FMI: Fault Tolerant Messaging Interface

for Fast and Transparent Recovery

Kento Sato™, Adam Moody'2, Kathryn Mohror?, Todd Gamblin?,
Bronis R. de Supinskit?, Naoya Maruyama®® and Satoshi Matsuokat!

71 Tokyo Institute of Technology
72 Lawrence Livermore National Laboratory
13 RIKEN Advanced institute for Computational Science

/:.-m— B Lawrence Livermore P (L SR

National Laboratory ¥ o RIKEN '

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52- 07NA27344. LLNL-PRES-654621

LLNL-PRES-654621 IPDPS2014@Arizona Grand Resort May 22th 2014

Failures on HPC systems

Scientific discovery Th;SBAME S“pe”"ter

Supercomputers enable larger and
higher-fidelity simulations
by communication libraries

System failure e
TSUBAME2.0 experienced 962 R e
node failures for 1.5 years EZol i 7.7 oy
(MTBF = 13 hours) Compute node | 0.658 days

Failures are already not exceptional but usual events

LLNL-PRES-654621

Conventional fault tolerance in MPI apps

MPI initialization

e Checkpoint/Recovery (C/R)

— Long running MPI applications are required to write

checkpoints v
End " A Application run
« MPI !
. i . . Checkpointing
— De-facto communication library enabling parallel V2
computing
— Standard MPI employs a fail-stop model Temineia sroeesss
* When a failure occurs ... |
— MPI terminates all processes Locate failed node
— The user locate, replace failed nodes with spare |
nodes

Replace failed node

— Re-initialize MPI
— Restore the last checkpoint
* The fail-stop model of MPI is quite simple

— All processes synchronize at each step to restart Restore
checkpoint

\ 4

MPI re-initialization

LLNL-PRES-654621

Requirement of fast and transparent recovery

* Failure rate will increase in future End
extreme scale systems

* Applications will use more time for recovery

— Whenever a failure occurs, users manually locate and
replace the failed nodes with spare nodes via machinefile

— The manual recovery operations may introduce extra
overhead and human errors

* Fast and transparent recovery is becoming
more critical for extreme scale computing

LLNL-PRES-654621

MPI initialization

<
A

A

| oot

‘l' Checkpointing

Terminate processes

\ 4

Locate failed node

\ 4

Replace failed node

\ 4

MPI re-initialization

v

Restore
checkpoint
I

INEYEENY

Goal and Contributions

e Goal:

— Fast and Transparent recovery for extreme scale
computing

e Contributions:

— We developed Fault Tolerant Messaging Interface
(FMI) enabling fast and transparent recovery

— Experimental results show FMI incurs only a 28%
overhead with a very high MTBF of 1 minute

LLNL-PRES-654621

Outline

* Challenges for fast and transparent recovery
 FMI: Fault Tolerant Messaging Interface

— User perspective
— Internal implementation

 Evaluation
e Conclusion

LLNL-PRES-654621

Challenges for fast and transparent recovery
Start
Scalable failure detection

— When recovering from a failure, all processes MPI initialization
need to be notified

<

\ 4

,T\Application run
Survivable messaging interface [V Checknoinr
— At extreme scale, even termination and Srae
Initialization of processes will be expensive

— Not terminating non-failed processes is |Terminate processesl
important

| Locate failed node |

Transparent and dynamic node allocation

— Manually locating, and replacing failed nodes _
will introduce extra overhead and human | Repleas iRlise Meek: |
errors

| MPI re-initialization |

Fast checkpoint/restart

restore
checkpoint

LLNL-PRES-654621

FMI: Fault Tolerant Messaging Interface

FMI overview

FMI rank (virtual rank)

OJOIOROIOIOLONG e—

User’s view
FMTI’s view “

Fast checkpoint/restart

(P

P20 P30 P40 P50 P60 P70

. P10 - Pl
T PPEEEE B
P (bs)

Node 0 Node 1 Node 2 Node 3 Node 4 . .
Dynamic node allocation

Scalable failure detection

 FMlis a survivable messaging interface providing MPI-like interface

— Scalable failure detection => Overlay network
— Dynamic node allocation => FMI ranks are virtualized
— Fast checkpoint/restart => Diskless checkpoint/restart

LLNL-PRES-654621

How FMI applications work ?

FMI example code

int main (int *argc, char *argv[]) {

FMI_Comm_rank(FMI_COMM_WORLD, &rank); -
/* Application’s initialization */ -

/* Application’s program */

/* Application’s finalization */
FMI_Finalize();

« FMI_Loop enables transparent recovery and
FMI_Init(&argc, &argv); roll-back on a failure

Periodically write a checkpoint
Restore the last checkpoint on a failure

while ((n = FMI_Loop(..)) < numloop) { | « Processes are launched via fmirun

fmirun spawns fmirun.task on each node
fmirun.task calls fork/exec a user program

fmirun broadcasts connection information
(endpoints) for FMI_init(...)

Launch FMI processes

machine_file

node@. fmi.gov
nodel. fmi.gov

node2. fmi.gov

E fmirun }4

Node O Node 1

\ 4

node3. fmi.gov
node4. fmi.gov

Node 2 Node 3 Node 4

[fmirun.task } [fmirun.task] [fmirun.task} [fmirun.task}

o

. . . Spare

LLNL-PRES-654621

User perspective: No failures

int main (int *argc, char *argv[]) {
FMI_Init(&argc, &argv);
FMI_Comm_rank(FMI_COMM_WORLD, &rank);
/* Application’s initialization */
while ((n = FMI_Loop(..)) < 4) {
/* Application’s program */

/* Application’s finalization */
FMI_Finalize();

FMI_Init
FMI_Comm_rank

Node O Node 1 Node 2 Node 3

(0)((2)(B)(4)(6)(6)(7)

vVVVVVVVY

| @ = FMI_Loop(..)

|1 = FMI_Loop(..)

vVVVVVVVY

‘ 2 = FMI_LoopC(..)

| 3 = FMI_Loop(..)

vVVVVVVYVY

4 = FMI_Loop(..)

VVYVYVYVVYVY

FMI_Finalize

VV VvV VV V VY

e User perspective when no failures happens

* |terations: 4

* Checkpoint frequency: Every 2 iterations

 FMI_Loop returns incremented iteration id

LLNL-PRES-654621

vVVVVVVYVY

User perspective : Failure

int main (int *argc, char *argv[]) {
FMI_Init(&argc, &argv);
FMI_Comm_rank(FMI_COMM_WORLD, &rank);
/* Application’s initialization */
while ((n = FMI_Loop(..)) < 4) {
/* Application’s program */

/* Application’s finalization */
FMI_Finalize();

* Transparently migrate FMI rank O
& 1 to a spare node

e Restart form the last checkpoint
— 2t checkpoint at iteration 2

e With FMI, applications still use the
same series of ranks even after
failures

LLNL-PRES-654621

FMI_Init
FMI_Comm_rank

\ 4

| @ = FMI_Loop(..)

\ 1 = FMI_Loop(..)

v

‘ 2 = FMI_Loop(..)

| 3 = FMI_Loop(..)

v

‘ 2 = FMI_Loop(..)

|3 = FMI_Loop(..)

X

v

‘ 4 = FMI_Loop(..)

FMI_Finalize

11

FMI_Loop

int FMI_Loop(void **ckpt, size_t *sizes, int len)

Array of pointers to variables containing data that needs to be checkpointed
Array of sizes of each checkpointed variables

ckpt
sizes:

len

Length of arrays, ckpt

and

returns iteration 1id

sizes

Checkpoint interval

— Fixed mode: Writing checkpoints every specified iterations

— Adaptive mode: Checkpoint interval is optimized to maximize efficiency based on Vaidya’s model*

FMI constructs in-memory RAID-5

Checkpoint group size
— e.g.)group_size=4

FMI checkpointing

*N. H. Vaidya, “On Checkpoint Latency,”

Encoding group

Encoding group

P2-0 P4-0
 Parity 2| wow
W e
~ H — ii-i .

P3-0 P5-0
NWQ 9
rr iw

LLN

P3-0 P5-0
?5'1
s [Parity o]
P3|

P52
P4-0
(R
PET

<:>%§ <:>?§)
Node 1 Node 2 Node 5 Node 6 Node 7

-PRES-6540Z1

FMI_Loop

ckpt
sizes:

len Length of arrays, ckpt

returns iteration 1id

and

Array of sizes of each checkpointed variables

sizes

int FMI_Loop(void **ckpt, size_t *sizes, int len)
. Array of pointers to variables containing data that needs to be checkpointed

* FMI constructs in-memory RAID-5 across compute nodes

* Checkpoint group size
— e.g.)group _size=4

FMI checkpointing

Encoding group

Encoding group

P3-0
e
(-
P

P5-0
5-1

P7-0
T
wue
e

——

rer
P4-0

g
PL2

~
P60
(e
f——
—_—

Node 6

Node 7

LLNC=PRES"65462Z1

FMI: Fault Tolerant Messaging Interface

FMI overview

FMI rank (virtual rank)

User’s view
FMTI’s view “

"Parity 0
P02
P

_ P20 _| | P30
Parity 2|
(P22 H

Node 0 Node 1

OJOJOIOIOIORONOe——

Fast checkpoint/restart

Dynamic node allocation

Scalable failure detection

 FMlIis an MPI-like survivable messaging interface
— Scalable failure detection => Overlay network for failure detection

— Dynamic node allocation => FMI ranks are virtualized
— Fast checkpoint/restart => Diskless checkpoint/restart

LLNL-PRES-654621

14

FMI’s view

&

Node O Node 1 Node 2 Node 3 Node 4

b2y

By

2o (P7)

9@

FMI_Init
FMI_Comm_rank

@ = FMI_Loop(..)

v Vv

@@ W e

1 = FMI_Loop(..)

2 = FMI_Loop(..)

vV Vv

A\

3 = FMI_Loop(..)

2 = FMI_Loop(...)>

X X

vV

v Vv

3 = FMI_Loop(..)

vV

4 = FMI_Loop(..)

vV V

FMI_Finalize

vV

User’s view

User’s view

OIBIOOBIOIOD

LLNL-PRES-654621

FMI_Init A vVVvYy
FMI_Comm_rank
v V vV VvV V
| @ = FMI_Loop(..)
‘ 1 = FMI_LoopC(..) v vVVV
v Vv vV VY
= FMI_Loop(..) —_—
= FMI_Loop(..) v.v vVVv.Vv
* * vV VY
= FMI_Loop(...)>
| 3 = FMI_Loop(..) v vVv.Vv
4 = FMI_Loop(..) v vV yv
. v Vv vV VvV
FMI_Finalize
v Vv vV VvV YV

15

FMI’s view

Node O Node 1 Node 2 Node 3 Node 4

P2y

Py

2o D[P @9

Transparent & Dynamic
node allocation

F
FMI_Init
FMI_Cgr;m_r'ank 9 9 9 6 @ 9 Q 9
0 = FMI_Loop(..) } _-— A —
1 = FMI_Loop(..) VVYVVVVVY r
VVVVYVYVYVYYV .
2 = FMI_Loop(..) | — Skip A —
3 = FMI_Loop(..) YYVVV VYV V *
X X 2R 28 25 25 25 20N |
2 = FMI_Loop(...)> o—
3 = FMI_Loop(..) VYVVVVVY
4 = FMI_LoopC(..) VYVVVVVY
. vV V V Vv VVYVYY
FMI_Finalize
vV V VvV V VVYVYY

Scalable failure detection &
notification

LLNL-PRES-654621

Fast checkpoint/restart

16

Transparent and dynamic node allocation

fmirun overview

machine_file

fmi nodel.fmi.gov
ALl » | node2.fmi.gov
node3. fmi

4
|

node4.fmi.gov

i Node 1 i Node 2 i Node 3 ' Node 4
v \ 4 v Y

E fmirun. task E fmirun.task] L fmirun.task J fmirun.task

® e

* If fmirun.task receives an unsuccessful exit signal from a child process

— fmirun.task kills any other running child processes in the node, and exits with
EXIT_FAILURE

* When fmirun receives the EXIT_FAILURE from the fmirun.task,
— fmirun attempts to find spare nodes to replace the failed nodes in the machine_f1ile

— fmirun spawns new processes on the spare nodes

e fmirun boradcasts connection information (endpoint) of new processes, P8 and P9
LLNL-PRES-654621

Transparent and dynamic node allocation (cont’d)

* In FMI, FMI_COMM_WORLD manages process mapping between FMI
ranks and processes

— Once receiving endpoints, the mapping table is updated (=> bootstrapping)
* Applications can still use the same ranks

— Then, increment a “eépoch” number to be able to discard staled messages
» After recovery, processes may receive old data which is sent before a failure happens

User’s view

FMTI’s view

LLNL-PRES-654621

FMI_COMM_WORLD | O 1 2 3 4 ? 6 71 — FMI ,,,,,,,,,
endpoint (epoclh=0)
epogh=1 I}’#8 1;#9
ps) (P9
Node 1 Node 2 Node 3 Node 4

Scalable failure detection

 FMI processes check if other processes are alive or not each other using

overlay network

* Log-ring overlay network
— Each FMI rank connects to 2k-hop neighbors (k= 0,1...)
— e.g.) FMI rank O connects to FMIrank 1, 2, 4 and 8

* Log-ring overlay is scalable for both construction and detection

Ring overlay

Construction: O(1)
Global detection: O(N)

LLNL-PRES-654621

A 15
% Yo
™ O
< o
o <
& N
> 9

Construction: O(log N)
Global detection: O(log N)

Complete overlay

Y\ (5

N
i
NG

7 3 9

i
L

Construction: O(N)

Global detection: O(1)

19

Scalable failure detection (cont’d)

* Log-ring overlay network using ibverbs

receive the disconnection event

* FMI global failure notification

disconnect all of ibverbs connections

Example of global failure notification

A 15
v o
» 8
< !
o ~
& Ny
V4 9

. . : : !
— Connection-based communication: if a process is terminated, the peer processes peer .
— When FMI processes receive disconnection events, the processes explicitly
g 5 A ® 15
o) Yo o Yo
i > ™ »
< ! ~ S
o ~' o e
6 AN 6 N
> >
8 ° 8 2

O Not Notified

— Overlay connection

—— Timeout disconnection

O Notified by timeout disconnection

— Explicit disconnection

O Notified by explicit disconnection

))

In-memory XOR checkpoint/restart algorithm

* XOR checkpoint/restart algorithm

1.

s/3"

LLNL-PRES-654621

Write checkpoint using memcpy
Divides into chunks, and allocate memory for party data

Send parity data to one neighbor, receive parity data from the other
neighbor, and compute XOR

Continue 3. until first parity come back
(For restart) gather all restored data

Parity @ Chunk 1 ® Chunk 2 Chunk 3
Chunk 3 Parity Chunk 1 Chunk 2
Chunk 2 Chunk 3 Parity Chunk 1
Chunk 1 Chunk 2 Chunk 3 Parity
Rank O Rank 1 Rank 2 Rank 3

Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable
Multi-level Checkpointing System,” in Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC 10).

21

In-memory XOR checkpoint/restart model

* In-memory XOR checkpoint/restart time depends on only XOR
group size

s : ckpt size, n: group size, mem_bw : memory bandwidth, net_bw: network bandwidth

memcpy parity transfer encoding gathering

Checkpoint@ menj bw <> : +7:e/t(?;w_ . P meni bw
Restart @ meni_bw <> S +7fe/tEZw_ - @ meni_bw @ nets_bw
S/B‘[Parity Chunk 1 Chunk 2 Chunk 3
- Chunk 3 Parity Chunk 1 Chunk 2
S - Chunk 2 Chunk 3 Parity Chunk 1
Chunk 1 Chunk 2 Chunk 3 Parity
UNLPres-esasr Rank O Rank 1 Rank 2 Rank 3 55

Process state manage

FMI manages three states to make sure all processes to synchronously
— H1: Bootstrap for endpoint, process mapping update, and epoch
— H2: Construct overlay for scalable failure detection
— H3: Do computation and checkpoint

Whenever failures happens, all processes transitions to H1 to restart

Detailed Process states

4= Failed transition [. }
4= Notified transition fmirun -Fm 1run

4= Successful transition

vV V

{1 | FMI_Loop || FMI_Init |

A A

Bootstrapping

state (H1)

A A

H2 FMI_Loop | [FMI_Init|

Overlay
state (H2)

\ v

4['FMI_Loop }
}

[user program in FMI_Loop }

H3

C/R and compute
state (H3)

PR

LLNL-PRES-654621

Evaluations

* Initialization
— FMI_Init time
() D et e Cti O n Bootstrapping state (H1) |

* Checkpoint/restart

Overlay state (H2)

e Benchmark run

e Simulations for extreme
B and compute state (H3
scale -

24

LLNL-PRES-654621

Evaluations

e |nitialization
— FMI_Init time
e Detection

e Benchmark run

LLNL-PRES-654621

25

Experimental environment

e Sierra cluster @LLNL

TABLE 4.1: Sierra Cluster Specification

Nodes 1,856 compute nodes (1,944 nodes in total)
CPU 2.8 GHz Intel Xeon EP X5660 x 2 (12 cores in total)
Memory 24GB (Peak CPU memory bandwidth: 32 GB/s)
Interconnect | QLogic InfiniBand QDR

 MPI: MVAPICH2 (1.2)
— Runs on top of SLURM
— Srun instead of mp1run for launching MPI processes

LLNL-PRES-654621

26

MPI_Initvs. FMI_Intit time

5 : Future FMI may reach the same
45 | _pootstrapping ¢ initialization time as MPI one
’@ 4 B Log-ring overlay 111
£, || ®SLURM (MVAPICH2) *
3 4 e N
> * Bootstrapping time is also short
£ 25 PN _ Currant FMI do only minimal
% 2 * * B e / Initialization to start an application
2 1.5 .
& e
& . ; Log-ring construction time is small
: [R S the overlay construction time is
0 | el wee men mm W ¥ O(log(n))

48 96 192 384 768 1536 -
of Processes (12 procs/node)

MPI Initialization: MVAPICH2 MPI_Init(...) launched by Srun

27
LLNL-PRES-654621

FMI failure detection time

* We measured the time for all processes to be notified of a failure

— Injected a failure by killing a process
* Once a process receive a disconnection event, the notification exponentially
propagate
— Time complexity: O (Iog(N)) to propagate

o
w 2
STRN

0.3 Exponentially

propagate notification

o {EX licit disconnection

Timeout disconnection
bont 200me |]

Global failure notification
time (Seconds)
o
bo
I|

48 96 192 384 768 1536

of Processes (12 procs/node)
28

LLNL-PRES-654621

LLNL-I

FMI Checkpoint/Restart throughput

* Checkpoint size: 6GB/node
* The checkpoint/restart time of FMI is scalable

350

C/R Throughput (GB/seconds)
N
o o o S o D
S 5 &5 & &5 3

(@)

FMI directly write checkpoint to memory via memcpy

As in the model, the checkpointing and restart times are constant regardless of
the total number of processes

=8-Checkpoint (XOR encoding)

1 . [2.4 GB/sec per node]
~E-Restart (XOR decoding)

[1.3 GB/sec per node]

/ L Fast checkpoint/restart
/Z / FMI writes and reads
i = E— — checkpoints to/from
4%’/(1 t%tgiézg' | t%tgéég' memory via memcpy
0 500 1000 1500

of Processes (12 procs/node) 29

Application runtime with failures

* Benchmark: Poisson’s equation solver using Jacobi iteration method

Stencil application benchmark
MPI_Isend, MPI_Irecv, MPI_Wait and MPI_Allreduce within a single iteration

 For MPI, we use the SCR library for checkpointing

Since MPI is not survivable messaging interface, we write checkpoint memory on tmpfs

* Checkpoint interval is optimized by Vaidya’s model for FMI and MPI

2500

DO
-
)
-

1500

1000

Performance (GFlops)

500

LLNL-PRES-654621

~A~MPI
-=-FMI
MPI + C
-=FMI + C
FMI + C/R

500 1000 1500
of Processes (12 processes/node)

P2P communication performance

1-byte Latency

Bandwidth (8MB)

MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s
-

[MTBF: 1 minute] \

FMI directly writes

checkpoints via memcpy, and
. can exploit the bandwidth

Even with the high failure rate,
FMI incurs only a 28% overhead

30

Simulations for extreme scale

* FMI applications can continue to run as long as all failures are
recoverable. To investigate how long an application can

* run continuously with or without FMI, we simulated an
application running at extreme scale.

* Types of failures

— L1 failure: Recoverable by FMI Failure analysis on Coastal cluster

— L2 failure: Unrecoverable by FMI _

e We scale out failure rates, evaluate | L1 failure | 130 hours 2.13°

1. How long applications can L2 failure | 650 hours 4.277

Conti Nnu Ously run: Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de
! Supinski, “Design, Modeling, and Evaluation of a Scalable
. Lt Multi-level Checkpointing System,” in Proceedings of the
2' efﬁCIenCy at eXtreme Scale 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC 10).

LLNL-PRES-654621 31

Probability to run for 24 hours

* With FMI, application continuously run for longer time

" 1 o w/ FMD 80% of probability to run for
= 0.9 X oastal (w 24 hours on environment
2 0.8 4% Coastal (w/o FMI) with current failure rate
J 0.7

c§ 0.6 1T FMI execution: 80%

=) non-FMI execution: 25%
= 0.5

2 04

£ 0.3

E o) Even with FMI, most of
o 0.1 T executions cannot run for 24H
A~ 0

0 5101520258035404550

Scale factor (Current failure rate = Future FMI will support

async. multi-level checkpoint/restart

LLNL-PRES-654621

Asynchronous multi-level checkpointing
(MLC)

| | | | | | v |
checkpoint Level-d ! . D
i 2
PFS
Level-2
checkpoint eve

Source: K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski, and S. Matsuoka, “Design and Modeling of a Non-
Blocking Checkpointing System,” in Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC "12. Salt Lake City, Utah: IEEE Computer Society Press, 2012

* Asynchronous MLC is a technique for achieving high Fail v o ldl
reliability while reducing checkpointing overhead ailure analysis on Coastal cluster

* Asynchronous MLC Use storage levels hierarchically _
— RAID-5 checkpoint: Frequent for one node fora few | L1 failure | 130 hours 2.13°6

node failure - .
L2 failure | 650 hours 4.27°7
— PFS checkpoint: Less frequent and asynchronous for

. . Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de

multi-node failure Supinski, “Design, Modeling, and Evaluation of a Scalable

. Multi-level Checkpointing System,” in Proceedings of the

° Our preV|Ous Work mOdel the asynCh ronous 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and

MLC Analysis (SC 10).

33

LLNL-PRES-654621

Efficiency with FMI + Asynchronous MLC

* Checkpoint size: 1 and 10 GB/node
e Weincrease L1 and L1 & L2 failure rates

[High efficiency with current J

== failure rate
0 9 \\ ‘\ _\
SN B
0 8 \\\ ‘\\' -
. s \\

0.7 M FMI + Asynchronous MLC
206 ‘\\ aphieve high efficiepcy even
g e with much higher failure rate
£ 0.5 I
= 0.4 SN

0.3 ——L1 - 1 GB/node N8 L

09 o —L1 - 10 GB/node SNl If both L1 & L2 failure rate

' L1 & 2 - 1 GB/node increase, and checkpoint size is

0.1 1 -l-- L1| & 2 | 10 GIB/noclle large, efficiency drops rapidly

0 T T T T T

0 5 10 15 20 25 30 35 40 45 50
Scale factor

Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi
Matsuoka, "A User-level InfiniBand-based File System and Checkpoint Strategy for Burst Buffers",

CCGrid2014 (May 23th, Best Paper Session)

34

Limitation and Future support

 FMIis an on-going project, several limitations exist

e Limited MPI functions

— The current FMI implementation only supports a subset of MPI
functions.

— e.g.) MPL_IO

 C/R of communicators

— Several applications dynamically split a communicator in order to
balance the workloads across processes

— Such applications change not only application state but also
communicator state over the iterations

 Multi-level C/R

— Future versions of FMI will support multilevel C/R to be able to
recover from any failures occurring on HPC systemes.

LLNL-PRES-654621 35

Conclusion

* We developed Fault Tolerant Messaging Interface
(FMI) for fast and transparent recovery

— Scalable failure detection

— Survivable messaging interface
— Dynamic node allocation

— Fast checkpoint/restart

* Experimental results show FMI incurs only a 28%
overhead with a very high MTBF of 1 minute
— The result presents good prospect to implement

resilience capability on top of other fault tolerant
MPIs (e.g. ULFM & NR-MPI)

LLNL-PRES-654621

36

Q & A Speaker:

Kento Sato ({&£fk & 3})

kent@matsulab.is.titech.ac.jp

Tokyo Institute of Technology (Tokyo Tech)
Research Fellow of the Japan Society for the Promotion of Science

http://matsu-www.1is.titech.ac.jp/~kent/index en.html

Collaborators

Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R de. Supinski,
Naoya Maruyama, Satoshi Matsuoka

Acknowledgement

This work was performed under the auspices of the U.S. Depart- ment of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. (LLNL-
CONTF-645209). This work was also supported by Grant-in-Aid for Research Fellow of the

Japan Society for the Promotion of Science (JSPS Fellows) 24008253, and Grant-in-Aid for
Scientific Research S 23220003.

LLNL-PRES-654621

