
FMI: Fault Tolerant Messaging Interface for Fast
and Transparent Recovery

Kento Sato

Dep. of Mathematical and Computing Science

Tokyo Institute of Technology

2-12-1-W8-33, Ohokayama,

Meguro-ku, Tokyo 152-8552 Japan

Email: kent@matsulab.is.titech.ac.jp

Adam Moody, Kathryn Mohror,
Todd Gamblin and Bronis R. de Supinski

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

Livermore, CA 94551 USA

Email: {moody20, kathryn, tgamblin, bronis}@llnl.gov

Naoya Maruyama

Advanced Institute for Computational Science

RIKEN

7-1-26, Minatojima-minami-machi,

Chuo-ku, Kobe, Hyogo, 650-0047 Japan

Email: nmaruyama@riken.jp

Satoshi Matsuoka

Global Scientific Information and Computing Center

Tokyo Institute of Technology

2-12-1-W8-33, Ohokayama,

Meguro-ku, Tokyo 152-8552 Japan

Email: matsu@is.titech.ac.jp

Abstract—Future supercomputers built with more components
will enable larger, higher-fidelity simulations, but at the cost of
higher failure rates. Traditional approaches to mitigating failures,
such as checkpoint/restart (C/R) to a parallel file system incur
large overheads. On future, extreme-scale systems, it is unlikely
that traditional C/R will recover a failed application before
the next failure occurs. To address this problem, we present
the Fault Tolerant Messaging Interface (FMI), which enables
extremely low-latency recovery. FMI accomplishes this using a
survivable communication runtime coupled with fast, in-memory
C/R, and dynamic node allocation. FMI provides message-passing
semantics similar to MPI, but applications written using FMI can
run through failures. The FMI runtime software handles fault
tolerance, including checkpointing application state, restarting
failed processes, and allocating additional nodes when needed.
Our tests show that FMI runs with similar failure-free perfor-
mance as MPI, but FMI incurs only a 28% overhead with a very
high mean time between failures of 1 minute.

Keywords-Fault tolerance; MPI; Checkpoint/Restart;

I. INTRODUCTION

Advances in high performance computing (HPC) enable

larger and higher-fidelity simulations, which are critical for

scientific discovery. However, larger systems generally have

larger numbers of processing elements and other components,

which increase the overall system failure rate. If this trend

continues, experts predict that mean time between failures

(MTBF) for future systems may shrink to tens of minutes

or hours [1]–[3]. Our prior analysis of failure rates on

HPC systems showed that if we extrapolate the observed

single-node failure rates to a system with 100,000 nodes, the

estimated MTBF is 17 minutes [4]. Without changes in HPC

trends or more reliable hardware, fault tolerant techniques will

be critical for future, extreme-scale systems.

The Message Passing Interface (MPI) [5] is the de-facto

HPC programming paradigm, but it employs a fail-stop model.

On failure, all processes in the MPI job are terminated.

MPI applications generally cope with failures using check-

point/restart schemes (C/R). They periodically write their state

to files on a reliable store, such as a parallel file system (PFS).

When a failure occurs, the current job is terminated, and the

application is relaunched as a new job that restarts from the last

checkpoint. The approach is simple, but it incurs significant

overheads due to high checkpoint and restart costs [6], [7].
In environments with high-frequency failures, it is critical

that applications restart quickly, so that useful work can

be done before the next failure occurs. For more efficient

execution at extreme scale, there are four capabilities needed

for resilience in such an environment: a messaging interface

that can run through faults, fast in-memory or node-local

checkpoint storage, fast failure detection, and a mechanism to

dynamically allocate additional compute resources in the event

of hardware failures, which terminates running processes.
Our approach to satisfy these requirements is the Fault

Tolerant Messaging Interface (FMI), a survivable messag-

ing interface that uses fast, transparent in-memory C/R and

dynamic node allocation. With FMI, a developer writes an

application using semantics similar to MPI. The FMI runtime

ensures that the application runs through failures by handling

the activities needed for fault tolerance. Our implementation

of FMI has failure-free performance that is comparable with

MPI. Experiments with a Poisson equation solver show that

running with FMI incurs only a 28% overhead with a very

high mean time between failures of 1 minute.
Our key contributions are:

• a simplified programming model to enable fast, transpar-

ent C/R;

• implementation of a runtime that withstands process

failures and allocates spare resources;

• a new overlay network structure called log-ring for scal-

2014 IEEE 28th International Parallel & Distributed Processing Symposium

1530-2075/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPS.2014.126

1225

able failure detection and notification;

• and demonstration of the fault tolerance and scalability

of FMI even with a MTBF of 1 minute.

Our paper is organized as follows. We present characteristics

of failures on large systems, and we identify critical resilience

capabilities in Section II. In Section III, we introduce FMI,

and we detail its implementation in Section IV. We describe

our in-memory C/R strategy and the modeling in Section V.

In Section VI, we present our experimental results. We detail

related work in Section VII, and in Section VIII, we discuss

the limitations of the current state of FMI and our future plans

to mitigate them.

II. BACKGROUND

Here, we first describe the types of failures observed on a

number of large HPC systems. We then give background on

the capabilities that are critical for fault tolerance on extreme-

scale systems: a survivable messaging runtime, fast C/R, fast

failure detection, and spare node allocation.

A. Characteristics of System Failures

We divide failures into two categories. A recoverable failure

is one that can be remedied transparently by the hardware

or operating system without terminating running processes.

An unrecoverable failure causes the application to terminate.

Examples of recoverable failures include single bit flips in

DRAM and disk failures [8]. These failures occur frequently

and are typically handled with hardware redundancy tech-

niques such as ECC [9] or RAID [10]. Without hardware

recovery techniques, these errors substantially degrade perfor-

mance. Unrecoverable failures include CPU, motherboard, and

power supply failures [8], [11]. These failures cause affected

nodes to crash, terminating any running processes and losing

the full contents of memory on the nodes.

In this work, we address unrecoverable failures, which we

refer to as simply failures. Previous studies show that certain

failures occur more often than others on large scale systems,

and in particular, most failures affect a small portion of the

system. For instance, 85% of job failures on Linux clusters

at Lawrence Livermore National Laboratory (LLNL) affect

at most one node [4]. Similarly, as reported in [11] and as

shown in Table I, about 92% of failures affect a single node

on TSUBAME2.0, and only about 5% of failures affect more

than 4 nodes. For a more detailed breakdown of failure modes

on TSUBAME2.0 from November 2010 to April 2012, see

Figure 1 showing failure rates (the number of failures per

second) of each component.

TABLE I: TSUBAME2.0 Failure Types

Failure type Affected nodes Failures per year MTBF

PFS, Core switch 1408 5.61 65.10 days
Rack 32 4.20 86.90 days
Edge switch 16 21.02 17.37 days
PSU 4 12.61 28.94 days
Compute node 1 554.10 0.658 days

0
1
2
3
4
5
6
7
8

C
PU

D
is

k

O
th

er
SW

U
nk

no
w

n

M
/B

M
em

or
y

O
th

er
H

W

G
PU

PS
U

R
ac

k

E
dg

e
sw

itc
h

PF
S

C
or

e
sw

itc
h

Failure level: １ 2 3 4 5

Th
e

of

 fa
ilu

re
s

/ s
ec

on
ds

 [x

 1
0-

6]

Fig. 1: TSUBAME2.0 Failure Breakdown

B. Critical Capabilities for Fault Tolerance

As described in the previous section, most failures only

affect a small portion of the system, so the vast majority

of processes and connections are still valid after a failure.

It is inefficient for the runtime to tear all of this down

only to immediately relaunch and reconnect it all. Launching

large sets of processes, loading executables and libraries from

shared file systems, and bootstrapping connections between

those processes takes non-trivial amounts of time. All of this

motivates the need for a survivable messaging runtime system.

Such a system should be able to maintain processes and

connections that are unaffected by the failure while starting

and integrating replacement processes as needed.

However, a survivable messaging runtime itself is not suf-

ficient for fault tolerant computing at extreme scales; a node

failure destroys part of a parallel application’s state. Today,

applications checkpoint to a reliable PFS to mitigate node

failures, and while this is sufficient for small systems, it incurs

high overheads at extreme scale.

Multilevel C/R is a proven approach to lower these over-

heads [4], [12]. In this approach, checkpoints are placed in

RAM or other node-local storage, and encoding techniques

are used to protect data against common failures such as

single-node failures. Only a select few checkpoints are copied

to the PFS to guard against more catastrophic failures. To

distinguish between these two types of checkpoints, the former

are called level-1 checkpoints and the latter are called level-2
checkpoints. Since most failures only affect a small portion

of the system, simple encoding schemes are often sufficient to

recover lost data, and node-local storage provides fast, scalable

performance. The net effect is that multilevel checkpointing

gains an advantage by making the common case fast.

In a survivable model, processes that do not fail are not

terminated; they simply keep running. The runtime system

is responsible for starting new processes to replace those

that failed and for providing a mechanism to incorporate the

processes into the already running job, including acquisition

of additional compute nodes if node failures occurred.

One solution is to request additional nodes in the allocation,

e.g., request 70 compute nodes for a 64-node job, reserving

6 additional nodes as spares. A difficulty with this approach

1226

1 0 3 2 5 4 7 6

FMI

Leave Join

FMI rank (virtual rank)

User’s view
FMI’s view

P1 P0 P3 P2 P5 P4 P7 P6 P9 P8

Node 0 (failed) Node 1 Node 2 Node 3 Node 4

Fig. 2: Overview of FMI

is correctly estimating the number of spare nodes needed by

a job, which requires knowledge of the failure characteristics

of the machine and the behavior of the application. Another

solution is to request compute nodes from the resource man-

ager. This method may incur a high overhead if the job has

to wait for spare nodes to become available. This overhead

is reduced if the resource manager keeps a reserve of spare

nodes specifically for fault tolerance. Either way, to support

fast restart, it is critical to have access to spare resources.

Finally, one needs a fast, scalable mechanism to detect and

react to failures. All of the above mechanisms matter little

if the time to detect a failure overwhelms the cost to restart

the job. Thus, we take these properties as required capabilities

for our design of FMI: a survivable messaging runtime, fast

C/R, scalable failure detection, notification, and spare node

allocation.

III. FMI PROGRAMMING MODEL

In this section, we describe the FMI programming model

with an overview and then with an example.

A. Overview

With FMI, an application developer writes an application

with MPI semantics, and FMI ensures that the application is

agnostic to failure. The FMI runtime software handles the fault

tolerance activities, including fast checkpointing of application

state, restarting failed processes on failure, restoring applica-

tion state, and allocating additional nodes when needed.

In Figure 2, we give an overview of FMI. Each process in an

FMI application has an FMI rank as in MPI. But unlike MPI,

an FMI rank is virtual and not bound to a particular process

(Px) on a physical node. FMI may change the mapping of

FMI ranks to processes to hide underlying hardware failures,

transparently to the application. FMI also provides a capability

for compute nodes to join or leave the job dynamically,

primarily to replace failed nodes with spare nodes. Although

our current prototype of FMI has limitations (See Section

VIII), FMI transparently intercepts MPI calls, so that existing

MPI applications can run on top of FMI with minimal code

changes or without any code changes if users want to run their

application with the fault tolerance capabilities disabled.

B. Writing an FMI Application

Writing a fault tolerant application is usually a complex

ordeal, especially if there are a large number of dependencies

across processes. With FMI, application developers simply

1: int main(int *argc, char *argv[]) {
2: FMI_Init(&argc, &argv);
3: while ((n = FMI_Loop(...)) < numloop) {
4: /*user program*/
5: }
6: FMI_Finalize();
7: }

Fig. 3: FMI example code

1 0 3 2 5 4 7 6

0 = FMI_Loop(…): checkpoint �

1 = FMI_Loop(…): checkpoint�

FMI_Init(…)�

1 0 3 2 5 4 7 6

FMI_Init(…)�

1 0

1 = FMI_Loop(…): restart�

1 0 3 2 5 4 7 6

P0 P1 P2 P3 P4 P5 P6 P7

P8 P9

1 0

state
H1, 2

H3

H3

H3

H3

H1, 2

H3

H3 3 2 5 4 7 6

2 = FMI_Loop(…): checkpoint� H3

H3

H3

Fig. 4: Example: P0(rank=0) and P1(rank=1) fail after loop id=1. P8 and P9 start from
loop id=1 as rank 0 and 1 each, and the other processes retry loop id=1

write their code with MPI semantics and fault tolerance is

provided by FMI. Figure 3 shows an example main loop

for a code using FMI. The primary difference between the

FMI and MPI programming models is that FMI provides the

function FMI Loop that synchronizes the application, writes

checkpoints, or rolls back and restarts as needed. This single

function call makes an application fault tolerant:

int FMI Loop(void∗∗ ckpts, size t∗ sizes, int len).

The parameter ckpts is an array of pointers to variables that

contain data that needs to be checkpointed. If a failure occurred

during the previous loop iteration, the last good values of

the variables replace the values in ckpts to roll back to the

last checkpoint. The parameter sizes is an array of sizes

of each checkpointed variable, and len is the length of the

arrays. FMI Loop returns the loop iteration count (loop id)

incremented from 0 regardless of whether a checkpoint was

written during this loop or not. However, if FMI Loop rolls

back and restores the last checkpoint, it returns the loop id
during which the last checkpoint was written.

When FMI Loop is called the first time at the beginning of

the execution, it writes checkpoints in memory using memcpy
to minimize checkpoint time, and applies erasure encoding to

the checkpoints using XOR encoding for level-1 checkpointing

(See Section V). When completed, FMI Loop guarantees that

an application can continue to run even on a failure within

the loop as long as any failures that occur are recoverable by

the level-1 checkpoint. After the first call, FMI Loop writes

checkpoints at an interval specified by an interval environ-

mental variable. Alternatively, if a user specifies an MTBF

1227

H3

fmirun

H1

H2

(a) High level view

FMI_Init�

FMI_Loop� FMI_Init�

FMI_Loop�

user program �� FMI_Loop�

fmirun�Failed transition
Notified transition
Successful transition

H1

H2

H3

FMI_Loop�

(b) Low level view

Fig. 5: Process states for FMI

environmental variable, Currently FMI dynamically auto-tunes

the checkpoint interval to maximize efficiency according to the

MTBF based on Vaidya’s model [13]. Future versions of FMI

will support multilevel C/R, and optimize the intervals based

on our multilevel C/R models [4], [11].

Figure 4 shows an example where FMI Loop writes check-

points every loop, i.e. interval=1. If a failure occurs (e.g.,

after loop id = 1), all FMI ranks are notified of the failure

by FMI (See Section IV-C), and all FMI communication calls

return an error until recovery is performed in FMI Loop.

Then, the FMI process management program (fmirun) trans-

parently allocates another node and spawns new processes

(P8, P9 in the example) on the node to keep the number

of FMI ranks constant. After all FMI ranks reach FMI Loop,

FMI Loop restores the values of the checkpointed variables

from loop id = 1 and returns loop id = 1. All recovery

operations are transparent to the application, and all processes

are simply rolled back to the last good state.

IV. FMI SYSTEM DESIGN

In this section, we detail our implementation of FMI. We

describe our methods for keeping track of process states,

managing dynamic node allocation, and joining new processes

into the running application; our new overlay network design

called log-ring for scalable failure detection and notification;

and our method for transparently recovering communicators.

A. Process State Management

FMI manages the states of all processes, tracking whether

or not processes are running successfully, and synchronizing

for recovery when a failure occurs. Figure 5 shows a high level

and low level view of transitions of process states. There are

three process states in FMI: Bootstrapping (H1), Connecting
(H2), and Running (H3).

The H1 and H2 states involve launching processes and

establishing internal FMI communication networks, while the

H3 state represents the running state of the application. In

the H1 state, fmirun launches the FMI ranks (See Section

IV-B), which then gather connection information (endpoints)

to establish a dedicated low-latency communication network,

similar to Open MPI’s Matching Transfer Layer [14]. FMI

fmirun.task�

������

fmirun�

Node 0 Node 1

machinefile�

fmirun.task�

������

Node 2

fmirun.task�

����	�

Node 3

fmirun.task�

�
����

Node 4

fmirun.task�

����
�

Fig. 6: FMI process management

uses PMGR [15], which provides a scalable communication

interface for bootstrapping MPI jobs and exchanging messages

via TCP/IP. On success, the processes transition to the H2

state, where the FMI ranks create a log-ring overlay network

for scalable failure detection (See Section IV-C). If both H1

and H2 states succeed, the processes transition to H3. In the

H3 state, the processes execute the application code, with the

addition of FMI Loop, that performs fault tolerance activities

as described in Section III-B.

If any processes terminate because of a failure, fmirun
launches new processes to replace them; they begin in the H1

state via the Failed transition path. The non-failed processes

transition from their current state back to H1 on the Notified
transition path. Thus, all processes transition to H1, then

update endpoints to transparently recover communicators (See

Section IV-D). On success, all processes transition to H2 and

then H3 on Successful transition paths.

Figure 5(b) shows details of the states and transitions, and

how failed ranks join the running non-failed processes. H1 and

H2 are synchronizing states because they involve collective

communications. Newly launched processes in H1 execute

FMI Init. Non-failed processes block in FMI Loop until the

new processes are bootstrapped and endpoints in the internal

communication network are established. Then all processes

transition to H2 to rebuild the log-ring network. If a process is

notified of failure during FMI Loop, non-failed processes abort

all C/R operations, then internally transition to H1. Following

this, the application computation begins from the previous

iteration or the iteration with the last good checkpoint.

B. Hierarchical Process Management

Figure 6 shows an overview of the hierarchical structure of

FMI process management. The master process fmirun is at

the top level. fmirun has similar functionality to mpirun in

MPI, but also manages processes during recovery in the event

of failure. fmirun spawns fmirun.task processes on each

node, which are at the second level of the hierarchy. Each

fmirun.task calls fork/exec to launch a user program (Px)

and manages the processes on its own local node.

If any fmirun.task receives an unsuccessful exit signal

from a child process, fmirun.task kills any other running

child processes, and exits with EXIT FAILURE. When fmirun
receives an exit signal from an fmirun.task, fmirun at-

tempts to find spare nodes to replace those that failed in the

machinelist file; if no spare nodes are found, or if there are

1228

�

�

�

���

���

�

�

��
�

�	�

�

��
�

���

	

�

�

�

�
�

���

���

�

�

��
�

�	�

�

��
�

���

	

�

�

�

�

�

���

���

�

�

��
�

�	�

�

��
�

���

	

�

�

�� 	�	

��

��

�

��

����
����
�

��

	��	

Fig. 7: Left: Structure of the log-ring overlay network (n = 16). Middle: If process 0
fails, processes 1, 2, 4, 8, 12, 14, and 15 are notified by ibverbs. Right: All processes
are notified with 2 hops.

not enough to replace all that failed, fmirun waits until new

nodes are allocated from the resource manager. It then spawns

any lost fmirun.task processes onto the spare nodes or the

new nodes.

In our design, the master process (fmirun) becomes a single

point of failure. However, because the MTBF of a single node

in HPC systems is an order of years [4], [16], the failure rate

for fmirun is negligibly small. That said, we plan to explore

distributed management designs in future work.

C. Scalable Failure Detection

On failure, all surviving processes need to be notified so

that the recovery process can begin, and restore consistent

checkpoints across all processes. However, not all low-level

communication libraries include a failure detection capability.

For example, the Performance Scaled Messaging (PSM) li-

brary, a low-latency communication library for QLogic Infini-

band, returns an error if there is a failure during connection

establishment. However, once the connection is established,

successive communication calls (e.g., sends or receives), do

not return any errors even in the event of a peer failure.

One approach for detecting failures is that when fmirun re-

ceives a EXIT FAILURE signal from an fmirun.task, fmirun
could send notification signals to all other fmirun.task
processes. However, the time complexity of this approach is

O(N) in the number of compute nodes, which is not scalable.

Our approach to failure detection is a distributed method

using a log-ring overlay network across the FMI ranks which

can propagate failure notification in ��log2(n)�/2� messages.

We use the Infiniband Verbs API, ibverbs, a low-level commu-

nication library for Infiniband. The ibverbs library includes an

event driven error notification capability, such that, if a process

fails, all processes connected to the failed process can detect

it by catching the error event.

The structure of the overlay network is critical for scalable

failure detection. One option is a completely connected graph,

where each process connects to all the other processes. In

this option, notification of failure to all n processes occurs in

O(1) steps. However, establishing the complete graph overlay

network is O(n). In contrast, if we establish a ring overlay

network, the connection cost is O(1), but propagation of

failure notification to all processes is O(n).
To achieve a good balance between the overlay establish-

ment cost and the global detection cost, we propose a log-ring
overlay network. In a log-ring overlay network, each process

0� 0� 0� 0�1� 1� 1� 1�

P1 P0 P3 P2 P5 P4 P7 P6 P9 P8

FMI_COMM_WORLD� 0 1 2 3 4 5 6 7
endpoint (epoch=0) P0 P1 P2 P3 P4 P5 P6 P7
endpoint (epoch=1) P8 P9 P2 P3 P4 P5 P6 P7

comm_id = 1� 0 1 2 3 4 5 6 7
duplicate

split

����

Node 0 Node 1 Node 2 Node 3 Node 4

comm_id = 2� 0 0 1 1 2 2 3 3

color =�

User’s view
FMI’s view

Fig. 8: Transparent communicator recovery

makes log2(n) connections with neighbors that are 2k hops

away in the FMI rank space (2k < n). Figure 7 shows an

example log-ring overlay network with n = 16 processes.

In the example overlay, process 0 connects to 1, 2, 4, and

8 (log2(16)=4 connections), and receives connections from

processes 8, 12, 14 and 15 (left in Figure 7). If process 0

fails, processes 1, 2, 4, 8, 12, 14 and 15 receive a disconnection

event from ibverbs (middle in Figure 7). Once these processes

receive the disconnection event, they explicitly close their

other existing connections to propagate the failure notification.

In this way, the failure notification reaches all processes with

2 hops (= ��log2(16)�/2�) in the example overlay network

(right in Figure 7). In general, the log-ring overlay network

can propagate failure notification across all processes with

��log2(n)�/2� hops. Thus, the overlay network establishment

and global failure notification are of order O (log (n)) and

scalable.

The value of k in logk (n) connections is a tunable pa-

rameter in FMI. Changing its value can change the overlay

establishment and the global detection costs. As we show

in Section VI-A, the establishment cost is negligible even

with k = 2, which has maximal connections in the log-ring.

Thus, we use k = 2 as the default value, but we leave the

optimization of k for future work.

D. Transparent Communicator Recovery

One of obstacles of fault tolerant parallel computing is

recovering communicators used in message passing. In FMI,

communicators are a mapping between FMI ranks and phys-

ical processes, so recovering communicators is necessary for

communication with the newly launched processes after re-

covery. Because FMI virtualizes the rank-to-process mapping,

it can transparently recover communicators. Figure 8 shows an

example where the application duplicates FMI COMM WORLD,

and splits the communicator into two communicators. If a

failure occurs on Node 0 and P0 and P1 terminate, FMI

changes the process mapping by updating connection infor-

mation (endpoint). In this example, FMI transparently updates

the endpoints of FMI ranks 0 and 1 to P8, P9 respectively

during the H1 bootstrapping state (See Figure 5(b)).

Another problem to address is that stale messages could be

received if they are sent before a failure and not yet received

1229

�
���	�

��������

���������

������	�

������	�

��
���

��������

��������

��������

������	�

��
���

��������

��������

��������

������	�

��
���

�

�

������	 �����
	 ������	 ������	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 9: XOR encoding algorithm: The circled numbers are the steps of sending/receiving
parity

by the target rank. For example, if process A sends a message

before a failure, but process B does not receive it before the

failure, it may receive the stale message when it executes the

receive operation after recovery. To address the problem, FMI

increments an epoch variable after each recovery, and discards

all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a

failure occurs. However, if a node fails, we may lose needed

simulation data from processes on the failed node, so C/R is

critical and must be scalable to be effective at large scales.

Because the most common failures affect only a single or a

few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding

algorithm as the Scalable Checkpoint/Restart library (SCR)

[4]. However, while SCR requires a file system interface for

storing checkpoints, FMI writes checkpoints directly to mem-

ory without involving a file system for faster C/R throughput.

Unlike with MPI, FMI does not terminate non-failed processes

on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding

groups (XOR group) with ranks in each group distributed

across nodes. Because the common failure affects a single

node, FMI ensures that each rank in the same node belongs

to a different XOR group. For example, when processes are

launched as in Figure 6, FMI splits the ranks as shown in

Figure 8. Figure 9 shows the encoding algorithm for one XOR

group. First, for an XOR group size of n, FMI divides a

checkpoint into n−1 chunks, and allocates an additional parity

chunk initialized with zeros. Each rank sends the parity chunk

to its “right-hand” neighbor, and receives from its “left-hand”

neighbor, and calculates ”parity ∧ = chunk 1”. In general,

each rank sends and receives a parity chunk, and computes

”parity ∧ = chunk k” at step k (k is circled number in

Figure 9). Thus, each rank receives back the encoded parity

chunk after n steps. When FMI restores a checkpoint, FMI

decodes it with the same algorithm as the encoding, and then

a newly launched rank collects the decoded checkpoint chunks

from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,

s bytes are copied by memcpy, s + s
n−1 bytes are transferred,

0
1
2
3
4
5
6
7
8

2 4 8 16 32 64

C
he

ck
po

in
t t

im
e

(S
ec

on
ds

)

XOR Group Size

Checkpoint (XOR: Encoding)
Checkpoint (XOR: Communication)
Checkpoint (memcpy)
Checkpoint (Model)

Fig. 10: XOR checkpoint time

0
1
2
3
4
5
6
7
8

2 4 8 16 32 64

R
es

ta
rt

 ti
m

e
 (S

ec
on

ds
)

XOR Group Size

Restart (XOR: Gather)
Restart (XOR: Decoding)
Restart (XOR: Communication)
Restart (memcpy)
Restart (Model)

Fig. 11: XOR restart time

and s bytes are encoded in total. Therefore, the time for C/R

can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network

bandwidth. Because the XOR operation is memory-bound, the

time becomes s
mem bw . When restoring a checkpoint, a newly

launched rank collects the decoded checkpoint chunks from

the other ranks at the end (Gather in Figure 11), so s
net bw is

added for restart.

The model tells us that the C/R time is constant regardless

of the total number of processes. Thus, the our in-memory

XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning

FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency

is important. If an XOR group size is small, memory con-

sumption and C/R time become large. For large XOR group

sizes, resiliency decreases because the XOR C/R encoding is

tolerant to only a single rank failure in a XOR group. We

performed experiments to evaluate the trade-offs of C/R time

and XOR group size.

Figures 10 and 11 show the checkpoint and restart times

where the checkpoint size is 6GB per node. For the memory

and network bandwidths in the model, we use the peak

bandwidth of the Sierra cluster at LLNL in Table II. We find

that the C/R time starts to saturate at an XOR group size of

16 nodes. For this XOR group size, the parity chunk size is

only 6.6 % of the full checkpoint size. Thus, we use 16 nodes

for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we

measured several benchmarks with FMI, and predict the

performance of an FMI application run at extreme scale. We

ran our experiments on the Sierra cluster at LLNL. The details

of Sierra are in Table II. Because FMI follows the messaging

semantics of MPI, we want to compare the performance of

1230

TABLE II: Sierra Cluster Specification

Nodes 1,856 compute nodes (1,944 nodes in total)
CPU 2.8 GHz Intel Xeon EP X5660 × 2 (12 cores in total)

Memory 24 GB (Peak CPU memory bandwidth: 32 GB/s)
Interconnect QLogic InfiniBand QDR

FMI with an MPI implementation. For those experiments, we

used MVAPICH2 version 1.2 running on top of SLURM [17].

A. FMI Performance

TABLE III: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)

MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication perfor-

mance on Sierra, and compare FMI to MVAPICH2. Table

III shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because

FMI can intercept MPI calls, we compiled the same ping-pong

source for both MPI and FMI. The results show that FMI

has very similar performance compared to MPI for both the

latency and the bandwidth. The overhead for providing fault

tolerance in FMI is negligibly small for messaging.

Because failure rates are expected to increase at extreme

scale, C/R for failure recovery must be fast and scalable. To

evaluate the scalability of C/R in FMI, we ran a benchmark

which writes checkpoints (6 GB/node), and then recovers

using the checkpoints. Figure 12 shows the C/R throughput

including XOR encoding and decoding. The checkpoint time

of FMI is fairly scalable because the checkpointing and

encoding times are constant regardless of the total number

of nodes. Also, because FMI writes and reads checkpoints to

and from memory, the throughputs are high. FMI achieves 2.4

GB/sec checkpointing throughput per node, and 1.3 GB/sec

restart throughput per node. On a restart, newly launched

processes gather the restored checkpoint chunks from the other

processes in the XOR group after the decoding as in Figure 11,

so the restart throughput is lower than that of checkpointing.

Fast and scalable failure detection time and reinitialization

time (H1 and H2 states) are critical in environments with high

failure rates. Figure 13 shows the time for all processes to be

notified of failure with the log-ring overlay. In this experiment,

we inject a failure by sending a signal to kill a process in

between two checkpoints to measure averaged performance.

For example, if we write checkpoints after 10, 20, 30 seconds,

we inject failures after 15, 25, 35 seconds. later. As shown, the

global detection is scalable because the log-ring propagates the

notification in logarithmic time. When a process terminates,

ibverbs waits approximately 0.2 seconds before closing the

connection to the terminated process. Therefore there is a

constant overhead of 0.2 seconds before the notification starts

to propagate in the log-ring.

FMI establishes the log-ring overlay network (H2 states) on

the recovery. The initialization must be fast and scalable for

fast recovery. In Figure 14, we show the initialization time

for MVAPICH2 and FMI. For FMI, this is time spent in the

H1 and H2 states. We compare the time in FMI Init with

that in MVAPICH2’s MPI Init. We see that the time to build

the log-ring (H2 state) is small and scalable, because each

process only connects to log2 n other processes. The FMI

bootsrapping time (H1 state) is about two times faster than

that of MVAPICH2. The current prototype of FMI has limited

capabilities compared to MPI. A smaller number of messages

are exchanged in FMI initialization than in MVAPICH2, which

results in faster bootstrapping. However, we expect that if FMI

evolves to support more capabilities, it will also exchange

more messages and its initialization time will approach that

of MVAPICH2.

B. Application Performance with FMI

To investigate the impact of FMI on the performance of

an actual application run, we used a Poisson equation solver,

the Himeno benchmark [18]. Himeno is a stencil application

in which each grid point is iteratively updated using only

neighbor points. The computational pattern frequently appears

in numerical simulation codes for solving partial differential

equations. Himeno uses point-to-point communications and

one Allreduce at the end of each iteration.

Figure 15 shows the performance of Himeno compared with

MPI using SCR [4]. The FLOPS metric is computed based

on time spent in application code making useful progress.

For example, if an application fails at time t1, and rolls

back to time t0, the FLOPS metric does not include the lost

computation done to restore the application back to the state

at t1. We configured SCR to write checkpoints to tmpfs and

optimize the checkpoint interval of both SCR and FMI with

Vaidya’s model [13] based on configured MTBF of 1 minute,

and measured checkpointing time.

Because the point-to-point communication performance of

FMI and MVAPICH2 are nearly the same (Table III), the

performance of Himeno is nearly the same for FMI and MPI if

we do not write any checkpoints during the execution (FMI &

MPI in Figure 15). For checkpointing, SCR writes to memory

via a file system (MPI + C), while FMI writes checkpoints

directly to memory using memcpy (FMI + C). Thus, FMI

exhibits higher performance by 10.3 % with the same memory

consumption as MPI when checkpointing is enabled. We also

injected failures into Himeno to see the impact of killing a

process with a MTBF of 1 minute during the execution. Even

with the very high failure rate, we found that Himeno incurred

only a 28% overhead with FMI. Because the FMI C/R time is

constant regardless of the total number of nodes according to

performance model in Section V-B, we expect FMI to scale

to a much larger number of nodes.

C. Resiliency with FMI

FMI applications can continue to run as long as all failures

are recoverable. To investigate how long an application can

1231

0

50

100

150

200

250

300

350

0 500 1000 1500

C
/R

 T
hr

ou
gh

pu
t (

G
B

/s
ec

on
ds

)

of Processes

Checkpoint (XOR encoding)
Restart (XOR decoding)

Fig. 12: Checkpoint/Restart scalability with 6 GB/node
checkpoints, 12 processes/node

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

48 96 192 384 768 1536

G
lo

ba
l f

ai
lu

re
 n

ot
ifi

ca
tio

n
tim

e
(S

ec
on

ds
)

of Processes

Fig. 13: Failure notification time with log-ring overlay
network

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

48 96 192 384 768 1536

E
la

ps
ed

 ti
m

e
(S

ec
on

ds
)

of Processes

Bootstrapping
Log-ring overlay
SLURM (MVAPICH2)

Fig. 14: MPI Init vs. FMI Init

0

500

1000

1500

2000

2500

0 500 1000 1500

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

of Processes (12 processes/node)

MPI
FMI
MPI + C
FMI + C
FMI + C/R

Fig. 15: Himeno benchmark (Checkpoint size: 821
MB/node, MTBF: 1 minute)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ob

ab
ili

ty
 to

 r
un

 fo
r

24
 h

ou
rs

Scale factor (Current failure rate = 1)

Coastal (w/ FMI)
Coastal (w/o FMI)

Fig. 16: Probability to continuously run for 24 hours

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Scale factor

L1 - 1 GB/node
L1 - 10 GB/node
L1 & 2 - 1 GB/node
L1 & 2 - 10 GB/node

Fig. 17: Efficiency of multilevel C/R under increasing failure
rate and L2 C/R time

run continuously with or without FMI, we simulated an

application running at extreme scale. If we assume failures

occur according to Poisson’s distribution, the probability that

an application runs for time T continuously is e−λ·T where λ
is the unrecoverable failure rate.

Figure 16 shows the probability to run continuously for 24

hours using failure rates from the LLNL failure analysis of the

Coastal cluster [4], with a level-1 failure rate of 2.13−6 (MTBF

= 130 hours) (recoverable by XOR encoding), and level-2

failure rate of 4.27−7 (MTBF = 650 hours) (unrecoverable

failures). We increase the failure rates from the observed level-

1 and 2 values by scale factors of 1 (observed values) to 50

to evaluate FMI’s performance at larger scales. With FMI,

80% of executions can run for 24 hours with even 6× higher

failure rates. At failure rates of 10× higher than today’s,

70% of FMI executions can run continuously for 24 hours,

while only 10% of non-FMI executions can do the same.

Executions without FMI are terminated by any failures, while

FMI executions are terminated by only level-2 failure. Thus,

using FMI effectively decreases unrecoverable failure rate, λ,

and thus the probability of long continuous runs is higher with

FMI, even at very high failure rates. At a scale factor 50, the

level-1 MTBF becomes 2.6 hours (= 130 hours / 50), which

is a quite long MTBF for FMI. As shown in Figure 15, FMI

achieves a only 28% overhead (72% of efficiency) even with

MTBF of 1 minute. Also, in the absence of unrecoverable

failures, an application can run with negligibly small overhead.

If FMI uses a multilevel C/R strategy and writes some

checkpoints to the PFS (level-2 C/R) in addition to XOR

C/R (level-1 C/R), level-2 failures can also be recoverable.

Here, we predict the efficiency of using multilevel C/R with

FMI, where efficiency is the ratio of time spent in useful

computation only versus computation, C/R activities, and

recomputation after recovery. As future systems become larger,

we expect higher failure rates and total aggregate checkpoint

sizes. Thus, to predict application efficiency at larger scales,

we increase failure rates and checkpoint costs up to 50×,

using the Coastal system as a base line. Because level-1 C/R

time is constant regardless of the total number of nodes, we

only increase level-2 C/R time. For level-2 C/R, we assume

we write checkpoints asynchronously to the PFS using the

framework and model developed in our prior work [16].

Figure 17 shows the efficiency of multilevel C/R in FMI.

Because we are uncertain as to whether level-2 failure rates

will increase at extreme scale, in our evaluation we increase

only the level-1 failure rate (L1) or both the level-1 and 2

failure rates (L1,2) with different checkpoint sizes per node

(1 or 10 GB/node). We estimate level-1 C/R time using the

performance model in Section V-B. For level-2 C/R time,

we use a PFS bandwidth of 50 GB/s, the bandwidth of the

LLNL Lustre file system /p/lscratchd. We find that we

can achieve fairly high efficiencies if future systems can keep

current level-2 failure rates constant, or the size of checkpoints

is small. However, if both level-1 and 2 failure rates increase

and the checkpoint size is large, the efficiency drops down to

under 2%. Thus, future systems must either decrease level-2

failure rates or increase PFS throughput to achieve high system

efficiency.

1232

VII. RELATED WORK

Fault tolerant messaging runtimes will be critical for appli-

cations to be able to recover from failures on future systems.

FT-MPI [19] and ULFM (User Level Fault Mitigation) [20]

implement fault tolerant capabilities on top of MPI. In these

libraries, failures are visible to applications, so users need

to write fault tolerant codes, such as communicator recov-

ery and C/R. In other efforts [21], [22], the libraries write

checkpoints transparently on top of MPI, but recovery is not

transparent to applications. Adaptive MPI [23], developed on

top of Charm++ [24], provides transparent recovery using

C/R. However, failed processes are relaunched on existing

nodes instead of spare nodes, which can cause unbalanced

process affinity, and performance degradation after recovery. In

contrast, FMI supports these fault tolerance features transpar-

ently; applications are agnostic to failures. FMI also provides

dynamic node allocation, which is not supported in the current

of MPI.

To restore application state at extreme scale where failure

rate are expected to be much higher, fast and scalable C/R

techniques are indispensable. Diskless checkpointing [25],

[26] is a scalable, and fast C/R method because checkpoints

are written directly to memory instead of to a reliable PFS.

However, the current version of MPI cannot exploit disk-

less checkpointing because MPI terminates all processes on

a failure, and the in-memory checkpoint is lost. Because

FMI combines a survivable messaging runtime and diskless

checkpointing, FMI can achieve fast, scalable, and transparent

recovery. Multilevel C/R [4], [12] is a more sophisticated

C/R method. Multilevel checkpointing libraries utilize multiple

tiers of storage, such as node-local storage and the PFS, by

combining traditional C/R and diskless checkpointing. With

Multilevel C/R, FMI can recover from any failures.

We developed the log-ring overlay network for fast global

failure notification. The network topology itself is similar to

Chord [27] in a P2P network. However, the purpose of our log-
ring overlay network is to provide the functionality of global

failure detection and notification.

To the best of our knowledge, FMI is the only messaging

library providing a survivable messaging runtime coupled with

fast, scalable, in-memory C/R, and dynamic node allocation,

which is required for future fault tolerant extreme scale

computing.

VIII. LIMITATIONS AND FUTURE SUPPORT

Although the current FMI prototype has demonstrated

promising results, it not yet complete enough to support a

broad range of applications. Here, we discuss the limitations

of our prototype and how we plan to address them.

First, our prototype FMI implementation only supports a

subset of MPI functions. For example, collective I/O, i.e.,

MPI IO, is an important feature of MPI, because it is often

used for C/R to the PFS. Checkpointing to a PFS can be very

time consuming, especially at large scales. Additionally, an

application can experience much higher failure rates of the

PFS than average when there is high load on the PFS. Thus,

a checkpoint may never complete due to frequent roll-backs.

However, if we create parity data across nodes before initiating

the MPI IO operation, we can restore lost data and continue

the I/O operation in the middle without starting over. Thus,

support of MPI IO in FMI is in our plans.

Second, several applications dynamically split a communi-

cator with nested loops in order to balance the workload across

processes. Such applications change not only application state

but also communicator state over the iterations. To support

such applications, future versions of FMI Loop will support

C/R of communicators, and nested loops.

Third, our prototype does not support multilevel C/R. FMI

cannot recover from multiple nodes failure within XOR group.

Future versions of FMI will support multilevel C/R to be able

to recover from any failures occurring on HPC systems.

FMI is an on-going project, and future FMI versions will

remove the above limitations to support a wider range of

applications, and become more resilient.

IX. CONCLUSION

From our analysis of failures on tera- and peta-scale sys-

tems, we have identified four critical capabilities for resilience

with extreme-scale computing: a survivable messaging inter-

face that can run through process faults, fast checkpoint/restart,

fast failure detection, and a mechanism to dynamically allocate

spare compute resources in the event of hardware failures.

To satisfy these requirements, we designed and implemented

the FMI, a survivable messaging runtime that uses in-memory

C/R, scalable failure detection, and dynamic spare node al-

location. With FMI, a developer writes applications using

semantics similar to MPI, and the FMI runtime ensures that

the application runs through failures by handling the activities

needed for fault tolerance. Our implementation of FMI has

performance comparable to MPI. Our experiments with a

Poisson equation solver show that running with FMI incurs

only a 28% overhead with a very high MTBF of 1 minute. By

defining a simplified programming model and custom runtime,

we find that FMI significantly improves resilience overheads

compared to similar existing multilevel checkpointing methods

and MPI implementations.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. (LLNL-CONF-645209). This work
was also supported by Grant-in-Aid for Research Fellow of the Japan
Society for the Promotion of Science (JSPS Fellows) 24008253, and
Grant-in-Aid for Scientific Research S 23220003.

REFERENCES

[1] B. Schroeder and G. A. Gibson, “Understanding Failures in Petascale
Computers,” Journal of Physics: Conference Series, vol. 78, no. 1,
pp. 012 022+, Jul. 2007. [Online]. Available: http://dx.doi.org/10.1088/
1742-6596/78/1/012022

[2] A. Geist and C. Engelmann, “Development of Naturally Fault Tolerant
Algorithms for Computing on 100,000 Processors,” 2002.

[3] J. Daly et al., “Inter-Agency Workshop on HPC Resilience at Extreme
Scale,” February 2012. [Online]. Available: http://institutes.lanl.gov/
resilience/docs/Inter-AgencyResilienceReport.pdf

1233

[4] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski,
“Design, Modeling, and Evaluation of a Scalable Multi-level
Checkpointing System,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10. Washington, DC, USA: IEEE
Computer Society, Nov. 2010, pp. 1–11. [Online]. Available:
http://dx.doi.org/10.1109/sc.2010.18

[5] “MPI Forum.” [Online]. Available: http://www.mpi-forum.org/
[6] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “ZOID: I/O-

Forwarding Infrastructure for Petascale Architectures,” in PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2008, pp. 153–162.

[7] R. Ross, J. Moreira, K. Cupps, and W. Pfeiffer, “Parallel I/O on the IBM
Blue Gene/L System,” Blue Gene/L Consortium Quarterly Newsletter,
Tech. Rep., First Quarter, 2006.

[8] B. Schroeder and G. A. Gibson, “Disk failures in the real world:
what does an mttf of 1,000,000 hours mean to you?” in Proceedings
of the 5th USENIX conference on File and Storage Technologies, ser.
FAST ’07. Berkeley, CA, USA: USENIX Association, 2007. [Online].
Available: http://dl.acm.org/citation.cfm?id=1267903.1267904

[9] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor
memory applications: a state-of-the-art review,” IBM J. Res. Dev.,
vol. 28, no. 2, pp. 124–134, Mar. 1984. [Online]. Available:
http://dx.doi.org/10.1147/rd.282.0124

[10] D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” in Proceedings of the 1988
ACM SIGMOD international conference on Management of data, ser.
SIGMOD ’88. New York, NY, USA: ACM, 1988, pp. 109–116.
[Online]. Available: http://dx.doi.org/10.1145/50202.50214

[11] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R.
de Supinski, and S. Matsuoka, “Design and Modeling of a Non-Blocking
Checkpointing System,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ser.
SC ’12. Salt Lake City, Utah: IEEE Computer Society Press, 2012.
[Online]. Available: http://portal.acm.org/citation.cfm?id=2389022

[12] L. Bautista-Gomez, D. Komatitsch, N. Maruyama, S. Tsuboi, F. Cap-
pello, and S. Matsuoka, “FTI: high performance Fault Tolerance In-
terface for hybrid systems,” in Proceedings of the 2011 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, Seattle, WS, USA, 2011.

[13] N. H. Vaidya, “On Checkpoint Latency,” College Station, TX, USA,
Tech. Rep., 1995. [Online]. Available: http://portal.acm.org/citation.
cfm?id=892900

[14] R. L. Graham, R. Brightwell, B. Barrett, G. Bosilca, and Pjesivac-
Grbović, “An Evaluation of Open MPI’s Matching Transport Layer on
the Cray XT,” Oct 2007.

[15] “PMGR COLLECTIVE.” [Online]. Available: http://sourceforge.net/
projects/pmgrcollective/

[16] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. de Supinski,
N. Maruyama, and S. Matsuoka, “Design and Modeling of a Non-
Blocking Checkpoint System,” in ATIP - A*CRC Workshop on Acceler-
ator Technologies in High Performance Computing, May 2012.

[17] A. Yoo, M. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel
Processing, ser. Lecture Notes in Computer Science, D. Feitelson,
L. Rudolph, and U. Schwiegelshohn, Eds. Springer Berlin Heidelberg,
2003, vol. 2862, pp. 44–60. [Online]. Available: http://dx.doi.org/10.
1007/10968987 3

[18] R. Himeno, “Himeno Benchmark,” http://accc.riken.
jp/HPC e/himenobmt e.html.

[19] G. E. Fagg and J. Dongarra, “FT-MPI: Fault Tolerant MPI, Supporting
Dynamic Applications in a Dynamic World,” in Proceedings of
the 7th European PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface. London,
UK, UK: Springer-Verlag, 2000, pp. 346–353. [Online]. Available:
http://portal.acm.org/citation.cfm?id=746632

[20] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and
J. J. Dongarra, “An evaluation of user-level failure mitigation support
in mpi,” in Proceedings of the 19th European conference on Recent
Advances in the Message Passing Interface, ser. EuroMPI’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 193–203. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33518-1 24

[21] Q. Gao, W. Yu, W. Huang, and D. K. Panda, “Application-transparent

checkpoint/restart for mpi programs over infiniband,” in In ICPP 　
06: Proceedings of the 35th International Conference on Parallel
Processing. IEEE Computer Society, 2006, pp. 471–478.

[22] S. Sankaran, J. M. Squyres, B. Barrett, and A. Lumsdaine, “The lam/mpi
checkpoint/restart framework: System-initiated checkpointing,” in in
Proceedings, LACSI Symposium, Sante Fe, 2003, pp. 479–493.

[23] C. Huang, O. Lawlor, and L. V. Kal, “Adaptive mpi,” in In Proceedings
of the 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 03, 2003, pp. 306–322.

[24] G. Zheng, L. Shi, and L. V. Kale, “FTC-Charm++: An In-
Memory Checkpoint-Based Fault Tolerant Runtime for Charm++ and
MPI,” in Proceedings of the 2004 IEEE International Conference on
Cluster Computing, ser. CLUSTER ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 93–103. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1111712

[25] L. A. Gomez, N. Maruyama, F. Cappello, and S. Matsuoka,
“Distributed Diskless Checkpoint for Large Scale Systems,” in
Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on. IEEE, May 2010, pp. 63–72. [Online].
Available: http://dx.doi.org/10.1109/ccgrid.2010.40

[26] J. S. Plank, K. Li, and M. A. Puening, “Diskless Checkpointing,” IEEE
Trans. Parallel Distrib. Syst., vol. 9, no. 10, pp. 972–986, Oct. 1998.
[Online]. Available: http://dx.doi.org/10.1109/71.730527

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet
applications,” in Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications,
ser. SIGCOMM ’01. New York, NY, USA: ACM, 2001, pp. 149–160.
[Online]. Available: http://doi.acm.org/10.1145/383059.383071

1234

