
LLNL-­‐PRES-­‐644916	

Kento Sato
 Tokyo Institute of Technology

October	
 17th,	
 2013	
 APAC	
 LUG	
 2013	

LLNL-­‐PRES-­‐644916	

Outline	

•  Failures	
 on	
 HPC	
 systems	

•  Challenges	
 on	
 Checkpoint/Restart	

•  Two	
 approaches	

– MulO-­‐level	
 Checkpoint/Restart	

– Storage	
 design	

•  Summary	

2	

LLNL-­‐PRES-­‐644916	

Failures	
 on	
 HPC	
 systems	

•  System	
 resiliency	
 is	
 criOcal	
 for	
 future	

extreme-­‐scale	
 compuOng	

•  191	
 failures	
 out	
 of	
 5-­‐million	
 node-­‐hours	
 	

–  A	
 producOon	
 applicaOon:	
 Laser-­‐plasma	

interacOon	
 code	
 (pF3D)	

–  Hera,	
 Atlas	
 and	
 Coastal	
 clusters	
 @LLNL	

3	

beat ponderomotive force of the incident and SRS reflected
light if udneu/ne.2ne /(v02vr);0.07 for Te53 keV, ne
50.1nc , and l05351 nm. Balancing the ponderomotive
force with only the Langmuir wave amplitude, we obtain

dne
ne

5
1

4kl
2lDe

2
vpe
2

v l
2 Udnlne

U2, ~32!

which results in a 7% perturbation in equilibrium if
udnlu/ne.0.2. However, the Langmuir wave is about the
threshold for secondary decay if udnlu/ne.0.01. In this case;
thus secondary decay is the effective limit. The coefficient of
the nonlinear damping rate in Eq. ~20! f srs50.25 in all simu-
lations reported in this section. There are other forces at
work: the ponderomotive depletion caused by the laser light,
the other secondary Langmuir waves, and the other light
waves and the convection of the mass out of the region by
the SBS-induced flow can also detune the SRS interaction
over the longer time scale it takes to move plasma. For ex-
ample, ten percent of the mass can be convected out of a
region with axial flow of 0.1Cs in 60 ps. Thus over this time
scale the presence of SBS and the induced flows also affects
the growth of SRS.

A. Two-dimensional single hotspot simulations

Here, we consider the scattering of a light wave that
focuses to a single hotspot at best focus, z f5Lz/2, with an
electric field of the form

E~y ,z f !5Ẽ0 cos2S 2p
y
Ly

D , uy u,Ly/4,

E~y ,z f !50, uy u.Ly/4, ~33!

such that the vacuum intensity at best focus is I0 .46 The
initial conditions at z50 for which Eq. ~33! is solution to Eq.
~2!, without any scattering or nonlinear refraction, is ob-
tained for convenience by propagating E(y ,z f) backward to
z50. The particular example considered takes Ly540l0 ,

Lz51000l0 , Te53 keV, Ti /Te50.13, ne50.1nc , and a
neopentane ~C5H12! plasma for which the damping of the
Langmuir wave is ne50.034(v02vr) and of the acoustic
wave is na50.17va . The width at focus is 20l0 ~the dis-
tance between zero intensity points! which is equivalent to
focusing with an f /10 lens. The spatially averaged ~over all
y! intensity is 0.094I0 , or, if I05231016 W/cm2, 1.9
31015 W/cm2 for which both the SBS and SRS amplitude
gain exponent is 6; the line integral of the amplitude gain
rate along the axis of the hotspot ~in the strong damping
limit! is 27.47 The reflected light develops a narrower spatial
profile than the incident light but not so narrow that the
intensity along the hotspot axis is the most relevant; the
FWHM ~full-width-half-maximum!, may be the most rel-
evant.

A contour plot of the incident light wave amplitude is
displayed in Fig. 4 at an early time when self-focusing has
had no effect on the propagation and in Fig. 5 after 63 ps
when significant self-focusing has developed. The peak in-
tensity has increased modestly from 0.97I0 to 2.2I0 , the fo-

FIG. 3. The acoustic wave dispersion for a neopentane ~C5H12! plasma as
a function of the ratio of ion to electron temperature for klDe50.5. Curves
for other values of klDe and mixtures are similar. The dashed curves are the
ratios of the damping rate to the wave frequency for each mode. The phase
velocity divided by the electron thermal velocity is shown by the solid
curves for each mode.

FIG. 4. Contour plots of the absolute value of the incident light wave am-
plitude at an early time before self-focusing for the conditions described in
Sec. III A. The contours are in units of the vacuum field amplitude at focus.

FIG. 5. Contour plots of the absolute value of the incident light wave am-
plitude at a time after self-focusing for the conditions described in Sec.
III A. The contours are in units of the vacuum field amplitude at focus. The
highest intensity is 2.2I0 within tightly nested contours.

4345Phys. Plasmas, Vol. 5, No. 12, December 1998 Berger et al.

Downloaded 21 Sep 2013 to 131.112.35.88. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

Sourece:	
 Berger,	
 R.	
 L.,	
 SOll,	
 C.	
 H.,	
 Williams,	
 E.	

A.	
 and	
 Langdon,	
 A.	
 B.:	
 On	
 the	
 Dominant	
 and	

Subdominant	
 Behavior	
 of	
 SOmulated	
 Raman	

and	
 Brillouin	
 Sca]ering	
 Driven	
 by	
 Nonuniform	

Laser	
 Beams	
 (Physics	
 of	
 Plasmas	
 1998)	

1,000	
 nodes	
 10,000	
 nodes	
 100,000	
 nodes	

MTBF	
 1.2	
 days	
 2.9	
 hours	
 17	
 minutes	

pF3D	

Estimated MTBF (If no hardware reliability improvement)

•  Difficult	
 to	
 conOnuously	
 run	
 for	
 a	
 long	
 Ome	
 without	
 fault	
 tolerance	

LLNL-­‐PRES-­‐644916	

Checkpoint/Restart	

	

	

4	

check
point	

check
point	

check
point	

failure
	

Checkpoint	

Periodically	
 save	
 a	
 snapshot	
 of	

an	
 applicaOon	
 state	
 	

to	
 a	
 reliable	
 storage	

Restart	
 	

On	
 a	
 failure,	
 restart	
 the	
 execuOon	

from	
 the	
 latest	
 checkpoint	
 	

Mostly	
 these	
 checkpoints	
 are	
 stored	
 in	
 a	
 PFS	

Parallel	
 file	
 system	
 (PFS)	

PFS	
 performance	
 is	
 important	

XOR	

checkpoint	

PFS	

checkpoint	

LLNL-­‐PRES-­‐644916	

TSUBAME2.0/2.5 Storage Overview �

Scratch �

TSUBAME2.0 Storage 11PB (7PB HDD, 4PB Tape)	

GPFS	
 Lustre	

LLNL-­‐PRES-­‐644916	

TSUBAME2.0	
 PFS	
 Performance	

-­‐	
 checkpoint	
 &	
 	
 restart	
 -­‐	

6	

GPFS	
 Lustre	

10GB/s	

11GB/s	

LLNL-­‐PRES-­‐644916	

HPC	
 applicaOons	
 require	
 more	

bandwidth	

•  We	
 scale	
 out	
 the	
 system,	
 Both	
 checkpoinOng	
 Ome	
 and	

failure	
 rate	
 increases	

7	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

0	
 256	
 512	
 768	
 1024	
 1280	
 1536	

PF
S	

ch
ec
kp

oi
nt
	
 3
m
e	

(h
ou

rs
)	

#	
 of	
 nodes	

Expected TSUBAME2.0 checkpoint time trend

1,000	
 nodes	
 10,000	
 nodes	
 100,000	
 nodes	

MTBF	
 1.2	
 days	
 2.9	
 hours	
 17	
 minutes	

Estimated MTBF (If no hardware reliability improvement)

Checkpoint	
 Ome	

MTBF	

>	

LLNL-­‐PRES-­‐644916	

For	
 fast	
 checkpoinOng	

•  Buy	
 many	
 &	
 fast	
 PFSs	

8	

LLNL-­‐PRES-­‐644916	

10	
 Lustre	
 file	
 systems	
 at	
 LLNL	
 	

9	

10/9/13 High Performance Computing: Lustre Parallel File System Summary

https://computing.llnl.gov/?set=resources&page=lc_lustre 1/1

Computing Pages Search

Comments or Questions? lc-­webers@llnl.gov Last updated: 09-­06-­2013

 System Status

 MyLC (Lorenz)

Getting Started

Accounts

Access Information

Code Development

Computing Resources

Documentation

Running Jobs

Training

Site Index

Contact Us

HOME

Privacy & Legal Notice

LUSTRE PARALLEL FILE SYSTEM

Lustre File System Summary

OCF File System Bandwith
(GB/s)

Capacity
(PB)

OSS Nodes OSTs

lscratchrzb 18 1.2 16 16

lscratchc 40 1.8 32 480

lscratchd 50 2 40 600

lscratche 18 1.2 16 16

lscratchv 106 6.7 96 96

SCF File System Bandwith
(GB/s)

Capacity
(PB)

OSS Nodes OSTs

lscratch1 850 53 768 768

lscratch2 70 2.7 56 840

lscratch4 60 2.3 48 720

lscratch5 80 3.4 64 960

lscratch6 32 2.4 32 96

Lustre Maximum Bandwidths

Maximum bandwidths limits are determined by either file system disk size, network/Lustre router speed, or nodes (i.e., single node job scheduling).

OCF Maximum Lustre Bandwidths
(GB/s)

OCF System
(CZ)

lscratchc lscratchd lscratche lscratchv*

Ansel 12 12 18 10

Aztec .125 .125 .125 .125

Cab 40 20 18 10

Edge 10 10 18 10

Herd 1.25 1.25 1.25 1.25

OSLIC 1.25 1.25 1.25 1.25

Sierra 40 20 18 10

Vulcan – – – 106

OCF System
(RZ)

lscratchrzb

RZMerl 18

RZCereal 10

RZGPU 12

RZSLIC 1.25

RZuSeq 12

RZZeus 10

SCF Maximum Lustre Bandwidths
(GB/s)

SCF System lscratch1* lscratch2 lscratch4 lscratch5 lscratch6

Coastal 40 15 40 40 32

CSLIC 1.25 1.25 1.25 1.25 1.25

Graph 15 20 15 15 15

Inca .125 .125 .125 .125 .125

Juno 40 15 40 40 32

Muir 40 15 40 40 32

Sequoia 850 – – – –

Zin 100 15 60 80 32

* Although Lustre bandwidths are provided, lscratchv and lscratch1 are not yet mounted on all systems listed.

Top

LLNL-­WEB-­537571

70PB	
 1TB/s	

•  DOE	
 applicaOons	
 someOmes	
 run	
 for	
 days	
 or	

weeks	

LLNL-­‐PRES-­‐644916	

	
 	

•  22	
 systems	
 shares	
 10	
 Lustre	

–  Unstable	
 performance	

•  Sequoia	
 checkpoinOng	
 Ome	

–  1.5	
 PB	
 memory	
 /	
 850	
 ~=	
 5	
 hours	

10	

10/9/13 High Performance Computing: Lustre Parallel File System Summary

https://computing.llnl.gov/?set=resources&page=lc_lustre 1/1

Computing Pages Search

Comments or Questions? lc-­webers@llnl.gov Last updated: 09-­06-­2013

 System Status

 MyLC (Lorenz)

Getting Started

Accounts

Access Information

Code Development

Computing Resources

Documentation

Running Jobs

Training

Site Index

Contact Us

HOME

Privacy & Legal Notice

LUSTRE PARALLEL FILE SYSTEM

Lustre File System Summary

OCF File System Bandwith
(GB/s)

Capacity
(PB)

OSS Nodes OSTs

lscratchrzb 18 1.2 16 16

lscratchc 40 1.8 32 480

lscratchd 50 2 40 600

lscratche 18 1.2 16 16

lscratchv 106 6.7 96 96

SCF File System Bandwith
(GB/s)

Capacity
(PB)

OSS Nodes OSTs

lscratch1 850 53 768 768

lscratch2 70 2.7 56 840

lscratch4 60 2.3 48 720

lscratch5 80 3.4 64 960

lscratch6 32 2.4 32 96

Lustre Maximum Bandwidths

Maximum bandwidths limits are determined by either file system disk size, network/Lustre router speed, or nodes (i.e., single node job scheduling).

OCF Maximum Lustre Bandwidths
(GB/s)

OCF System
(CZ)

lscratchc lscratchd lscratche lscratchv*

Ansel 12 12 18 10

Aztec .125 .125 .125 .125

Cab 40 20 18 10

Edge 10 10 18 10

Herd 1.25 1.25 1.25 1.25

OSLIC 1.25 1.25 1.25 1.25

Sierra 40 20 18 10

Vulcan – – – 106

OCF System
(RZ)

lscratchrzb

RZMerl 18

RZCereal 10

RZGPU 12

RZSLIC 1.25

RZuSeq 12

RZZeus 10

SCF Maximum Lustre Bandwidths
(GB/s)

SCF System lscratch1* lscratch2 lscratch4 lscratch5 lscratch6

Coastal 40 15 40 40 32

CSLIC 1.25 1.25 1.25 1.25 1.25

Graph 15 20 15 15 15

Inca .125 .125 .125 .125 .125

Juno 40 15 40 40 32

Muir 40 15 40 40 32

Sequoia 850 – – – –

Zin 100 15 60 80 32

* Although Lustre bandwidths are provided, lscratchv and lscratch1 are not yet mounted on all systems listed.

Top

LLNL-­WEB-­537571

10/9/13 High Performance Computing: Lustre Parallel File System Summary

https://computing.llnl.gov/?set=resources&page=lc_lustre 1/1

Computing Pages Search

Comments or Questions? lc-­webers@llnl.gov Last updated: 09-­06-­2013

 System Status

 MyLC (Lorenz)

Getting Started

Accounts

Access Information

Code Development

Computing Resources

Documentation

Running Jobs

Training

Site Index

Contact Us

HOME

Privacy & Legal Notice

LUSTRE PARALLEL FILE SYSTEM

Lustre File System Summary

OCF File System Bandwith
(GB/s)

Capacity
(PB)

OSS Nodes OSTs

lscratchrzb 18 1.2 16 16

lscratchc 40 1.8 32 480

lscratchd 50 2 40 600

lscratche 18 1.2 16 16

lscratchv 106 6.7 96 96

SCF File System Bandwith
(GB/s)

Capacity
(PB)

OSS Nodes OSTs

lscratch1 850 53 768 768

lscratch2 70 2.7 56 840

lscratch4 60 2.3 48 720

lscratch5 80 3.4 64 960

lscratch6 32 2.4 32 96

Lustre Maximum Bandwidths

Maximum bandwidths limits are determined by either file system disk size, network/Lustre router speed, or nodes (i.e., single node job scheduling).

OCF Maximum Lustre Bandwidths
(GB/s)

OCF System
(CZ)

lscratchc lscratchd lscratche lscratchv*

Ansel 12 12 18 10

Aztec .125 .125 .125 .125

Cab 40 20 18 10

Edge 10 10 18 10

Herd 1.25 1.25 1.25 1.25

OSLIC 1.25 1.25 1.25 1.25

Sierra 40 20 18 10

Vulcan – – – 106

OCF System
(RZ)

lscratchrzb

RZMerl 18

RZCereal 10

RZGPU 12

RZSLIC 1.25

RZuSeq 12

RZZeus 10

SCF Maximum Lustre Bandwidths
(GB/s)

SCF System lscratch1* lscratch2 lscratch4 lscratch5 lscratch6

Coastal 40 15 40 40 32

CSLIC 1.25 1.25 1.25 1.25 1.25

Graph 15 20 15 15 15

Inca .125 .125 .125 .125 .125

Juno 40 15 40 40 32

Muir 40 15 40 40 32

Sequoia 850 – – – –

Zin 100 15 60 80 32

* Although Lustre bandwidths are provided, lscratchv and lscratch1 are not yet mounted on all systems listed.

Top

LLNL-­WEB-­537571

10/9/13 High Performance Computing: Lustre Parallel File System Summary

https://computing.llnl.gov/?set=resources&page=lc_lustre 1/1

Computing Pages Search

Comments or Questions? lc-­webers@llnl.gov Last updated: 09-­06-­2013

 System Status

 MyLC (Lorenz)

Getting Started

Accounts

Access Information

Code Development

Computing Resources

Documentation

Running Jobs

Training

Site Index

Contact Us

HOME

Privacy & Legal Notice

LUSTRE PARALLEL FILE SYSTEM

Lustre File System Summary

OCF File System Bandwith
(GB/s)

Capacity
(PB)

OSS Nodes OSTs

lscratchrzb 18 1.2 16 16

lscratchc 40 1.8 32 480

lscratchd 50 2 40 600

lscratche 18 1.2 16 16

lscratchv 106 6.7 96 96

SCF File System Bandwith
(GB/s)

Capacity
(PB)

OSS Nodes OSTs

lscratch1 850 53 768 768

lscratch2 70 2.7 56 840

lscratch4 60 2.3 48 720

lscratch5 80 3.4 64 960

lscratch6 32 2.4 32 96

Lustre Maximum Bandwidths

Maximum bandwidths limits are determined by either file system disk size, network/Lustre router speed, or nodes (i.e., single node job scheduling).

OCF Maximum Lustre Bandwidths
(GB/s)

OCF System
(CZ)

lscratchc lscratchd lscratche lscratchv*

Ansel 12 12 18 10

Aztec .125 .125 .125 .125

Cab 40 20 18 10

Edge 10 10 18 10

Herd 1.25 1.25 1.25 1.25

OSLIC 1.25 1.25 1.25 1.25

Sierra 40 20 18 10

Vulcan – – – 106

OCF System
(RZ)

lscratchrzb

RZMerl 18

RZCereal 10

RZGPU 12

RZSLIC 1.25

RZuSeq 12

RZZeus 10

SCF Maximum Lustre Bandwidths
(GB/s)

SCF System lscratch1* lscratch2 lscratch4 lscratch5 lscratch6

Coastal 40 15 40 40 32

CSLIC 1.25 1.25 1.25 1.25 1.25

Graph 15 20 15 15 15

Inca .125 .125 .125 .125 .125

Juno 40 15 40 40 32

Muir 40 15 40 40 32

Sequoia 850 – – – –

Zin 100 15 60 80 32

* Although Lustre bandwidths are provided, lscratchv and lscratch1 are not yet mounted on all systems listed.

Top

LLNL-­WEB-­537571

10	
 Lustre	
 file	
 systems	
 at	
 LLNL	
 	

LLNL-­‐PRES-­‐644916	

For	
 fast	
 checkpoinOng	

•  Buy	
 many	
 &	
 fast	
 PFSs	

•  Local	
 storage	

11	

LLNL-­‐PRES-­‐644916	

TSUBAME2.0 & 2.5 Storage Overview �

Scratch �

TSUBAME2.0 Storage 11PB (7PB HDD, 4PB Tape)	

GPFS	
 Lustre	

SSD	

300	
 GB/s	

11GB/s	
 10GB/s	

LLNL-­‐PRES-­‐644916	

CheckpoinOng	
 to	
 Local-­‐storage	

13	

Parallel	
 file	
 system	
 (PFS)	

	

LLNL-­‐PRES-­‐644916	

CheckpoinOng	
 to	
 Local-­‐storage	

14	

Parallel	
 file	
 system	
 (PFS)	

	

Sogware	

RAID5	

(XOR	

encoding)	

LLNL-­‐PRES-­‐644916	

8% 15%

Scalable	
 checkpoinOng	
 methods	

15	

ckpt	
 A3	

ckpt	
 A2	

ckpt	
 A1	

Parity	
 1	

ckpt	
 B3	

ckpt	
 B2	

Parity	
 2	

ckpt	
 B1	

ckpt	
 C3	

Parity	
 3	

ckpt	
 C2	

ckpt	
 C1	

Parity	
 4	

ckpt	
 D3	

ckpt	
 D2	

ckpt	
 D1	

Node	
 1	
 Node	
 2	
 Node	
 3	
 Node	
 4	

XOR	
 encoding	
 example	

failure
	

Failure analysis on TSUBAME2.0

•  Most	
 of	
 failures	
 comes	
 from	
 one	
 node,	
 or	
 can	
 recover	
 by	
 XOR	
 checkpoint	

–  e.g.	
 1)	
 TSUBAME2.0:	
 92%	
 failures	

–  e.g.	
 2)	
 LLNL	
 clusters:	
 85%	
 failures	

•  Diskless	
 checkpoint:	

–  Create	
 redundant	
 data	
 across	
 local	
 storages	

on	
 compute	
 nodes	
 using	
 a	
 encoding	

technique	
 such	
 as	
 XOR	

–  Can	
 restore	
 lost	
 checkpoints	
 on	
 a	
 failure	

caused	
 by	
 small	
 #	
 of	
 nodes	
 like	
 RAID-­‐5	

XOR	

checkpoint	

PFS	

checkpoint	

15	
 Failure analysis on LLNL clusters

LOCAL/XOR/PARTNER checkpoint
PFS checkpoint

92% 85% Diskless	
 checkpoint	
 is	

promising	
 approach	

Rest	
 of	
 failures	
 sOll	
 require	
 a	
 checkpoint	
 on	
 a	
 reliable	
 PFS	

LLNL-­‐PRES-­‐644916	

Local-­‐storage	
 +	
 PFS	

16	

Parallel	
 file	
 system	
 (PFS)	

	

LLNL-­‐PRES-­‐644916	

MulO-­‐level	
 checkpoinOng	
 (MLC)	

•  Use	
 storage	
 levels	
 hierarchically	

–  XOR	
 checkpoint:	
 Frequently	

•  	
 for	
 one	
 node	
 or	
 a	
 few	
 node	
 failure	

–  PFS	
 checkpoint:	
 Less	
 frequently	

•  	
 for	
 mulO-­‐node	
 failure	

	

	

Level-­‐1	

Level-­‐2	

XOR	

checkpoint	

PFS	

checkpoint	

17	

XOR	

checkpoint	

PFS	

checkpoint	

LLNL-­‐PRES-­‐644916	

MulO-­‐level	
 checkpoinOng	
 (MLC)	

18	

Table 4: Expected and observed e⇤ciency

System Expected Observed Duration of
E⇤ciency E⇤ciency Observation

Coastal 95.2% 94.68% 716,613 node-hours
Atlas 96.7% 92.39% 553,829 node-hours

Figure 9: Optimal e⇤ciency for single- and multi-level checkpointing

We now use the model to explore multi-level checkpointing in a more general context. In the following experi-
ments, we simulated a three level checkpointing system (L = 3) and varied the length of the compute interval, the
number of level 1 and level 2 checkpoints per level 3 period, the failure rates, and the cost of level 3 checkpoints.

For checkpoint costs, we use the times recorded in Table 1 for checkpointing pF3D on Coastal using LOCAL on
RAM, XOR on RAM, and Lustre, which gives us costs of 0.5 seconds, 4.5 seconds, and 1052 seconds, respectively.
We set recovery costs to be the same as checkpoint costs. Using the failure data for pF3D on Coastal in Table 2,
we express the failure rates in units of failures per job-second, i.e., average number of failures at a given level per
node-hour, multiplied by the number of nodes used in the job, divided by 3,600 seconds per hour. This leads to
failure rates of 2 · 10�7 for level 1, 1.8 · 10�6 for level 2, and 4 · 10�7 for level 3.

As future systems become larger, failure rates are expected to increase, and as the system memory size grows
faster than the performance of the parallel file system, the cost of accessing the parallel file system is expected to
increase. To explore these e�ects, we increase the base failure rates and the level L checkpoint costs by factors of
2, 10, and 50. We do not adjust the costs of lower-level checkpoints, since the performance of node-local storage is
expected to scale with system size. For each combination, we identified the compute interval and the level 1 and
level 2 checkpoint counts that provide the highest e⇤ciency. For comparison, we performed the same experiment
for single-level checkpointing, assuming only the parallel file system is available.

Figure 9 presents the e⇤ciency achieved for each configuration, and Figure 10(a) shows the time between level
L checkpoints. We label the results for the multi-level system as “Multi” and those for the single-level system as
“Single.” The groupings of bars along the x-axis correspond to failure rates that are one, two, ten, or fifty times
the base values. Within each grouping, we increase the cost of the level L checkpoint by one, two, ten, and fifty
times the base value.

In all cases, the multi-level system results in higher e⇤ciencies, and it increases the time between checkpoints
to the parallel file system. Moreover, both advantages increase with either increasing failure rates or higher parallel
file system costs. The gain in machine e⇤ciency ranges from a few percent up to 35%, and, as can be seen in
Figure 10(b), the load on the parallel file system is reduced by a factor ranging from 2x-4x. Thus, compared to
single-level checkpointing, multi-level checkpointing simultaneously increases e⇤ciency while reducing load on the
parallel file system. These results highlight the benefits of multi-level checkpointing on current and future systems.

Overall, we find that multi-level checkpointing is essential for future systems. Even with systems that are
50⇥ less reliable, a three level checkpointing system achieves e⇤ciencies over 75%, so long as we maintain relative

21

Source:	
 A.	
 Moody,	
 G.	
 Bronevetsky,	
 K.	
 Mohror,	
 and	
 B.	
 R.	
 de	
 Supinski,	
 “Design,	
 Modeling,	
 and	
 EvaluaOon	
 of	
 a	
 Scalable	
 MulO-­‐
level	
 CheckpoinOng	
 System,”	
 in	
 Proceedings	
 of	
 the	
 2010	
 ACM/IEEE	
 InternaOonal	
 Conference	
 for	
 High	
 Performance	

CompuOng,	
 Networking,	
 Storage	
 and	
 Analysis	
 (SC	
 10).	

•  Efficiency	
 compared	
 to	

single-­‐level	

checkpoinOng	

•  Efficiency	
 is	
 how	
 much	

raOo	
 an	
 applicaOon	

spend	
 its	
 computaOon	

except	
 C/R	

•  MLC	
 significantly	
 improves	
 system	
 efficiency	

–  Increase	
 failure	
 rate	
 up	
 to	
 50	
 Omes,	
 but	
 sOll	
 high	
 efficiency	

–  one	
 order	
 of	
 magnitude	
 in	
 50	
 Omes	
 higher	
 failure	
 rate	

LLNL-­‐PRES-­‐644916	

MLC	
 Problems	
 on	
 Petascale	
 or	
 larger	

1.  	
 PFS	
 checkpoint	
 overhead	
 	

–  Even	
 with	
 MLC,	
 PFS	
 checkpoint	
 sOll	
 becomes	
 big	

overhead	

2.  	
 Inefficient	
 PFS	
 uOlizaOon	

–  Time	
 between	
 PFS	
 checkpoints	
 becomes	
 long,	

PFS	
 is	
 not	
 uOlized	
 during	
 XOR	
 checkpoints	

	

	

19	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

0	
 256	
 512	
 768	
 1024	
 1280	
 1536	

PF
S	

ch
ec
kp

oi
nt
	
 3
m
e	

(h
ou

rs
)	

#	
 of	
 nodes	

1.	
 PFS	
 checkpoint	

overhead	

2.	
 UnuOlized	
 PFS	

72x overhead

PFS checkpoint

XOR checkpoint

TSUBAME2.0 checkpoint time trend

two	
 potenOal	
 problems	
 	

Local	

checkpoint	

PFS	

checkpoint	

ComputaOon	

synchronous	
 mulO-­‐level	
 checkpoinOng	

LLNL-­‐PRES-­‐644916	

Asynchronous	
 mulO-­‐level	
 checkpoinOng	

XOR	

checkpoint	

PFS	

checkpoint	

ComputaOon	

Asynchronous	
 checkpoinOng	
 overview	

Synchronous	
 mulO-­‐level	
 checkpoinOng	
 checkpoinOng	

20	

XOR	

checkpoint	

PFS	

checkpoint	

ComputaOon	

Next	
 checkpoint	

right	
 ager	
 	

XOR	
 checkpoint	
 can	
 be	

taken	
 during	
 PFS	

checkpoinOng	

•  Write	
 PFS	

checkpoint	
 in	
 the	

background,	

minimize	
 overhead	

•  By	
 iniOaOng	
 next	

ckpt	
 right	
 ager	

previous	
 one,	

increase	
 uOlizaOon	

LLNL-­‐PRES-­‐644916	

Asynchronous	
 checkpoinOng	
 system	
 design	

overview	

21	

•  Between	
 compute	
 nodes	
 and	
 PFS,	
 use	
 staging	
 nodes	

–  Dedicated	
 extra	
 nodes	
 for	
 transferring	
 local	
 checkpoints	
 	

–  Read	
 checkpoints	
 	
 from	
 compute	
 nodes	
 using	
 RDMA,	
 write	
 out	
 	
 to	
 a	
 PFS	

	

PFS	
 checkpoint	

Compute	
 nodes	

Local	
 storage	

Local	
 storage	

Local	
 storage	

Staging	
 nodes	

PFS	

Local	
 checkpoint	

Staging	
 	

client	

Staging	
 	

client	

Staging	
 	

client	

Staging	
 	

server	

Staging	
 	

server	

Staging	
 	

server	

RD
M
A	

Re
ad

	

W
rit
e	

LLNL-­‐PRES-­‐644916	
 22	

How	
 to	
 calculate	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ?	
 	
 expected _ runtime

p0 (T)
t0 (T)

: No failure for T seconds

: Expected time when p0 (T)

pi (T)

ti (T)
: i - level failure for T seconds

: Expected time when pi (T)

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

λi :	
 i	
 -­‐level	
 checkpoint	

Ome	

λ = λi∑

k
p0 (t + ck)
t0 (t + ck)

k pi (t + ck)
ti (t + ck)

i

k

k i

p0 (rk)

pi (rk)

p0 (rk)
t0 (rk)

ti (rk)

Duration t + ck rk
No failure

Failure

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

t : Interval

: c -level checkpoint time

rc : c -level recovery time
cc

LLNL-­‐PRES-­‐644916	

Efficiency:	
 Asynchronous	
 vs.	

synchronous	

23	

Efficiency = ideal runtime
expected runtime

expected runtime
ideal runtime :	
 	
 No	
 failure	
 and	
 No	
 checkpoint	

Computed	
 by	
 the	
 models	
 :

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./0123"2.43"5$"" -./0123"2.43"5%" -./0123"2.43"5$!"

67
8/
39

8:
" ;-<"8=>4"5$"?"@=9AB0=8C/9D"

;-<"8=>4"5$"?"E0=8C/9D"

;-<"8=>4"5%"?"@=9AB0=8C/9D"

;-<"8=>4"5%"?"E0=8C/9D"

;-<"8=>4"5$!"?"@=9AB0=8C/9D"

;-<"8=>4"5$!"?"E0=8C/9D"

Figure 13: Efficiency comparison: Blocking vs. Non-blocking check-
pointing

crease. To explore the effects, we increase failure rates and
checkpoint costs by factors of 1, 2, and 10, and compare
efficiency between both a blocking checkpointing and a non-
blocking one. As for checkpoint size per compute node,
we employ 29GB, which is just a half of memory size
of TSUBAME2.0 thin nodes. As show in Figure 12, a
XOR encoding rate is constant regardless of the number
of compute nodes, which means XOR encoding scales with
system size. Thus, when we increase checkpoint costs, we
increase only PFS checkpoint cost.

Figure 13 shows that efficiency of both checkpointing
methods under different failure rates and checkpoint costs.
We define the efficiency as ideal time

expected time . Here, ideal time is
the runtime assuming the application encounters no failures
and take no checkpoints, while expected time is the ex-
pected runtime computed from our model for a non-blocking
method and an existing model [4] for a blocking one.
When we compute the efficiency, we optimize (1) Level 1
counts between Level 2 checkpoints, and (2) the interval
between checkpoints, given failure rates and checkpoint
costs. The efficiency can be maximal efficiency. We found
that the non-blocking method achieves higher efficiency than
a blocking method in any cases. Especially, the efficiency
gap become more apparent in higher failure rate and higher
checkpoint cost because longer PFS checkpoint time on a
blocking checkpointing is easy to encounter a lower level
failure during the PFS checkpoint, and rollback to the
beginning, while a non-blocking method can rollback to
the recent XOR checkpoint. Moreover, since overhead of a
blocking checkpoint is identical to checkpoint latency, which
is directlly added to an application runtime, the efficiency
become lower than a non-blocking checkpointing.

Because a non-blocking checkpointing overlaps with an
application computation, the checkpointing method can
imapct the application runtime depending on overhead fac-
tor, α. If the overhead factor becomes larger, our non-
blocking checkpointing can introduce lower efficiency than
a blocking checkpointing. Figure 14 shows efficiency of
systems with increasing overhead rate in different failure

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" !#%" !#'" !#)" !#+" $"

!"
#$
%&

#'
(

)*%+,%-.(+-/%(012((

-.$/"0.$/"12345678"

-.$/"0.$/"937:;2345678"

-.%/"0.%/"12345678"

-.%/"0.%/"937:;2345678"

-.%/"0.$!/"12345678"

-.%/"0.$!/"937:;2345678"

-.$!/"0.%/"12345678"

-.$!/"0.%/"937:;2345678"

Figure 14: Efficiency under varying the overhead factor: α

!"
#!"
$!"
%!"
&!"
'!"
(!"
)!"
*!"
+!"
#!!"

!" $" &" (" *" #!" #$" #&" #("

!"
#$

%&"
'(
)*
+(
,-
&.
$/
-0

$,
(12

34
5"
67
(

+689"(:86,.&(.:(:8%9$&"(&8,"((

,-./01-234.56+!78"
,-./01-234.56*!78"
,-./01-234.56)!78"
01-234.5"6+!78"
01-234.5"6*!78"
01-24.56)!78"

Figure 15: Required PFS throughput at different failure rates

rates factor and PFS checkpoint cost factor. We found that a
blocking checkpointing can become more efficient than our
non-blocking with larger overhead factor in current failure
rates and cost. However, in future systems where the failure
rates and cost become larger, a non-blocking checkpointing
can be effective even with large overhead factor. In large
failure rate and checkpoint cost factors, checkpoint interval
become short and the overhead dominate to the overall
runtime. Especially, since an application is blocked with a
blocking checkpointing, the checkpiont latency impacts an
application runtime rather than a non-blocking one in future
systems.

C. Building an efficient and resilient system

When building a reliable data center or supercomputer,
two major concerns are cost of the PFS and how much
throughput a PFS should have to maintain high efficiency.
Generally, we want to minimize cost, but not sacrifice
performance. Using our model, we can predict the required
PFS bandwidth for achieving high system efficiency when
using our checkpointing system.

Figure 15 presents the required PFS bandwidth to main-
tain 90%, 80%, and 70% efficiency under increasing failure

9

x1.1	
 x1.2	

x1.8	

x1.1	
 x1.3	

x1.8	

0"

500"

1000"

1500"

2000"

0" 10" 20" 30"

w
rit
e&
th
ro
ug
hp

ut
&p
er
&&S
ta
gi
ng
&

no
de

&(M
B/
se
c)
&

#&of&threads&

Fig. 9: Impact of varying data writer count

0"

2000"

4000"

6000"

8000"

10000"

0" 50" 100" 150" 200" 250" 300"

Ag
gr
eg
at
e'
w
rit
e'
th
ro
ug
hp

ut
'

(M
B/
se
c)
'

#'of'Staging'nodes'

Fig. 10: Aggregate write throughputs

0"

0.005"

0.01"

0.015"

0.02"

0.025"

0.03"

0" 0.5" 1" 1.5" 2" 2.5" 3"

O
ve
rh
ea
d(
fa
ct
or
:(α

=f
(x
)(

checkpoint(rate(per(Staging(node:(x((GB/sec)(

Fig. 11: Empirical overhead factor

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

2" 4" 8" 16" 32" 64" 128"

XO
X#
en

co
di
ng
#ra

te
#(M

B/
se
co
nd

s)
#

XOR#group#size#

##of#nodes#

2"nodes"

4"nodes"

8"nodes"

16"nodes"

32"nodes"

64"nodes"

128"nodes"

Fig. 12: XOR encoding performance per node

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

Failure"rate"x1"" Failure"rate"x2" Failure"rate"x10"

Effi
ci
en

cy
"

PFS"cost"x1"/"NonAblocking"

PFS"cost"x1"/"Blocking"

PFS"cost"x2"/"NonAblocking"

PFS"cost"x2"/"Blocking"

PFS"cost"x10"/"NonAblocking"

PFS"cost"x10"/"Blocking"

Fig. 13: Efficiency of blocking and non-blocking checkpointing

scales with system size. Thus, when we increase checkpoint
costs, we increase only PFS checkpoint cost.

Figure 13 shows the efficiency of both checkpointing meth-
ods under different failure rates and checkpoint costs. We
define the efficiency as ideal time

expected time . The ideal time is the
run time if the application encounters no failures and takes
no checkpoints, while expected time is the expected run time
computed from our model for non-blocking checkpointing
and the original model [4] for blocking checkpointing. When
we compute efficiency, we optimize Level 1 counts between
Level 2 checkpoints, and the interval between checkpoints,
given failure rates and checkpoint costs, which yields the
maximal efficiency. The non-blocking method always achieves
higher efficiency than the blocking method. The efficiency gap

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.2" 0.4" 0.6" 0.8" 1"

Effi
ci
en

cy
(

Overhead(rate((α)((

Fx1,"Cx1,"Non4blocking"

Fx1,"Cx1,"Blocking"

Fx2,"Cx2,"Non4blocking"

Fx2,"Cx2,"Blocking"

Fx2,"Cx10,"Non4blocking"

Fx2,"Cx10,"Blocking"

Fx10,"Cx2,"Non4blocking"

Fx10,"Cx2,"Blocking"

Fig. 14: Efficiency under varying the overhead factor: α

becomes more apparent with higher failure rates and higher
checkpoint cost. This is because the long time to take a
PFS checkpoint during blocking checkpointing increases the
likelihood of a lower level failure occuring during the PFS
checkpoint, so the application must rollback to the beginning.
However, with non-blocking checkpointing, the application
can rollback to the most recent XOR checkpoint. Further, since
overhead of a blocking checkpoint is identical to checkpoint
latency, which is directly added to application run time, the
efficiency decreases more quickly than with non-blocking
checkpointing.

Since staging nodes write checkpoints to the PFS indepen-
dently of compute node activities, they can throttle their write
rate without reducing application performance. We found that
we could read checkpoints from compute nodes at half of the
maximum bandwidth (i.e., PFS cost ×2), but still maintain
90% efficiency with current failure rates.

Because a non-blocking checkpoint overlaps with appli-
cation computation, non-blocking checkpointing can impact
the application run time depending on the overhead factor,
α, in different applications. If the overhead factor increases
enough, our non-blocking checkpointing could be less efficient
than blocking checkpointing. Figure 14 shows efficiency with
increasing overhead factor and different failure rates and PFS
checkpoint costs. F and C denote the base failure rate and PFS
checkpoint cost. Blocking checkpointing can become more
efficient than non-blocking with a larger overhead factor at cur-
rent failure rates and cost. However, in future systems where

8

The	
 asynchronous	
 method	
 always	
 achieves	
 higher	
 efficiency	
 than	
 the	
 synchronous	
 method	

LLNL-­‐PRES-­‐644916	

For	
 fast	
 checkpoinOng	

•  Buy	
 many	
 &	
 fast	
 PFSs	

•  Use	
 of	
 Local	
 storage	

•  Storage	
 design	

24	

LLNL-­‐PRES-­‐644916	

MulO-­‐Oer	
 storage	
 design	

•  Even	
 one	
 of	
 checkpoint	
 loss	
 does	
 not	
 work	

–  We	
 need	
 an	
 addiOonal	
 Oer	
 of	
 storage	

25	

Parallel	
 file	
 system	
 (PFS)	

Scalable	
 Checkpoint	

Unreliable	
 Checkpoint	

Not	
 Scalable	
 Checkpoint	

Reliable	
 Checkpoint	

Bust	
 buffer	

LLNL-­‐PRES-­‐644916	

TSUBAME3.0	
 EBD	
 Prototype	
 	

mulO-­‐mSATA	
 High	
 I/O	
 BW,	
 low	
 power	
 &	
 cost	

0	

2000	

4000	

6000	

8000	

10000	

0	
 5	
 10	
 15	
 20	

Re
ad

	
 th
ro
ug
hp

ut
	
 [M

B/
s]

	

#	
 mSATAs	

Raw	
 mSATA	
 4KB	

RAID0	
 1MB	

RAID0	
 64KB	

RAID0	
 1MB	
 (no	
 cache)	

RAID0	
 64KB	
 (no	
 cache)	

0	

1000	

2000	

3000	

4000	

0	
 5	
 10	
 15	
 20	

W
rit
e	

th
ro
ug
hp

ut
	
 [M

B/
s]
	

#	
 mSATAs	

Restart:	
 8	
 GB/s	

Checkpoint:	
 4	
 GB/s	

Tuning	

Tuning	

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

Source: Shirahata, K., Sato, H. and Matsuoka, S.: Preliminary I/O
perfor- mance Evaluation on GPU Accelerator and External
Memory, IPSJ SIG Technical Reports 2013-HPC-141 (2013).

LLNL-­‐PRES-­‐644916	
 27	

A	
 single	
 mSATA	
 SSD	
 8	
 integrated	
 mSATA	
 SSDs	

RAID	
 cards	
 Prototype/Test	
 machine	

1	

2	

3	
 4	

5	
 6	
 7	
 8	

LLNL-­‐PRES-­‐644916	

Efficiency

MulO-­‐level	
 Asynchronous	
 C/R	
 Model	
 	

•  Compute	
 checkpoint/restart	
 “Efficiency”

for C/R strategy comparison	

–  Efficiency : FracOon	
 of	
 Ome	
 an	
 applicaOon	

spends	
 only	
 in	
 computaOon	
 in	
 opOmal	

checkpoint	
 interval	

Efficiency = ideal runtime
expected runtime

expected runtime
ideal runtime :	
 	
 No	
 failure	
 and	
 No	
 checkpoint	

Computed	
 by	
 the	
 models	
 :

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

k
p0 (t + ck)
t0 (t + ck)

k pi (t + ck)
ti (t + ck)

i

k

k i

p0 (rk)

pi (rk)

p0 (rk)
t0 (rk)

ti (rk)

Duratio
n t + ck rk

No
failure

Failure

λi : i -level checkpoint time

: c -level checkpoint time
rc : c -level recovery time

cc
t : Interval

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

p0 (T)
t0 (T)

: No failure for T seconds
: Expected time when p0 (T)

pi (T)

ti (T)
: i - level failure for T seconds
: Expected time when pi (T)

f : (L i=1...N , Oi=1...N , Ri=1...N)

•  Input:	
 Each	
 level	
 of	
 	

–  Li :	
 Checkpoint	
 Latency	

–  Oi :	
 Checkpoint	
 overhead	

–  Ri :	
 Restart	
 Ome	

•  Output:	
 “Efficiency”
	

	

Source: Sato, K., Maruyama, N., Mohror, K., Moody, A.,
Gamblin, T., de Supinski, B. R. and Matsuoka, S.: Design and
Modeling of a Non-Blocking Checkpointing System (SC12)

LLNL-­‐PRES-­‐644916	

Modeling	
 of	
 C/R	
 Strategies	

•  Li :	
 Checkpoint	
 Latency	

–  Time	
 to	
 complete	
 a	
 checkpoint	
 (Ci)	
 and	
 encoding	
 (Ei)	

•  Oi :	
 Checkpoint	
 overhead	

–  The	
 increased	
 execuOon	
 Ome	
 of	
 an	
 applicaOon	
 	

•  Sync.	
 C/R:	
 Checkpoint	
 overhead	
 (Oi)	
 =	
 Checkpoint	
 latency	
 (Li)	

•  Async.	
 C/R:	
 IniOalizaOon	
 Ome	
 of	
 level	
 i C/R	

•  Ci & Ri :	
 Checkpoint/Restart	
 Ome	

Li = Ci + Ei	

Oi =	

Ci + Ei (Sync.) 	

Ii (Async.)	

Ci or Ri =	

<	
 C/R	
 date	
 size	
 /	
 node	
 >	
 	
 ☓	
 	
 	
 <#	
 of	
 C/R	
 nodes	
 per	
 Si

*	
 >	
 	

<	
 write	
 perf.	
 (
 wi)	
 	
 >	
 	
 	
 or	
 	
 	
 <read	
 perf.	
 (
 ri)	
 >	
 	

* Si	
 :	
 Oer i storage	

LLNL-­‐PRES-­‐644916	

Recursive	
 Structured	
 Storage	
 Model	

•  GeneralizaOon	
 of	
 storage	

architectures	
 with	
 ”context-­‐free	

grammar”	

–  A	
 Oer	
 i	
 hierarchical	
 enOty	
 (Hi),	
 has	
 a	

storage	
 (Si	
)shared	
 by	
 (mi)	
 upper	

hierarchical	
 enOOes	
 (Hi−1	
)	

–  Hi=0 	
 is	
 a	
 compute	
 node	

–  HN {m1, m2, . . . , mN }	

	

30	

Hi
Compute	

node	

Si

i = 0	
 i > 0	

1 2 mi

Hi-1 Hi-1 Hi-1

SSD	
 2	
 SSD	
 3	
 SSD	
 4	
 SSD	
 1	

Compute	

node	
 1	

Compute	

node	
 2	

Compute	

node	
 3	

Compute	

node	
 4	

PFS	
 (Parallel	
 file	
 system)	

SSD	
 1	
 SSD	
 2	
 SSD	
 3	
 SSD	
 4	

Compute	

node	
 1	
 	

Compute	

node	
 2	

Compute	

node	
 3	

Compute	

node	
 4	

PFS	
 (Parallel	
 file	
 system)	

Flat	
 buffer	
 system:	
 H2 {1, 4}	
 Burst	
 buffer	
 system:	
 H2 {2, 2}	

	

Storage	
 Model: HN {m1, m2, . . . , mN }

IPSJ SIG Technical Report

Hi
Compute(
node(

Si

i = 0 i > 0

1 2 mi

Hi-1 Hi-1 Hi-1

Fig. 3 Recursive structured storage model

For efficiency exploration, we use the read and write throughput
of our test system.

4. Modeling
As described in Sections 2 and 3, each checkpoint strategy and

storage architecture have advantages and disadvantages. To dis-
cover which checkpoint strategy is best for given a storage archi-
tecture, we developed a model of the checkpoint strategies and
storage architectures.

4.1 Recursive Structured Storage Model
We introduce a recursive structured storage model to gener-

alize storage architectures to describe both flat and burst buffer
systems with a single model. Figure 3 shows the recursive struc-
tured storage model based on a context-free grammar. A tier i
hierarchical entity, Hi, has a storage S i shared by mi upper hierar-
chical entities, Hi−1. We denote Hi=0 as a compute node. If each
tier of hierarchical storage is shared as {m1,m2, . . . ,mN} in an N-
tired hierarchical storage, we denote the storage architecture as
HN {m1,m2, . . . ,mN}. For example, the flat buffer system in Fig-
ure 2 (a) can be represented as H2 {1, 4}. It has 2 levels of storage:
the node-local storage is not shared, so m1 = 1; however, the PFS
is shared across all compute nodes, so m2 = 4. In the same man-
ner, the burst buffer system in Figure 2 (b) can be represented as
H2 {2, 2}. The total number of compute nodes can be calculated
as
∏2

i=1 mi = 4 nodes.

Table 2 Tier i storage (S i) performance parameters
ri Sequential read throughput from compute nodes (Hi=0)
wi Sequential write throughput from compute nodes (Hi=0)
mi The number of a upper hierarchical entities (Hi−1) sharing S i

In this model, we isolate storage from compute nodes, which
means the model does not distinguish between node-local storage
and network-attached storage. Instead, we differentiate the stor-
age levels using performance parameters. Table 2 shows a list of
the performance parameters. We consider only sequential I/O be-
cause typically the I/O pattern of checkpoint/restart is sequential.
Note that ri and wi are not the throughput of the storage but the
throughput between compute nodes and the storage location. For
example, if tier i storage has r, w MB/sec of throughput, but is
connected via slow network, l < r, w, then the parameters be-
come ri = wi = l MB/sec. Using these performance parameters,
we estimate checkpoint/restart time.

4.2 Modeling of Checkpoint/Restart Strategies
Given the storage performance parameters of each tier, we

model level i checkpoint overhead (Oi), checkpoint latency (Li)

and restart overhead (Ri) in a multilevel checkpointing library
[29]. For simplicity, if multiple compute nodes concurrently ac-
cess a single storage location, we assume the read/write through-
put per node scales down according to the number of concur-
rently accesses. The model relies on an existing multilevel asyn-
chronous checkpoint/restart model [29], so we also include that
model’s assumptions.

Checkpoint overhead (Oi) and restart overhead (Ri) are the in-
creased execution time of an application because of checkpoint-
ing and restarting, respectively. Checkpoint latency (Li) is the
time to complete a checkpoint. If a checkpoint strategy conducts
erasure encoding, such as XOR, the checkpoint overhead and la-
tency also include the encoding time. Checkpoint overhead and
latency are to clarify the differences between synchronous and
asynchronous checkpointing. During synchronous checkpoint-
ing, so checkpoint overhead and latency is equal, i.e., Oi = Li,
because each process is blocked until the checkpointing is com-
pleted. With asynchronous checkpointing, checkpoint overhead
can be generally reduced because asynchronous checkpointing
incurs only initialization overhead, so checkpoint overhead is
equal or smaller than checkpoint latency, i.e., Oi < Li.

First, we model level i checkpoint overhead and latency as

Oi =

⎧⎪⎪⎨
⎪⎪⎩

Ci + Ei (synchronous checkpointing)
Ii (asynchronous checkpointing)

Li = Ci + Ei

where Ci denotes actual checkpointing time, Ei denotes encoding
time, and Ii denotes initialization time for asynchronous check-
pointing. If the level i checkpointing does not encode check-
points, Ei becomes 0; otherwise we model the encoding time as
Ei = D · ei where D is the checkpoint size per compute node, and
ei is encoding throughput. The actual checkpointing time (Ci),
i.e., sequencial write time, can be simply calculated as

Ci =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D × M/wi (i = N)

D ×
⌈

M∏N
k=i+1 mk

⌉
/wi (otherwise)

where M denotes the total number of checkpointing compute
nodes, i.e.,

∏N
i=1 mi. With uncoordinated checkpointing, we as-

sume the checkpointing time is identical to coordinated check-
pointing time because of indirect global synchronization as de-
scribed in Section 2.3. Because

∏N
k=i+1 mk is the number of stor-

age locations S i,
⌈

M∏N
k=i+1 mk

⌉
represents the max number of com-

pute nodes per storage location S i.
When restarting with uncoordinated checkpointing, the restart

overhead is different than that of coordinated checkpointing. We
model the restart overhead (Ri), i.e., sequencial read time, as:

Ri =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D × K/ri (i = N)

D ×
⌈

K∏N
k=i+1 mk

⌉
/ri (otherwise)

where K is the number of restarting compute nodes. With coor-
dinated restart, all compute nodes concurrently read their check-
points, so K is identical to the total number of compute nodes

c⃝ 2013 Information Processing Society of Japan

Example	

<#	
 of	
 C/R	
 nodes	
 per	
 Si	
 >	
 	

K*

=

<#	
 of	
 Si	
 >	
 (=	
 ΠN
k=i+1 mk)	
 	
 	

*K: C/R cluster size

LLNL-­‐PRES-­‐644916	

0	

0.2	

0.4	

0.6	

0.8	

1	

1	
 2	
 10	
 50	

Effi
ci
en

cy
	

Scale	
 factor	
 (xF, xL2)	

Current	
 	
 TSUBAME2.5	
 storage	
 design	
 MulO-­‐Oer	
 design	

Efficiency	
 with	
 Increasing	
 Failure	
 Rates	

and	
 Checkpoint	
 Costs	
 	

31	

•  With	
 uncoordinated	
 	

checkpoinOng,	
 70%	
 efficiency	
 even	
 on	
 systems	
 that	
 are	
 two	

orders	
 of	
 magnitude	
 larger	
 (if	
 logging	
 overhead	
 is	
 0)	

⇒	
 ParOal	
 restart	
 can	
 exploit	
 the	
 bandwidth	
 of	
 both	
 burst	
 buffers	
 and	
 the	

PFS	

	

•  The	
 burst	
 buffer	
 system	

always	
 achieves	
 a	

higher	
 efficiency	
 	

⇒　Stores	
 checkpoints	
 on	

fewer	
 nodes	

	

LLNL-­‐PRES-­‐644916	

Summary	

•  Fault	
 tolerance	
 is	
 important	

– Fast	
 and	
 Reliable	
 checkpoinOng	
 is	
 required	

•  Lustre	
 provides	
 high	
 bandwidth	

– CheckpoinOng	
 requires	
 more	

•  For	
 fast	
 checkpoinOng	

– MulO-­‐level	
 checkpoinOng	

– MulO-­‐Oer	
 storage	
 design	

32	

LLNL-­‐PRES-­‐644916	

Q	
 &	
 A	
 Speaker:

Kento Sato (佐藤 賢斗)
kent@matsulab.is.titech.ac.jp

Tokyo Institute of Technology (Tokyo Tech)
	
 Research Fellow of the Japan Society for the Promotion of Science

http://matsu-www.is.titech.ac.jp/~kent/index_en.html

33	

Collaborators

Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R de. Supinski,
Naoya Maruyama, Satoshi Matsuoka

