi-level checkpoint-
ing systems, the fastest checkpoints, which are often saved
to node-local storage, are orders of magnitude faster than the
slowest checkpoints saved to the PFS. To account for this, we
extend prior work to model an arbitrary number of node-local
checkpoints between consecutive PFS checkpoints.

VIII. CONCLUSION

We have designed and modeled a non-blocking checkpoint-
ing system that extends an existing multi-level checkpointing
system. Our non-blocking checkpointing system enables ap-
plications to save checkpoints to fast, scalable storage located
on the compute nodes and then continue with their execution

9

!"
#!"
$!"
%!"
&!"
'!"
(!"
)!"
*!"
+!"

#!!"

!" $" &" (" *" #!" #$" #&" #("

!
"#

$%
&"
'(
)*
+(
,-
&.
$/
-0

$,
(12

3
45
"6
7(

+689"(:86,.&(.:(:8%9$&"(&8,"((

,-./01-234.56+!78"
,-./01-234.56*!78"
,-./01-234.56)!78"
01-234.5"6+!78"
01-234.5"6*!78"
01-24.56)!78"

Fig. 15: Required PFS throughput at different failure rates

in future systems. As for different systems, we observed that
three clusters at LLNL show similar failure rates [4], where
system failures can be recovered from level 1 checkpoints
and frequent level 2 checkpoints are not required. Thus, non-
blocking checkpointing would benefit other systems.

C. Building an Efficient and Resilient System
When building a reliable data center or supercomputer, two

major concerns are cost of the PFS and the PFS throughput
required to maintain high efficiency. Generally, we want to
minimize cost, but not sacrifice performance. Using our model,
we can predict the required PFS bandwidth to achieve high
system efficiency when using our checkpointing system.

Figure 15 shows the PFS bandwidth required to maintain
90%, 80%, and 70% efficiency under increasing failure rates.
The failure rates are scaled from 1× up to 16× today’s rates.
Because blocking checkpointing requires extremely high PFS
bandwidth to achieve 90% efficiency, we omit that line from
the figure. Alternatively, our non-blocking checkpointing sys-
tem achieves 90% efficiency with a mere 10GB/s bandwidth
for failure rates up to 4× today’s rates.

Overall, our checkpointing system outperforms blocking
checkpointing. However, at 90% efficiency, the bandwidth
requirement rises sharply with failure rates larger than 5×
because the time for L1 checkpoints begins to dominate appli-
cation run time due to shortened optimal checkpoint intervals.
Here, increased PFS bandwidth cannot increase efficiency.
However, we found that current levels of PFS throughput are
adequate for maintaining 80% and 70% efficiency.

With blocking checkpointing, systems require higher PFS
throughput to minimize the risk of failure during a PFS
checkpoint. Further, blocking checkpointing uses the PFS
only when taking a PFS checkpointing, which means the
PFS underutilized during most of the application run. With
our checkpointing system, we not only hide PFS checkpoint
overhead, but use PFS throughout application execution.

VII. RELATED WORK

Multi-level checkpointing [4], [5] is a promising technique
for fault-tolerant execution. Moody et al. [4] modeled a multi-

level checkpointing system and optimized the checkpoint
frequency based on collected failure rates and checkpointing
costs. We extend their model in this work. Bautista-Gomez et
al. [5] proposed multi-level checkpointing using local SSDs
and a PFS. They use Reed-Solomon (RS) encoding for highly
resilient cached checkpoints to reduce PFS usage. Generally,
PFS usage is costly when compared to local storage, and
the PFS is accessed less often in multi-level checkpointing.
However, increasing failure rates require checkpoints to a PFS
more frequently. Thus, even with multi-level checkpointing,
checkpointing to a PFS is crucial for future systems.

Asynchronous I/O has long been used to hide I/O bottle-
necks [11], [15]–[17]. These techniques enable applications to
parallelize I/O with computation to increase CPU utilization
and to enhance I/O performance. Patrick et al. [15] pre-
sented a comprehensive study of different techniques of over-
lapping I/O, communication, and computation, and showed
the performance benefits of asynchronous I/O. Nawab et
al. [16] asynchronously transfer multiple striped TCP data
streams to increase I/O performance in Grid environments.
An asynchronous staging service using RDMA proposed by
Hasan et al. [11] is the closest research to ours. The authors
achieved high I/O throughput by using additional nodes. As
we observed, optimizing performance requires determination
of the proper number of staging nodes for a given number
of compute nodes. However, the comprehensive study on the
problem is not shown nor do they present their solution. To
deal with bursty I/O requests, Liu et al. [17] proposed a storage
system design that integrates SSD buffers on I/O nodes. The
system achieved high aggregate I/O bandwidth. As Figure 14
showed, if we apply asynchronous I/O to checkpointing, we
must consider the interference with the running application,
i.e., the overhead factor, to acheive high system efficiency.

Optimization of checkpoint interval is critical, because
checkpointing is an expensive operation. Several optimization
techniques have been studied. Young [18] proposed a method
to determine the optimal checkpoint interval for single-level,
blocking checkpoints. Vaidya extended the model to support
non-blocking checkpoints, called fork checkpoint [19] , and
two-level checkpoints [20]. Vaidya also combined both meth-
ods to support a two-level non-blocking checkpoint system to
achieve higher efficiency [21]. Vaidya’s model assumes that
at most one fast-level checkpoint is taken between each slow-
level checkpoint. However, in current multi-level checkpoint-
ing systems, the fastest checkpoints, which are often saved
to node-local storage, are orders of magnitude faster than the
slowest checkpoints saved to the PFS. To account for this, we
extend prior work to model an arbitrary number of node-local
checkpoints between consecutive PFS checkpoints.

VIII. CONCLUSION

We have designed and modeled a non-blocking checkpoint-
ing system that extends an existing multi-level checkpointing
system. Our non-blocking checkpointing system enables ap-
plications to save checkpoints to fast, scalable storage located
on the compute nodes and then continue with their execution

9

10

For080%0efficiency0at03x0failure0rate,0blocking0
requires0100GB/s,0but0non#blocking0is0sQll0
below010GB/s00

LLNL#PRES#599833#DRAFT0

Conclusion0

•  Developed0an0non#blocking0checkpoinQng0system0
–  Write0checkpoint0data0in0the0background0using0RDMA0

0

•  Markov0model0of0the0non#blocking0checkpoinQng0
–  OpQmal0mulQ#level0checkpoint0interval0
–  Non#blocking0v.s.0Blocking0checkpoint0

•  Higher0efficiency0(1.10~01.8x)0on0current0and0future0systems0

–  High0efficiency0(up0to080%)0with0low0PFS0throughput0

310

LLNL#PRES#599833#DRAFT0

Q0&0A0 Speaker:

Kento Sato (�� �)
kent@matsulab.is.titech.ac.jp

Tokyo Institute of Technology (Tokyo Tech)
%Research Fellow of the Japan Society for the Promotion of Science

http://matsu-www.is.titech.ac.jp/~kent/index_en.html

320

Co-authers

Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R de. Supinski,
Naoya Maruyama, Satoshi Matsuoka

Acknowledgement

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52- 07NA27344. LLNL-

PRES-599833-DRAFT.This work was also supported by Grant-in-Aid for Research Fellow
of the Japan Society for the Promotion of Science (JSPS Fellows) 24008253, and Grant-in-

Aid for Scientific Research S 23220003.00

