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beat ponderomotive force of the incident and SRS reflected
light if udneu/ne.2ne /(v02vr);0.07 for Te53 keV, ne
50.1nc , and l05351 nm. Balancing the ponderomotive
force with only the Langmuir wave amplitude, we obtain
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which results in a 7% perturbation in equilibrium if
udnlu/ne.0.2. However, the Langmuir wave is about the
threshold for secondary decay if udnlu/ne.0.01. In this case;
thus secondary decay is the effective limit. The coefficient of
the nonlinear damping rate in Eq. ~20! f srs50.25 in all simu-
lations reported in this section. There are other forces at
work: the ponderomotive depletion caused by the laser light,
the other secondary Langmuir waves, and the other light
waves and the convection of the mass out of the region by
the SBS-induced flow can also detune the SRS interaction
over the longer time scale it takes to move plasma. For ex-
ample, ten percent of the mass can be convected out of a
region with axial flow of 0.1Cs in 60 ps. Thus over this time
scale the presence of SBS and the induced flows also affects
the growth of SRS.

A. Two-dimensional single hotspot simulations

Here, we consider the scattering of a light wave that
focuses to a single hotspot at best focus, z f5Lz/2, with an
electric field of the form

E~y ,z f !5Ẽ0 cos2S 2p
y
Ly

D , uy u,Ly/4,

E~y ,z f !50, uy u.Ly/4, ~33!

such that the vacuum intensity at best focus is I0 .46 The
initial conditions at z50 for which Eq. ~33! is solution to Eq.
~2!, without any scattering or nonlinear refraction, is ob-
tained for convenience by propagating E(y ,z f) backward to
z50. The particular example considered takes Ly540l0 ,

Lz51000l0 , Te53 keV, Ti /Te50.13, ne50.1nc , and a
neopentane ~C5H12! plasma for which the damping of the
Langmuir wave is ne50.034(v02vr) and of the acoustic
wave is na50.17va . The width at focus is 20l0 ~the dis-
tance between zero intensity points! which is equivalent to
focusing with an f /10 lens. The spatially averaged ~over all
y! intensity is 0.094I0 , or, if I05231016 W/cm2, 1.9
31015 W/cm2 for which both the SBS and SRS amplitude
gain exponent is 6; the line integral of the amplitude gain
rate along the axis of the hotspot ~in the strong damping
limit! is 27.47 The reflected light develops a narrower spatial
profile than the incident light but not so narrow that the
intensity along the hotspot axis is the most relevant; the
FWHM ~full-width-half-maximum!, may be the most rel-
evant.

A contour plot of the incident light wave amplitude is
displayed in Fig. 4 at an early time when self-focusing has
had no effect on the propagation and in Fig. 5 after 63 ps
when significant self-focusing has developed. The peak in-
tensity has increased modestly from 0.97I0 to 2.2I0 , the fo-

FIG. 3. The acoustic wave dispersion for a neopentane ~C5H12! plasma as
a function of the ratio of ion to electron temperature for klDe50.5. Curves
for other values of klDe and mixtures are similar. The dashed curves are the
ratios of the damping rate to the wave frequency for each mode. The phase
velocity divided by the electron thermal velocity is shown by the solid
curves for each mode.

FIG. 4. Contour plots of the absolute value of the incident light wave am-
plitude at an early time before self-focusing for the conditions described in
Sec. III A. The contours are in units of the vacuum field amplitude at focus.

FIG. 5. Contour plots of the absolute value of the incident light wave am-
plitude at a time after self-focusing for the conditions described in Sec.
III A. The contours are in units of the vacuum field amplitude at focus. The
highest intensity is 2.2I0 within tightly nested contours.

4345Phys. Plasmas, Vol. 5, No. 12, December 1998 Berger et al.

Downloaded 21 Sep 2013 to 131.112.35.88. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

Sourece:	
  Berger,	
  R.	
   L.,	
   SOll,	
  C.	
  H.,	
  Williams,	
  E.	
  
A.	
   and	
   Langdon,	
   A.	
   B.:	
  On	
   the	
  Dominant	
   and	
  
Subdominant	
   Behavior	
   of	
   SOmulated	
   Raman	
  
and	
  Brillouin	
  Sca]ering	
  Driven	
  by	
  Nonuniform	
  
Laser	
  Beams	
  (Physics	
  of	
  Plasmas	
  1998)	
  

1,000	
  nodes	
   10,000	
  nodes	
   100,000	
  nodes	
  

MTBF	
   1.2	
  days	
   2.9	
  hours	
   17	
  minutes	
  

pF3D	
  

Estimated MTBF (If no hardware reliability improvement) 

•  Difficult	
  to	
  conOnuously	
  run	
  for	
  a	
  long	
  Ome	
  without	
  fault	
  tolerance	
  



LLNL-­‐PRES-­‐644916	
  

Checkpoint/Restart	
  
	
  
	
  

4	
  

check
point	
  

check
point	
  

check
point	
  

failure
	
  

Checkpoint	
  
Periodically	
  save	
  a	
  snapshot	
  of	
  

an	
  applicaOon	
  state	
  	
  
to	
  a	
  reliable	
  storage	
  

Restart	
  	
  
On	
  a	
  failure,	
  restart	
  the	
  execuOon	
  

from	
  the	
  latest	
  checkpoint	
  	
  

Mostly	
  these	
  checkpoints	
  are	
  stored	
  in	
  a	
  PFS	
  

Parallel	
  file	
  system	
  (PFS)	
  

PFS	
  performance	
  is	
  important	
  

XOR	
  
checkpoint	
  

PFS	
  
checkpoint	
  



LLNL-­‐PRES-­‐644916	
  

TSUBAME2.0/2.5 Storage Overview �

Scratch �

TSUBAME2.0 Storage 11PB (7PB HDD, 4PB Tape)	


GPFS	
   Lustre	
  



LLNL-­‐PRES-­‐644916	
  

TSUBAME2.0	
  PFS	
  Performance	
  
-­‐	
  checkpoint	
  &	
  	
  restart	
  -­‐	
  

6	
  

GPFS	
 Lustre	


10GB/s	
  

11GB/s	
  



LLNL-­‐PRES-­‐644916	
  

HPC	
  applicaOons	
  require	
  more	
  
bandwidth	
  

•  We	
  scale	
  out	
  the	
  system,	
  Both	
  checkpoinOng	
  Ome	
  and	
  
failure	
  rate	
  increases	
  

7	
  

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

2.5	
  

3	
  

3.5	
  

0	
   256	
   512	
   768	
   1024	
   1280	
   1536	
  

PF
S	
  
ch
ec
kp

oi
nt
	
  3
m
e	
  
(h
ou

rs
)	
  

#	
  of	
  nodes	
  

Expected TSUBAME2.0 checkpoint time trend 

1,000	
  nodes	
   10,000	
  nodes	
   100,000	
  nodes	
  

MTBF	
   1.2	
  days	
   2.9	
  hours	
   17	
  minutes	
  

Estimated MTBF (If no hardware reliability improvement) 

Checkpoint	
  Ome	
  

MTBF	
  

>	
  



LLNL-­‐PRES-­‐644916	
  

For	
  fast	
  checkpoinOng	
  

•  Buy	
  many	
  &	
  fast	
  PFSs	
  

8	
  



LLNL-­‐PRES-­‐644916	
  

10	
  Lustre	
  file	
  systems	
  at	
  LLNL	
  	
  

9	
  

10/9/13 High Performance Computing: Lustre Parallel File System Summary

https://computing.llnl.gov/?set=resources&page=lc_lustre 1/1

Computing Pages       Search

Comments  or  Questions?  lc-­webers@llnl.gov Last  updated:  09-­06-­2013

   System  Status

   MyLC  (Lorenz)

Getting  Started

Accounts

Access  Information

Code  Development

Computing  Resources

Documentation

Running  Jobs

Training

Site  Index

Contact  Us

HOME

Privacy  &  Legal  Notice

LUSTRE PARALLEL FILE SYSTEM

Lustre File System Summary

OCF  File  System Bandwith
(GB/s)

Capacity
(PB)

OSS  Nodes OSTs

lscratchrzb 18 1.2 16 16

lscratchc 40 1.8 32 480

lscratchd 50 2 40 600

lscratche 18 1.2 16 16

lscratchv 106 6.7 96 96

SCF  File  System Bandwith
(GB/s)

Capacity
(PB)

OSS  Nodes OSTs

lscratch1 850 53 768 768

lscratch2 70 2.7 56 840

lscratch4 60 2.3 48 720

lscratch5 80 3.4 64 960

lscratch6 32 2.4 32 96

Lustre Maximum Bandwidths

Maximum  bandwidths  limits  are  determined  by  either  file  system  disk  size,  network/Lustre  router  speed,  or  nodes  (i.e.,  single  node  job  scheduling).

OCF  Maximum  Lustre  Bandwidths
(GB/s)

OCF  System
(CZ)

lscratchc lscratchd lscratche lscratchv*

Ansel 12 12 18 10

Aztec .125 .125 .125 .125

Cab 40 20 18 10

Edge 10 10 18 10

Herd 1.25 1.25 1.25 1.25

OSLIC 1.25 1.25 1.25 1.25

Sierra 40 20 18 10

Vulcan – – – 106

OCF  System
(RZ)

lscratchrzb

RZMerl 18

RZCereal 10

RZGPU 12

RZSLIC 1.25

RZuSeq 12

RZZeus 10

SCF  Maximum  Lustre  Bandwidths
(GB/s)

SCF  System lscratch1* lscratch2 lscratch4 lscratch5 lscratch6

Coastal 40 15 40 40 32

CSLIC 1.25 1.25 1.25 1.25 1.25

Graph 15 20 15 15 15

Inca .125 .125 .125 .125 .125

Juno 40 15 40 40 32

Muir 40 15 40 40 32

Sequoia 850 – – – –

Zin 100 15 60 80 32

*  Although  Lustre  bandwidths  are  provided,  lscratchv  and  lscratch1  are  not  yet  mounted  on  all  systems  listed.

Top

  

LLNL-­WEB-­537571  

  

70PB	
  1TB/s	
  

•  DOE	
  applicaOons	
  someOmes	
  run	
  for	
  days	
  or	
  
weeks	
  



LLNL-­‐PRES-­‐644916	
  

	
  	
  

•  22	
  systems	
  shares	
  10	
  Lustre	
  
–  Unstable	
  performance	
  

•  Sequoia	
  checkpoinOng	
  Ome	
  
–  1.5	
  PB	
  memory	
  /	
  850	
  ~=	
  5	
  hours	
  

10	
  

10/9/13 High Performance Computing: Lustre Parallel File System Summary

https://computing.llnl.gov/?set=resources&page=lc_lustre 1/1

Computing Pages       Search

Comments  or  Questions?  lc-­webers@llnl.gov Last  updated:  09-­06-­2013

   System  Status

   MyLC  (Lorenz)

Getting  Started

Accounts

Access  Information

Code  Development

Computing  Resources

Documentation

Running  Jobs

Training

Site  Index

Contact  Us

HOME

Privacy  &  Legal  Notice

LUSTRE PARALLEL FILE SYSTEM

Lustre File System Summary

OCF  File  System Bandwith
(GB/s)

Capacity
(PB)

OSS  Nodes OSTs

lscratchrzb 18 1.2 16 16

lscratchc 40 1.8 32 480

lscratchd 50 2 40 600

lscratche 18 1.2 16 16

lscratchv 106 6.7 96 96

SCF  File  System Bandwith
(GB/s)

Capacity
(PB)

OSS  Nodes OSTs

lscratch1 850 53 768 768

lscratch2 70 2.7 56 840

lscratch4 60 2.3 48 720

lscratch5 80 3.4 64 960

lscratch6 32 2.4 32 96

Lustre Maximum Bandwidths

Maximum  bandwidths  limits  are  determined  by  either  file  system  disk  size,  network/Lustre  router  speed,  or  nodes  (i.e.,  single  node  job  scheduling).

OCF  Maximum  Lustre  Bandwidths
(GB/s)

OCF  System
(CZ)

lscratchc lscratchd lscratche lscratchv*

Ansel 12 12 18 10

Aztec .125 .125 .125 .125

Cab 40 20 18 10

Edge 10 10 18 10

Herd 1.25 1.25 1.25 1.25

OSLIC 1.25 1.25 1.25 1.25

Sierra 40 20 18 10

Vulcan – – – 106

OCF  System
(RZ)

lscratchrzb

RZMerl 18

RZCereal 10

RZGPU 12

RZSLIC 1.25

RZuSeq 12

RZZeus 10

SCF  Maximum  Lustre  Bandwidths
(GB/s)

SCF  System lscratch1* lscratch2 lscratch4 lscratch5 lscratch6

Coastal 40 15 40 40 32

CSLIC 1.25 1.25 1.25 1.25 1.25

Graph 15 20 15 15 15

Inca .125 .125 .125 .125 .125

Juno 40 15 40 40 32

Muir 40 15 40 40 32

Sequoia 850 – – – –

Zin 100 15 60 80 32

*  Although  Lustre  bandwidths  are  provided,  lscratchv  and  lscratch1  are  not  yet  mounted  on  all  systems  listed.

Top

  

LLNL-­WEB-­537571  

  

10/9/13 High Performance Computing: Lustre Parallel File System Summary

https://computing.llnl.gov/?set=resources&page=lc_lustre 1/1

Computing Pages       Search

Comments  or  Questions?  lc-­webers@llnl.gov Last  updated:  09-­06-­2013

   System  Status

   MyLC  (Lorenz)

Getting  Started

Accounts

Access  Information

Code  Development

Computing  Resources

Documentation

Running  Jobs

Training

Site  Index

Contact  Us

HOME

Privacy  &  Legal  Notice

LUSTRE PARALLEL FILE SYSTEM

Lustre File System Summary

OCF  File  System Bandwith
(GB/s)

Capacity
(PB)

OSS  Nodes OSTs

lscratchrzb 18 1.2 16 16

lscratchc 40 1.8 32 480

lscratchd 50 2 40 600

lscratche 18 1.2 16 16

lscratchv 106 6.7 96 96

SCF  File  System Bandwith
(GB/s)

Capacity
(PB)

OSS  Nodes OSTs

lscratch1 850 53 768 768

lscratch2 70 2.7 56 840

lscratch4 60 2.3 48 720

lscratch5 80 3.4 64 960

lscratch6 32 2.4 32 96

Lustre Maximum Bandwidths

Maximum  bandwidths  limits  are  determined  by  either  file  system  disk  size,  network/Lustre  router  speed,  or  nodes  (i.e.,  single  node  job  scheduling).

OCF  Maximum  Lustre  Bandwidths
(GB/s)

OCF  System
(CZ)

lscratchc lscratchd lscratche lscratchv*

Ansel 12 12 18 10

Aztec .125 .125 .125 .125

Cab 40 20 18 10

Edge 10 10 18 10

Herd 1.25 1.25 1.25 1.25

OSLIC 1.25 1.25 1.25 1.25

Sierra 40 20 18 10

Vulcan – – – 106

OCF  System
(RZ)

lscratchrzb

RZMerl 18

RZCereal 10

RZGPU 12

RZSLIC 1.25

RZuSeq 12

RZZeus 10

SCF  Maximum  Lustre  Bandwidths
(GB/s)

SCF  System lscratch1* lscratch2 lscratch4 lscratch5 lscratch6

Coastal 40 15 40 40 32

CSLIC 1.25 1.25 1.25 1.25 1.25

Graph 15 20 15 15 15

Inca .125 .125 .125 .125 .125

Juno 40 15 40 40 32

Muir 40 15 40 40 32

Sequoia 850 – – – –

Zin 100 15 60 80 32

*  Although  Lustre  bandwidths  are  provided,  lscratchv  and  lscratch1  are  not  yet  mounted  on  all  systems  listed.

Top

  

LLNL-­WEB-­537571  

  

10/9/13 High Performance Computing: Lustre Parallel File System Summary

https://computing.llnl.gov/?set=resources&page=lc_lustre 1/1

Computing Pages       Search

Comments  or  Questions?  lc-­webers@llnl.gov Last  updated:  09-­06-­2013

   System  Status

   MyLC  (Lorenz)

Getting  Started

Accounts

Access  Information

Code  Development

Computing  Resources

Documentation

Running  Jobs

Training

Site  Index

Contact  Us

HOME

Privacy  &  Legal  Notice

LUSTRE PARALLEL FILE SYSTEM

Lustre File System Summary

OCF  File  System Bandwith
(GB/s)

Capacity
(PB)

OSS  Nodes OSTs

lscratchrzb 18 1.2 16 16

lscratchc 40 1.8 32 480

lscratchd 50 2 40 600

lscratche 18 1.2 16 16

lscratchv 106 6.7 96 96

SCF  File  System Bandwith
(GB/s)

Capacity
(PB)

OSS  Nodes OSTs

lscratch1 850 53 768 768

lscratch2 70 2.7 56 840

lscratch4 60 2.3 48 720

lscratch5 80 3.4 64 960

lscratch6 32 2.4 32 96

Lustre Maximum Bandwidths

Maximum  bandwidths  limits  are  determined  by  either  file  system  disk  size,  network/Lustre  router  speed,  or  nodes  (i.e.,  single  node  job  scheduling).

OCF  Maximum  Lustre  Bandwidths
(GB/s)

OCF  System
(CZ)

lscratchc lscratchd lscratche lscratchv*

Ansel 12 12 18 10

Aztec .125 .125 .125 .125

Cab 40 20 18 10

Edge 10 10 18 10

Herd 1.25 1.25 1.25 1.25

OSLIC 1.25 1.25 1.25 1.25

Sierra 40 20 18 10

Vulcan – – – 106

OCF  System
(RZ)

lscratchrzb

RZMerl 18

RZCereal 10

RZGPU 12

RZSLIC 1.25

RZuSeq 12

RZZeus 10

SCF  Maximum  Lustre  Bandwidths
(GB/s)

SCF  System lscratch1* lscratch2 lscratch4 lscratch5 lscratch6

Coastal 40 15 40 40 32

CSLIC 1.25 1.25 1.25 1.25 1.25

Graph 15 20 15 15 15

Inca .125 .125 .125 .125 .125

Juno 40 15 40 40 32

Muir 40 15 40 40 32

Sequoia 850 – – – –

Zin 100 15 60 80 32

*  Although  Lustre  bandwidths  are  provided,  lscratchv  and  lscratch1  are  not  yet  mounted  on  all  systems  listed.

Top

  

LLNL-­WEB-­537571  

  

10	
  Lustre	
  file	
  systems	
  at	
  LLNL	
  	
  



LLNL-­‐PRES-­‐644916	
  

For	
  fast	
  checkpoinOng	
  

•  Buy	
  many	
  &	
  fast	
  PFSs	
  

•  Local	
  storage	
  

11	
  



LLNL-­‐PRES-­‐644916	
  

TSUBAME2.0 & 2.5 Storage Overview �

Scratch �

TSUBAME2.0 Storage 11PB (7PB HDD, 4PB Tape)	


GPFS	
   Lustre	
  

SSD	
  

300	
  GB/s	
  

11GB/s	
  10GB/s	
  



LLNL-­‐PRES-­‐644916	
  

CheckpoinOng	
  to	
  Local-­‐storage	
  

13	
  

Parallel	
  file	
  system	
  (PFS)	
  
	
  



LLNL-­‐PRES-­‐644916	
  

CheckpoinOng	
  to	
  Local-­‐storage	
  

14	
  

Parallel	
  file	
  system	
  (PFS)	
  
	
  

Sogware	
  
RAID5	
  
(XOR	
  

encoding)	
  



LLNL-­‐PRES-­‐644916	
  

8% 15% 

Scalable	
  checkpoinOng	
  methods	
  
15	
  

ckpt	
  A3	
  

ckpt	
  A2	
  

ckpt	
  A1	
  

Parity	
  1	
  

ckpt	
  B3	
  

ckpt	
  B2	
  

Parity	
  2	
  

ckpt	
  B1	
  

ckpt	
  C3	
  

Parity	
  3	
  

ckpt	
  C2	
  

ckpt	
  C1	
  

Parity	
  4	
  

ckpt	
  D3	
  

ckpt	
  D2	
  

ckpt	
  D1	
  

Node	
  1	
   Node	
  2	
   Node	
  3	
   Node	
  4	
  

XOR	
  encoding	
  example	
  

failure
	
  

Failure analysis on TSUBAME2.0 

•  Most	
  of	
  failures	
  comes	
  from	
  one	
  node,	
  or	
  can	
  recover	
  by	
  XOR	
  checkpoint	
  
–  e.g.	
  1)	
  TSUBAME2.0:	
  92%	
  failures	
  
–  e.g.	
  2)	
  LLNL	
  clusters:	
  85%	
  failures	
  

•  Diskless	
  checkpoint:	
  
–  Create	
  redundant	
  data	
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  local	
  storages	
  

on	
  compute	
  nodes	
  using	
  a	
  encoding	
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  as	
  XOR	
  

–  Can	
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  lost	
  checkpoints	
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  a	
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  small	
  #	
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  Failure analysis on LLNL clusters 

LOCAL/XOR/PARTNER checkpoint 
PFS checkpoint 

92% 85% Diskless	
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  is	
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Table 4: Expected and observed e⇤ciency

System Expected Observed Duration of
E⇤ciency E⇤ciency Observation

Coastal 95.2% 94.68% 716,613 node-hours
Atlas 96.7% 92.39% 553,829 node-hours

Figure 9: Optimal e⇤ciency for single- and multi-level checkpointing

We now use the model to explore multi-level checkpointing in a more general context. In the following experi-
ments, we simulated a three level checkpointing system (L = 3) and varied the length of the compute interval, the
number of level 1 and level 2 checkpoints per level 3 period, the failure rates, and the cost of level 3 checkpoints.

For checkpoint costs, we use the times recorded in Table 1 for checkpointing pF3D on Coastal using LOCAL on
RAM, XOR on RAM, and Lustre, which gives us costs of 0.5 seconds, 4.5 seconds, and 1052 seconds, respectively.
We set recovery costs to be the same as checkpoint costs. Using the failure data for pF3D on Coastal in Table 2,
we express the failure rates in units of failures per job-second, i.e., average number of failures at a given level per
node-hour, multiplied by the number of nodes used in the job, divided by 3,600 seconds per hour. This leads to
failure rates of 2 · 10�7 for level 1, 1.8 · 10�6 for level 2, and 4 · 10�7 for level 3.

As future systems become larger, failure rates are expected to increase, and as the system memory size grows
faster than the performance of the parallel file system, the cost of accessing the parallel file system is expected to
increase. To explore these e�ects, we increase the base failure rates and the level L checkpoint costs by factors of
2, 10, and 50. We do not adjust the costs of lower-level checkpoints, since the performance of node-local storage is
expected to scale with system size. For each combination, we identified the compute interval and the level 1 and
level 2 checkpoint counts that provide the highest e⇤ciency. For comparison, we performed the same experiment
for single-level checkpointing, assuming only the parallel file system is available.

Figure 9 presents the e⇤ciency achieved for each configuration, and Figure 10(a) shows the time between level
L checkpoints. We label the results for the multi-level system as “Multi” and those for the single-level system as
“Single.” The groupings of bars along the x-axis correspond to failure rates that are one, two, ten, or fifty times
the base values. Within each grouping, we increase the cost of the level L checkpoint by one, two, ten, and fifty
times the base value.

In all cases, the multi-level system results in higher e⇤ciencies, and it increases the time between checkpoints
to the parallel file system. Moreover, both advantages increase with either increasing failure rates or higher parallel
file system costs. The gain in machine e⇤ciency ranges from a few percent up to 35%, and, as can be seen in
Figure 10(b), the load on the parallel file system is reduced by a factor ranging from 2x-4x. Thus, compared to
single-level checkpointing, multi-level checkpointing simultaneously increases e⇤ciency while reducing load on the
parallel file system. These results highlight the benefits of multi-level checkpointing on current and future systems.

Overall, we find that multi-level checkpointing is essential for future systems. Even with systems that are
50⇥ less reliable, a three level checkpointing system achieves e⇤ciencies over 75%, so long as we maintain relative
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Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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Figure 13: Efficiency comparison: Blocking vs. Non-blocking check-
pointing

crease. To explore the effects, we increase failure rates and
checkpoint costs by factors of 1, 2, and 10, and compare
efficiency between both a blocking checkpointing and a non-
blocking one. As for checkpoint size per compute node,
we employ 29GB, which is just a half of memory size
of TSUBAME2.0 thin nodes. As show in Figure 12, a
XOR encoding rate is constant regardless of the number
of compute nodes, which means XOR encoding scales with
system size. Thus, when we increase checkpoint costs, we
increase only PFS checkpoint cost.

Figure 13 shows that efficiency of both checkpointing
methods under different failure rates and checkpoint costs.
We define the efficiency as ideal time

expected time . Here, ideal time is
the runtime assuming the application encounters no failures
and take no checkpoints, while expected time is the ex-
pected runtime computed from our model for a non-blocking
method and an existing model [4] for a blocking one.
When we compute the efficiency, we optimize (1) Level 1
counts between Level 2 checkpoints, and (2) the interval
between checkpoints, given failure rates and checkpoint
costs. The efficiency can be maximal efficiency. We found
that the non-blocking method achieves higher efficiency than
a blocking method in any cases. Especially, the efficiency
gap become more apparent in higher failure rate and higher
checkpoint cost because longer PFS checkpoint time on a
blocking checkpointing is easy to encounter a lower level
failure during the PFS checkpoint, and rollback to the
beginning, while a non-blocking method can rollback to
the recent XOR checkpoint. Moreover, since overhead of a
blocking checkpoint is identical to checkpoint latency, which
is directlly added to an application runtime, the efficiency
become lower than a non-blocking checkpointing.

Because a non-blocking checkpointing overlaps with an
application computation, the checkpointing method can
imapct the application runtime depending on overhead fac-
tor, α. If the overhead factor becomes larger, our non-
blocking checkpointing can introduce lower efficiency than
a blocking checkpointing. Figure 14 shows efficiency of
systems with increasing overhead rate in different failure
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Figure 15: Required PFS throughput at different failure rates

rates factor and PFS checkpoint cost factor. We found that a
blocking checkpointing can become more efficient than our
non-blocking with larger overhead factor in current failure
rates and cost. However, in future systems where the failure
rates and cost become larger, a non-blocking checkpointing
can be effective even with large overhead factor. In large
failure rate and checkpoint cost factors, checkpoint interval
become short and the overhead dominate to the overall
runtime. Especially, since an application is blocked with a
blocking checkpointing, the checkpiont latency impacts an
application runtime rather than a non-blocking one in future
systems.

C. Building an efficient and resilient system

When building a reliable data center or supercomputer,
two major concerns are cost of the PFS and how much
throughput a PFS should have to maintain high efficiency.
Generally, we want to minimize cost, but not sacrifice
performance. Using our model, we can predict the required
PFS bandwidth for achieving high system efficiency when
using our checkpointing system.

Figure 15 presents the required PFS bandwidth to main-
tain 90%, 80%, and 70% efficiency under increasing failure
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scales with system size. Thus, when we increase checkpoint
costs, we increase only PFS checkpoint cost.

Figure 13 shows the efficiency of both checkpointing meth-
ods under different failure rates and checkpoint costs. We
define the efficiency as ideal time

expected time . The ideal time is the
run time if the application encounters no failures and takes
no checkpoints, while expected time is the expected run time
computed from our model for non-blocking checkpointing
and the original model [4] for blocking checkpointing. When
we compute efficiency, we optimize Level 1 counts between
Level 2 checkpoints, and the interval between checkpoints,
given failure rates and checkpoint costs, which yields the
maximal efficiency. The non-blocking method always achieves
higher efficiency than the blocking method. The efficiency gap
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becomes more apparent with higher failure rates and higher
checkpoint cost. This is because the long time to take a
PFS checkpoint during blocking checkpointing increases the
likelihood of a lower level failure occuring during the PFS
checkpoint, so the application must rollback to the beginning.
However, with non-blocking checkpointing, the application
can rollback to the most recent XOR checkpoint. Further, since
overhead of a blocking checkpoint is identical to checkpoint
latency, which is directly added to application run time, the
efficiency decreases more quickly than with non-blocking
checkpointing.

Since staging nodes write checkpoints to the PFS indepen-
dently of compute node activities, they can throttle their write
rate without reducing application performance. We found that
we could read checkpoints from compute nodes at half of the
maximum bandwidth (i.e., PFS cost ×2), but still maintain
90% efficiency with current failure rates.

Because a non-blocking checkpoint overlaps with appli-
cation computation, non-blocking checkpointing can impact
the application run time depending on the overhead factor,
α, in different applications. If the overhead factor increases
enough, our non-blocking checkpointing could be less efficient
than blocking checkpointing. Figure 14 shows efficiency with
increasing overhead factor and different failure rates and PFS
checkpoint costs. F and C denote the base failure rate and PFS
checkpoint cost. Blocking checkpointing can become more
efficient than non-blocking with a larger overhead factor at cur-
rent failure rates and cost. However, in future systems where
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ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3
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ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3
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Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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Gamblin, T., de Supinski, B. R. and Matsuoka, S.: Design and 
Modeling of a Non-Blocking Checkpointing System (SC12) 
 



LLNL-­‐PRES-­‐644916	
  

Modeling	
  of	
  C/R	
  Strategies	
  
•  Li :	
  Checkpoint	
  Latency	
  

–  Time	
  to	
  complete	
  a	
  checkpoint	
  (Ci)	
  and	
  encoding	
  (Ei)	
  

•  Oi :	
  Checkpoint	
  overhead	
  
–  The	
  increased	
  execuOon	
  Ome	
  of	
  an	
  applicaOon	
  	
  

•  Sync.	
  C/R:	
  Checkpoint	
  overhead	
  (Oi)	
  =	
  Checkpoint	
  latency	
  (Li)	
  
•  Async.	
  C/R:	
  IniOalizaOon	
  Ome	
  of	
  level	
  i C/R	
  

•  Ci & Ri :	
  Checkpoint/Restart	
  Ome	
  

Li = Ci + Ei	
  

Oi =	
  
Ci + Ei   (Sync.) 	
  
Ii               (Async.)	
  

Ci or Ri  =	
  
<	
  C/R	
  date	
  size	
  /	
  node	
  >	
  	
  ☓	
  	
  	
  <#	
  of	
  C/R	
  nodes	
  per	
  Si

*	
  >	
  	
  

<	
  write	
  perf.	
  (	
  wi )	
  	
  >	
  	
  	
  or	
  	
  	
  <read	
  perf.	
  (	
  ri )	
  >	
  	
  

* Si	
  :	
  Oer i storage	
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Recursive	
  Structured	
  Storage	
  Model	
  

•  GeneralizaOon	
  of	
  storage	
  
architectures	
  with	
  ”context-­‐free	
  
grammar”	
  
–  A	
  Oer	
  i	
  hierarchical	
  enOty	
  (Hi),	
  has	
  a	
  

storage	
  (Si	
  )shared	
  by	
  (mi)	
  upper	
  
hierarchical	
  enOOes	
  (Hi−1	
  )	
  

–  Hi=0 	
  is	
  a	
  compute	
  node	
  
–  HN {m1, m2, . . . , mN }	
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Hi 
Compute	
  
node	
  

Si 

i  = 0	
   i  > 0	
  

1 2 mi 

Hi-1 Hi-1 Hi-1 

SSD	
  2	
   SSD	
  3	
   SSD	
  4	
  SSD	
  1	
  

Compute	
  
node	
  1	
  

Compute	
  
node	
  2	
  

Compute	
  
node	
  3	
  

Compute	
  
node	
  4	
  

PFS	
  (Parallel	
  file	
  system)	
  

SSD	
  1	
   SSD	
  2	
   SSD	
  3	
   SSD	
  4	
  

Compute	
  
node	
  1	
  	
  

Compute	
  
node	
  2	
  

Compute	
  
node	
  3	
  

Compute	
  
node	
  4	
  

PFS	
  (Parallel	
  file	
  system)	
  

Flat	
  buffer	
  system:	
  H2 {1, 4}	
   Burst	
  buffer	
  system:	
  H2 {2, 2}	
  
	
  

Storage	
  Model: HN {m1, m2, . . . , mN }  

IPSJ SIG Technical Report

Hi 
Compute(
node(

Si 

i  = 0 i  > 0 

1 2 mi 

Hi-1 Hi-1 Hi-1 

Fig. 3 Recursive structured storage model

For efficiency exploration, we use the read and write throughput
of our test system.

4. Modeling
As described in Sections 2 and 3, each checkpoint strategy and

storage architecture have advantages and disadvantages. To dis-
cover which checkpoint strategy is best for given a storage archi-
tecture, we developed a model of the checkpoint strategies and
storage architectures.

4.1 Recursive Structured Storage Model
We introduce a recursive structured storage model to gener-

alize storage architectures to describe both flat and burst buffer
systems with a single model. Figure 3 shows the recursive struc-
tured storage model based on a context-free grammar. A tier i
hierarchical entity, Hi, has a storage S i shared by mi upper hierar-
chical entities, Hi−1. We denote Hi=0 as a compute node. If each
tier of hierarchical storage is shared as {m1,m2, . . . ,mN} in an N-
tired hierarchical storage, we denote the storage architecture as
HN {m1,m2, . . . ,mN}. For example, the flat buffer system in Fig-
ure 2 (a) can be represented as H2 {1, 4}. It has 2 levels of storage:
the node-local storage is not shared, so m1 = 1; however, the PFS
is shared across all compute nodes, so m2 = 4. In the same man-
ner, the burst buffer system in Figure 2 (b) can be represented as
H2 {2, 2}. The total number of compute nodes can be calculated
as
∏2

i=1 mi = 4 nodes.

Table 2 Tier i storage (S i) performance parameters
ri Sequential read throughput from compute nodes (Hi=0)
wi Sequential write throughput from compute nodes (Hi=0)
mi The number of a upper hierarchical entities (Hi−1) sharing S i

In this model, we isolate storage from compute nodes, which
means the model does not distinguish between node-local storage
and network-attached storage. Instead, we differentiate the stor-
age levels using performance parameters. Table 2 shows a list of
the performance parameters. We consider only sequential I/O be-
cause typically the I/O pattern of checkpoint/restart is sequential.
Note that ri and wi are not the throughput of the storage but the
throughput between compute nodes and the storage location. For
example, if tier i storage has r, w MB/sec of throughput, but is
connected via slow network, l < r, w, then the parameters be-
come ri = wi = l MB/sec. Using these performance parameters,
we estimate checkpoint/restart time.

4.2 Modeling of Checkpoint/Restart Strategies
Given the storage performance parameters of each tier, we

model level i checkpoint overhead (Oi), checkpoint latency (Li)

and restart overhead (Ri) in a multilevel checkpointing library
[29]. For simplicity, if multiple compute nodes concurrently ac-
cess a single storage location, we assume the read/write through-
put per node scales down according to the number of concur-
rently accesses. The model relies on an existing multilevel asyn-
chronous checkpoint/restart model [29], so we also include that
model’s assumptions.

Checkpoint overhead (Oi) and restart overhead (Ri) are the in-
creased execution time of an application because of checkpoint-
ing and restarting, respectively. Checkpoint latency (Li) is the
time to complete a checkpoint. If a checkpoint strategy conducts
erasure encoding, such as XOR, the checkpoint overhead and la-
tency also include the encoding time. Checkpoint overhead and
latency are to clarify the differences between synchronous and
asynchronous checkpointing. During synchronous checkpoint-
ing, so checkpoint overhead and latency is equal, i.e., Oi = Li,
because each process is blocked until the checkpointing is com-
pleted. With asynchronous checkpointing, checkpoint overhead
can be generally reduced because asynchronous checkpointing
incurs only initialization overhead, so checkpoint overhead is
equal or smaller than checkpoint latency, i.e., Oi < Li.

First, we model level i checkpoint overhead and latency as

Oi =

⎧⎪⎪⎨
⎪⎪⎩

Ci + Ei (synchronous checkpointing)
Ii (asynchronous checkpointing)

Li = Ci + Ei

where Ci denotes actual checkpointing time, Ei denotes encoding
time, and Ii denotes initialization time for asynchronous check-
pointing. If the level i checkpointing does not encode check-
points, Ei becomes 0; otherwise we model the encoding time as
Ei = D · ei where D is the checkpoint size per compute node, and
ei is encoding throughput. The actual checkpointing time (Ci),
i.e., sequencial write time, can be simply calculated as

Ci =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D × M/wi (i = N)

D ×
⌈

M∏N
k=i+1 mk

⌉
/wi (otherwise)

where M denotes the total number of checkpointing compute
nodes, i.e.,

∏N
i=1 mi. With uncoordinated checkpointing, we as-

sume the checkpointing time is identical to coordinated check-
pointing time because of indirect global synchronization as de-
scribed in Section 2.3. Because

∏N
k=i+1 mk is the number of stor-

age locations S i,
⌈

M∏N
k=i+1 mk

⌉
represents the max number of com-

pute nodes per storage location S i.
When restarting with uncoordinated checkpointing, the restart

overhead is different than that of coordinated checkpointing. We
model the restart overhead (Ri), i.e., sequencial read time, as:

Ri =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D × K/ri (i = N)

D ×
⌈

K∏N
k=i+1 mk

⌉
/ri (otherwise)

where K is the number of restarting compute nodes. With coor-
dinated restart, all compute nodes concurrently read their check-
points, so K is identical to the total number of compute nodes

c⃝ 2013 Information Processing Society of Japan

Example	
  
<#	
  of	
  C/R	
  nodes	
  per	
  Si	
  >	
  	
  

K* 

=

<#	
  of	
  Si	
  >	
  (=	
  ΠN
k=i+1 mk)	
  	
  	
  

*K: C/R cluster size 
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•  With	
  uncoordinated	
  	
  
checkpoinOng,	
  70%	
  efficiency	
  even	
  on	
  systems	
  that	
  are	
  two	
  
orders	
  of	
  magnitude	
  larger	
  (if	
  logging	
  overhead	
  is	
  0)	
  
⇒	
  ParOal	
  restart	
  can	
  exploit	
  the	
  bandwidth	
  of	
  both	
  burst	
  buffers	
  and	
  the	
  
PFS	
  
	
  

•  The	
  burst	
  buffer	
  system	
  
always	
  achieves	
  a	
  
higher	
  efficiency	
  	
  
⇒　Stores	
  checkpoints	
  on	
  
fewer	
  nodes	
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Summary	
  

•  Fault	
  tolerance	
  is	
  important	
  
– Fast	
  and	
  Reliable	
  checkpoinOng	
  is	
  required	
  

•  Lustre	
  provides	
  high	
  bandwidth	
  
– CheckpoinOng	
  requires	
  more	
  

•  For	
  fast	
  checkpoinOng	
  
– MulO-­‐level	
  checkpoinOng	
  
– MulO-­‐Oer	
  storage	
  design	
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