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able failure detection and notification;
• and demonstration of the fault tolerance and scalability

of FMI even with a MTBF of 1 minute.
Our paper is organized as follows. We present characteristics

of failures on large systems, and we identify critical resilience
capabilities in Section II. In Section III, we introduce FMI,
and we detail its implementation in Section IV. We describe
our in-memory C/R strategy and the modeling in Section V.
In Section VI, we present our experimental results. We detail
related work in Section VII, and in Section VIII, we discuss
the limitations of the current state of FMI and our future plans
to mitigate them.

II. BACKGROUND

Here, we first describe the types of failures observed on a
number of large HPC systems. We then give background on
the capabilities that are critical for fault tolerance on extreme-
scale systems: a survivable messaging runtime, fast C/R, fast
failure detection, and spare node allocation.

A. Characteristics of System Failures
We divide failures into two categories. A recoverable failure

is one that can be remedied transparently by the hardware
or operating system without terminating running processes.
An unrecoverable failure causes the application to terminate.
Examples of recoverable failures include single bit flips in
DRAM and disk failures [8]. These failures occur frequently
and are typically handled with hardware redundancy tech-
niques such as ECC [9] or RAID [10]. Without hardware
recovery techniques, these errors substantially degrade perfor-
mance. Unrecoverable failures include CPU, motherboard, and
power supply failures [8], [11]. These failures cause affected
nodes to crash, terminating any running processes and losing
the full contents of memory on the nodes.

In this work, we address unrecoverable failures, which we
refer to as simply failures. Previous studies show that certain
failures occur more often than others on large scale systems,
and in particular, most failures affect a small portion of the
system. For instance, 85% of job failures on Linux clusters
at Lawrence Livermore National Laboratory (LLNL) affect
at most one node [4]. Similarly, as reported in [11] and as
shown in Table I, about 92% of failures affect a single node
on TSUBAME2.0, and only about 5% of failures affect more
than 4 nodes. For a more detailed breakdown of failure modes
on TSUBAME2.0 from November 2010 to April 2012, see
Figure 1 showing failure rates (the number of failures per
second) of each component.

TABLE I: TSUBAME2.0 Failure Types

Failure type Affected nodes Failures per year MTBF
PFS, Core switch 1408 5.61 65.10 days
Rack 32 4.20 86.90 days
Edge switch 16 21.02 17.37 days
PSU 4 12.61 28.94 days
Compute node 1 554.10 0.658 days
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Fig. 1: TSUBAME2.0 Failure Breakdown

B. Critical Capabilities for Fault Tolerance

As described in the previous section, most failures only
affect a small portion of the system, so the vast majority
of processes and connections are still valid after a failure.
It is inefficient for the runtime to tear all of this down
only to immediately relaunch and reconnect it all. Launching
large sets of processes, loading executables and libraries from
shared file systems, and bootstrapping connections between
those processes takes non-trivial amounts of time. All of this
motivates the need for a survivable messaging runtime system.
Such a system should be able to maintain processes and
connections that are unaffected by the failure while starting
and integrating replacement processes as needed.

However, a survivable messaging runtime itself is not suf-
ficient for fault tolerant computing at extreme scales; a node
failure destroys part of a parallel application’s state. Today,
applications checkpoint to a reliable PFS to mitigate node
failures, and while this is sufficient for small systems, it incurs
high overheads at extreme scale.

Multilevel C/R is a proven approach to lower these over-
heads [4], [12]. In this approach, checkpoints are placed in
RAM or other node-local storage, and encoding techniques
are used to protect data against common failures such as
single-node failures. Only a select few checkpoints are copied
to the PFS to guard against more catastrophic failures. To
distinguish between these two types of checkpoints, the former
are called level-1 checkpoints and the latter are called level-2
checkpoints. Since most failures only affect a small portion
of the system, simple encoding schemes are often sufficient to
recover lost data, and node-local storage provides fast, scalable
performance. The net effect is that multilevel checkpointing
gains an advantage by making the common case fast.

In a survivable model, processes that do not fail are not
terminated; they simply keep running. The runtime system
is responsible for starting new processes to replace those
that failed and for providing a mechanism to incorporate the
processes into the already running job, including acquisition
of additional compute nodes if node failures occurred.

One solution is to request additional nodes in the allocation,
e.g., request 70 compute nodes for a 64-node job, reserving
6 additional nodes as spares. A difficulty with this approach
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Fig. 1: TSUBAME2.0 Failure Breakdown

B. Critical Capabilities for Fault Tolerance

As described in the previous section, most failures only
affect a small portion of the system, so the vast majority
of processes and connections are still valid after a failure.
It is inefficient for the runtime to tear all of this down
only to immediately relaunch and reconnect it all. Launching
large sets of processes, loading executables and libraries from
shared file systems, and bootstrapping connections between
those processes takes non-trivial amounts of time. All of this
motivates the need for a survivable messaging runtime system.
Such a system should be able to maintain processes and
connections that are unaffected by the failure while starting
and integrating replacement processes as needed.

However, a survivable messaging runtime itself is not suf-
ficient for fault tolerant computing at extreme scales; a node
failure destroys part of a parallel application’s state. Today,
applications checkpoint to a reliable PFS to mitigate node
failures, and while this is sufficient for small systems, it incurs
high overheads at extreme scale.

Multilevel C/R is a proven approach to lower these over-
heads [4], [12]. In this approach, checkpoints are placed in
RAM or other node-local storage, and encoding techniques
are used to protect data against common failures such as
single-node failures. Only a select few checkpoints are copied
to the PFS to guard against more catastrophic failures. To
distinguish between these two types of checkpoints, the former
are called level-1 checkpoints and the latter are called level-2
checkpoints. Since most failures only affect a small portion
of the system, simple encoding schemes are often sufficient to
recover lost data, and node-local storage provides fast, scalable
performance. The net effect is that multilevel checkpointing
gains an advantage by making the common case fast.

In a survivable model, processes that do not fail are not
terminated; they simply keep running. The runtime system
is responsible for starting new processes to replace those
that failed and for providing a mechanism to incorporate the
processes into the already running job, including acquisition
of additional compute nodes if node failures occurred.

One solution is to request additional nodes in the allocation,
e.g., request 70 compute nodes for a 64-node job, reserving
6 additional nodes as spares. A difficulty with this approach
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ConvenGonal-fault-tolerance-in-MPI-apps-

•  Checkpoint/Recovery-(C/R)-
–  Long-running-MPI-applicaGons-are-required-to-write-

checkpoints-

•  MPI--
–  De#facto-communicaGon-library-enabling-parallel-

compuGng-

–  Standard-MPI-employs-a-fail#stop-model-

•  When-a-failure-occurs-…-
–  MPI-terminates-all-processes--

–  The-user-locate,-replace-failed-nodes-with-spare-
nodes-

–  Re#iniGalize-MPI-

–  Restore-the-last-checkpoint-
•  The-fail#stop-model-of-MPI-is-quite-simple-

–  All-processes-synchronize-at-each-step-to-restart-
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Requirement-of-fast-and-transparent-recovery-

•  Failure-rate-will-increase-in-future-
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•  ApplicaGons-will-use-more-Gme-for-recovery--
–  Whenever-a-failure-occurs,--users-manually-locate-and-

replace-the-failed-nodes-with-spare-nodes-via-machinefile-
–  The-manual-recovery-operaGons-may-introduce-extra-

overhead-and-human-errors-

•  Fast-and-transparent-recovery-is-becoming-

more-criGcal-for-extreme-scale-compuGng-
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Goal-and-ContribuGons-

•  Goal:---
– Fast-and-Transparent-recovery-for-extreme-scale-

compuGng-

-

•  ContribuGons:-
– We-developed-Fault-Tolerant-Messaging-Interface-

(FMI)-enabling-fast-and-transparent-recovery-

– Experimental-results-show-FMI-incurs-only-a-28%(
overhead-with-a-very-high-MTBF(of(1(minute(
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Outline-

•  IntroducGon-
•  Challenges-for-fast-and-transparent-recovery-
•  FMI:-Fault-Tolerant-Messaging-Interface-

– User-perspecGve-
–  Internal-implementaGon-

•  EvaluaGon-
•  Conclusion-
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Challenges-for-fast-and-transparent-recovery-

•  Scalable-failure-detecGon-
–  When-recovering-from-a-failure,-all-processes-

need-to-be-noGfied-

•  Survivable-messaging-interface--
–  At-extreme-scale,-even-terminaGon-and-

IniGalizaGon-of-processes-will-be-expensive-

–  Not-terminaGng-non#failed-processes-is-
important-

•  Transparent-and-dynamic-node-allocaGon-
–  Manually-locaGng,-and-replacing-failed-nodes-

will-introduce-extra-overhead-and-human-
errors-

•  Fast-checkpoint/restart-
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FMI:-Fault-Tolerant-Messaging-Interface-

•  FMI-is-a-survivable-messaging-interface-providing-MPI#like-interface	
–  Scalable-failure-detecGon-=>-Overlay-network-
–  Dynamic-node-allocaGon-=>-FMI-ranks-are-virtualized-

–  Fast-checkpoint/restart-=>-Diskless-checkpoint/restart-
8-
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fmirun.task	

P1-P0-
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Node-0- Node-1-
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Node-2-
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Node-3-
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machine_file	

How-FMI-applicaGons-work-?-
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int main (int *argc, char *argv[]) {	
  FMI_Init(&argc, &argv);	
  FMI_Comm_rank(FMI_COMM_WORLD, &rank);	
  /* Application’s initialization */	
  while ((               ) < numloop) {	
    /* Application’s program */	
  }	
  /* Application’s finalization */	
  FMI_Finalize();	
}	

FMI-example-code-

n = FMI_Loop(…) -

Launch-FMI-processes-

Node-4-

Spare 
node 

•  FMI_Loop-enables-transparent-recovery-and-
roll#back-on-a-failure-

–  Periodically-write-a-checkpoint-

–  Restore-the-last-checkpoint-on-a-failure-

•  Processes-are-launched-via-fmirun	
–  fmirun spawns fmirun.task on each node	
–  fmirun.task calls fork/exec a user program 
–  fmirun broadcasts connection information 

(endpoints) for FMI_init(…) 
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Node-0-Node-1-Node-2-Node-3-

User-perspecGve:--No-failures-
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•  User-perspecGve-when-no-failures-happens-

•  IteraGons:-4-

•  Checkpoint-frequency:-Every-2-iteraGons-

•  FMI_Loop-returns-incremented-iteraGon-id--

FMI_Init	
FMI_Comm_rank	

4 = FMI_Loop(…)	

1 = FMI_Loop(…)	

FMI_Finalize	

0 1 2 3 4 5 6 7 

0 = FMI_Loop(…)	 checkpoint: 0 

2 = FMI_Loop(…)	 checkpoint: 1 

3 = FMI_Loop(…)	

int main (int *argc, char *argv[]) {	
  FMI_Init(&argc, &argv);	
  FMI_Comm_rank(FMI_COMM_WORLD, &rank);	
  /* Application’s initialization */	
  while ((               ) < 4) {	
    /* Application’s program */	
  }	
  /* Application’s finalization */	
  FMI_Finalize();	
}	

FMI-example-code-

n = FMI_Loop(…) -
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User-perspecGve-:--Failure-

11-

int main (int *argc, char *argv[]) {	
  FMI_Init(&argc, &argv);	
  FMI_Comm_rank(FMI_COMM_WORLD, &rank);	
  /* Application’s initialization */	
  while ((n = FMI_Loop(…)) < 4) {	
    /* Application’s program */	
  }	
  /* Application’s finalization */	
  FMI_Finalize();	
}	

FMI-example-code-

FMI_Init	
FMI_Comm_rank	

1 = FMI_Loop(…)	
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0 = FMI_Loop(…)	 checkpoint: 0 

2 = FMI_Loop(…)	 checkpoint: 1 

3 = FMI_Loop(…)	

2 = FMI_Loop(…)	 restart: 1 

4 = FMI_Loop(…)	

FMI_Finalize	

3 = FMI_Loop(…)	

•  Transparently-migrate-FMI-rank-0-
&-1-to-a-spare-node-

•  Restart-form-the-last-checkpoint-
–  2th-checkpoint-at-iteraGon-2-

•  With-FMI,-applicaGons-sGll-use-the-
same-series-of-ranks-even-ager-
failures-
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FMI_Loop	
int FMI_Loop(void **ckpt, size_t *sizes, int len)	

ckpt : Array-of-pointers-to-variables-containing-data-that-needs-to-be-checkpointed-
sizes: Array-of-sizes-of-each-checkpointed-variables-
len  : Length-of-arrays,-ckpt-and-sizes	
returns iteration id	
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•  Checkpoint-interval-
–  Fixed-mode:-WriGng-checkpoints-every-specified-iteraGons-

–  AdapGve-mode:-Checkpoint-interval-is-opGmized-to-maximize-efficiency-based-on-Vaidya’s-model*-

•  FMI-constructs-in#memory-RAID#5-
•  Checkpoint-group-size-

–  e.g.)-group_size-=-4-
*N. H. Vaidya, “On Checkpoint Latency,” 

FMI-checkpoinGng-
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FMI’s-view-

Node-0-Node-1-Node-2-Node-3-Node-4-

FMI’s-view-
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2 = FMI_Loop(…)	 restart: 1 

FMI_Init	
FMI_Comm_rank	

1 = FMI_Loop(…)	

P0 P1 P2 P3 P4 P5 P6 P7 

0 = FMI_Loop(…)	 checkpoint: 0 

2 = FMI_Loop(…)	 checkpoint: 1 

3 = FMI_Loop(…)	
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FMI_Finalize	
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•  If-fmirun.task-receives-an-unsuccessful-exit-signal-from-a-child-process 
–  fmirun.task-kills-any-other-running-child-processes-in-the-node,-and-exits-with-

EXIT_FAILURE	
•  When-fmirun-receives-the-EXIT_FAILURE-from-the-fmirun.task,-

–  fmirun-amempts-to-find-spare-nodes-to-replace-the-failed-nodes-in-the-machine_file	
–  fmirun--spawns-new-processes-on-the-spare-nodes	

•  fmirun-boradcasts-connecGon-informaGon-(endpoint)-of-new-processes,-P8-and-P9 
17-
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machine_file	

fmirun-overview-

Node-4-

Transparent-and-dynamic-node-allocaGon-
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P1 P0 P3 P2 P5 P4 P7 P6 P9 P8 

FMI_COMM_WORLD	 0 1 2 3 4 5 6 7 
endpoint (epoch=0) 

FMI-

Node 0 Node 1 Node 2 Node 3 Node 4 

User’s view 
FMI’s view 

Transparent-and-dynamic-node-allocaGon-(cont’d)-

P0 P1 P2 P3 P4 P5 P6 P7 

•  In-FMI,-FMI_COMM_WORLD-manages-process-mapping-between-FMI-
ranks-and-processes-
–  Once-receiving-endpoints,-the-mapping-table-is-updated-(=>-bootstrapping)-

•  ApplicaGons-can-sGll-use-the-same-ranks-

–  Then,-increment-a-“epoch”-number--to-be-able-to-discard-staled-messages--
•  Ager-recovery,-processes-may-receive-old-data-which-is-sent-before-a-failure-happens-

P8 P9 epoch=1-
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Scalable-failure-detecGon--
•  FMI-processes-check-if-other-processes-are-alive-or-not-each-other-using-

overlay-network-

•  Log#ring-overlay-network-
–  Each-FMI-rank--connects-to-2k-hop neighbors-(k= 0,1…) -
–  e.g.-)-FMI-rank-0-connects-to-FMI-rank-1, 2, 4 and 8 

•  Log#ring-overlay-is-scalable-for-both-construcGon-and-detecGon- 
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•  Log#ring-overlay-network-using-ibverbs-

–  ConnecGon#based-communicaGon:-if-a-process-is-terminated,-the-peer-processes-

receive-the-disconnecGon-event-

•  FMI-global-failure-noGficaGon-

–  When-FMI-processes-receive-disconnecGon-events,-the-processes-explicitly-

disconnect-all-of-ibverbs-connecGons-
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Scalable-failure-detecGon--(cont’d)-
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-In#memory-XOR-checkpoint/restart-algorithm-

•  XOR-checkpoint/restart-algorithm	
1.  Write-checkpoint-using-memcpy	
2.  Divides into chunks, and allocate memory for party data 
3.  Send-parity-data-to-one-neighbor,-receive-parity-data-from-the-other-

neighbor,-and-compute-XOR-

4.  ConGnue-3.-unGl-first-parity-come-back-

5.  (For-restart)-gather-all-restored-data-

21-
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= 
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Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable 
Multi-level Checkpointing System,” in Proceedings of the 2010 ACM/IEEE International Conference for High 
Performance Computing, Networking, Storage and Analysis (SC 10). 
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-In#memory-XOR-checkpoint/restart-model-

•  In#memory-XOR-checkpoint/restart-Gme-depends-on-only-XOR-
group-size-
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Fig. 9: XOR encoding algorithm: The circled numbers are the steps of sending/receiving
parity

by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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Table 4.1: Sierra Cluster Specification

Nodes 1,856 compute nodes (1,944 nodes in total)
CPU 2.8 GHz Intel Xeon EP X5660 × 2 (12 cores in total)

Memory 24GB (Peak CPU memory bandwidth: 32 GB/s)
Interconnect QLogic InfiniBand QDR

the peak bandwidth of the Sierra cluster at LLNL in Table 5.1. We find that the

checkpoint/restart time starts to saturate at an XOR group size of 16 nodes. For this

XOR group size, the parity chunk size is only 6.6 % of the full checkpoint size. Thus,

we use 16 nodes for the XOR group size in the rest of our experiments.

4.6 Experimental Results

To evaluate the performance and resiliency of FMI, we measured several benchmarks

with FMI, and predict the performance of an FMI application run at extreme scale.

We ran our experiments on the Sierra cluster at LLNL. The details of Sierra are in

Table 5.1. Because FMI follows the messaging semantics of MPI, we want to compare
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Fig. 17: Efficiency of multilevel C/R under increasing failure
rate and L2 C/R time

run continuously with or without FMI, we simulated an
application running at extreme scale. If we assume failures
occur according to Poisson’s distribution, the probability that
an application runs for time T continuously is e−λ·T where λ
is the unrecoverable failure rate.

Figure 16 shows the probability to run continuously for 24
hours using failure rates from the LLNL failure analysis of the
Coastal cluster [4], with a level-1 failure rate of 2.13−6 (MTBF
= 130 hours) (recoverable by XOR encoding), and level-2
failure rate of 4.27−7 (MTBF = 650 hours) (unrecoverable
failures). We increase the failure rates from the observed level-
1 and 2 values by scale factors of 1 (observed values) to 50
to evaluate FMI’s performance at larger scales. With FMI,
80% of executions can run for 24 hours with even 6× higher
failure rates. At failure rates of 10× higher than today’s,
70% of FMI executions can run continuously for 24 hours,
while only 10% of non-FMI executions can do the same.
Executions without FMI are terminated by any failures, while
FMI executions are terminated by only level-2 failure. Thus,
using FMI effectively decreases unrecoverable failure rate, λ,
and thus the probability of long continuous runs is higher with
FMI, even at very high failure rates. At a scale factor 50, the
level-1 MTBF becomes 2.6 hours (= 130 hours / 50), which
is a quite long MTBF for FMI. As shown in Figure 15, FMI
achieves a only 28% overhead (72% of efficiency) even with
MTBF of 1 minute. Also, in the absence of unrecoverable
failures, an application can run with negligibly small overhead.

If FMI uses a multilevel C/R strategy and writes some
checkpoints to the PFS (level-2 C/R) in addition to XOR
C/R (level-1 C/R), level-2 failures can also be recoverable.

Here, we predict the efficiency of using multilevel C/R with
FMI, where efficiency is the ratio of time spent in useful
computation only versus computation, C/R activities, and
recomputation after recovery. As future systems become larger,
we expect higher failure rates and total aggregate checkpoint
sizes. Thus, to predict application efficiency at larger scales,
we increase failure rates and checkpoint costs up to 50×,
using the Coastal system as a base line. Because level-1 C/R
time is constant regardless of the total number of nodes, we
only increase level-2 C/R time. For level-2 C/R, we assume
we write checkpoints asynchronously to the PFS using the
framework and model developed in our prior work [16].

Figure 17 shows the efficiency of multilevel C/R in FMI.
Because we are uncertain as to whether level-2 failure rates
will increase at extreme scale, in our evaluation we increase
only the level-1 failure rate (L1) or both the level-1 and 2
failure rates (L1,2) with different checkpoint sizes per node
(1 or 10 GB/node). We estimate level-1 C/R time using the
performance model in Section V-B. For level-2 C/R time,
we use a PFS bandwidth of 50 GB/s, the bandwidth of the
LLNL Lustre file system /p/lscratchd. We find that we
can achieve fairly high efficiencies if future systems can keep
current level-2 failure rates constant, or the size of checkpoints
is small. However, if both level-1 and 2 failure rates increase
and the checkpoint size is large, the efficiency drops down to
under 2%. Thus, future systems must either decrease level-2
failure rates or increase PFS throughput to achieve high system
efficiency.

(12 procs/node) 

total size: 
384GB 

2 sec 

4 sec 
Fast checkpoint/restart 

FMI writes and reads 
checkpoints to/from 
memory via memcpy 

2.4 GB/sec per node 

1.3 GB/sec per node 

total size: 
768GB 
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•  Benchmark:-Poisson’s-equaGon-solver-using-Jacobi-iteraGon-method-

–  Stencil-applicaGon-benchmark-

–  MPI_Isend,-MPI_Irecv,-MPI_Wait-and-MPI_Allreduce-within-a-single-iteraGon-

•  For-MPI,-we-use-the-SCR-library-for-checkpoinGng-

–  Since-MPI-is-not-survivable-messaging-interface,-we-write-checkpoint-memory-on-tmpfs-

•  Checkpoint-interval-is-opGmized-by-Vaidya’s-model-for-FMI-and-MPI-
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Figure 4.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [76].

4.6.1 FMI Performance

Table 4.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 4.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

P2P communication performance 

Even with the high failure rate,  
FMI incurs only a 28% overhead 

MTBF: 1 minute 

 FMI directly writes 
checkpoints via memcpy, and 

can exploit the bandwidth 
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SimulaGons-for-extreme-scale-

•  FMI-applicaGons-can-conGnue-to-run-as-long-as-all-failures-are-
recoverable.-To-invesGgate-how-long-an-applicaGon-can--

•  run-conGnuously-with-or-without-FMI,-we-simulated-an-

applicaGon-running-at-extreme-scale.--

•  Types-of-failures-
–  L1-failure:-Recoverable-by-FMI-

–  L2-failure:-Unrecoverable-by-FMI-

•  We-scale-out-failure-rates,-evaluate-

1.  How-long-applicaGons-can--

conGnuously--run;-

2.  efficiency-at-extreme-scale-

-
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MTBF Failure rate 
L1 failure 130 hours 2.13-6 
L2 failure 650 hours 4.27-7  

Failure analysis on Coastal cluster 

Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de 
Supinski, “Design, Modeling, and Evaluation of a Scalable 
Multi-level Checkpointing System,” in Proceedings of the 
2010 ACM/IEEE International Conference for High 
Performance Computing, Networking, Storage and 
Analysis (SC 10). 
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Probability-to-run-for-24-hours-
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Fig. 12: Checkpoint/Restart scalability with 6 GB/node
checkpoints, 12 processes/node
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Fig. 13: Failure notification time with log-ring overlay
network
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Fig. 14: MPI Init vs. FMI Init

0 

500 

1000 

1500 

2000 

2500 

0 500 1000 1500 

P
er

fo
rm

an
ce

 (G
F

lo
ps

) 

# of Processes (12 processes/node) 

MPI 
FMI 
MPI + C 
FMI + C 
FMI + C/R 

Fig. 15: Himeno benchmark (Checkpoint size: 821
MB/node, MTBF: 1 minute)
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Fig. 16: Probability to continuously run for 24 hours
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Fig. 17: Efficiency of multilevel C/R under increasing failure
rate and L2 C/R time

run continuously with or without FMI, we simulated an
application running at extreme scale. If we assume failures
occur according to Poisson’s distribution, the probability that
an application runs for time T continuously is e−λ·T where λ
is the unrecoverable failure rate.

Figure 16 shows the probability to run continuously for 24
hours using failure rates from the LLNL failure analysis of the
Coastal cluster [4], with a level-1 failure rate of 2.13−6 (MTBF
= 130 hours) (recoverable by XOR encoding), and level-2
failure rate of 4.27−7 (MTBF = 650 hours) (unrecoverable
failures). We increase the failure rates from the observed level-
1 and 2 values by scale factors of 1 (observed values) to 50
to evaluate FMI’s performance at larger scales. With FMI,
80% of executions can run for 24 hours with even 6× higher
failure rates. At failure rates of 10× higher than today’s,
70% of FMI executions can run continuously for 24 hours,
while only 10% of non-FMI executions can do the same.
Executions without FMI are terminated by any failures, while
FMI executions are terminated by only level-2 failure. Thus,
using FMI effectively decreases unrecoverable failure rate, λ,
and thus the probability of long continuous runs is higher with
FMI, even at very high failure rates. At a scale factor 50, the
level-1 MTBF becomes 2.6 hours (= 130 hours / 50), which
is a quite long MTBF for FMI. As shown in Figure 15, FMI
achieves a only 28% overhead (72% of efficiency) even with
MTBF of 1 minute. Also, in the absence of unrecoverable
failures, an application can run with negligibly small overhead.

If FMI uses a multilevel C/R strategy and writes some
checkpoints to the PFS (level-2 C/R) in addition to XOR
C/R (level-1 C/R), level-2 failures can also be recoverable.

Here, we predict the efficiency of using multilevel C/R with
FMI, where efficiency is the ratio of time spent in useful
computation only versus computation, C/R activities, and
recomputation after recovery. As future systems become larger,
we expect higher failure rates and total aggregate checkpoint
sizes. Thus, to predict application efficiency at larger scales,
we increase failure rates and checkpoint costs up to 50×,
using the Coastal system as a base line. Because level-1 C/R
time is constant regardless of the total number of nodes, we
only increase level-2 C/R time. For level-2 C/R, we assume
we write checkpoints asynchronously to the PFS using the
framework and model developed in our prior work [16].

Figure 17 shows the efficiency of multilevel C/R in FMI.
Because we are uncertain as to whether level-2 failure rates
will increase at extreme scale, in our evaluation we increase
only the level-1 failure rate (L1) or both the level-1 and 2
failure rates (L1,2) with different checkpoint sizes per node
(1 or 10 GB/node). We estimate level-1 C/R time using the
performance model in Section V-B. For level-2 C/R time,
we use a PFS bandwidth of 50 GB/s, the bandwidth of the
LLNL Lustre file system /p/lscratchd. We find that we
can achieve fairly high efficiencies if future systems can keep
current level-2 failure rates constant, or the size of checkpoints
is small. However, if both level-1 and 2 failure rates increase
and the checkpoint size is large, the efficiency drops down to
under 2%. Thus, future systems must either decrease level-2
failure rates or increase PFS throughput to achieve high system
efficiency.

80% of probability to run for 
24 hours on environment 
with current failure rate 

FMI execution: 80% 
non-FMI execution: 25% 

•  With-FMI,-applicaGon-conGnuously-run-for-longer-Gme--

Even with FMI, most of  
executions cannot run for 24H 

Future FMI will support  
async. multi-level checkpoint/restart 
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Asynchronous-mulG#level-checkpoinGng-

(MLC)-

•  Asynchronous-MLC-is-a-technique-for-achieving-high-
reliability-while-reducing-checkpoinGng-overhead-

•  Asynchronous-MLC-Use-storage-levels-hierarchically-

–  RAID#5-checkpoint:-Frequent--for-one-node-for-a-few-

node-failure-

–  PFS-checkpoint:-Less-frequent-and-asynchronous-for-

mulG#node-failure-

•  Our-previous-work-model-the-asynchronous-

MLC-

-

-

Level#1-

Level#2-

RAID#5-
checkpoint-

PFS-
checkpoint-
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Source: K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski, and S. Matsuoka, “Design and Modeling of a Non-
Blocking Checkpointing System,” in Proceedings of the International Conference on High Performance Computing, Networking, 
Storage and Analysis, ser. SC ’12. Salt Lake City, Utah: IEEE Computer Society Press, 2012  
 

MTBF Failure rate 
L1 failure 130 hours 2.13-6 
L2 failure 650 hours 4.27-7  

Failure analysis on Coastal cluster 

Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de 
Supinski, “Design, Modeling, and Evaluation of a Scalable 
Multi-level Checkpointing System,” in Proceedings of the 
2010 ACM/IEEE International Conference for High 
Performance Computing, Networking, Storage and 
Analysis (SC 10). 
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Efficiency-with-FMI-+-Asynchronous-MLC-

•  Checkpoint-size:-1-and-10-GB/node-
•  We-increase-L1-and--L1-&-L2-failure-rates-
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High efficiency with current 
failure rate 

FMI + Asynchronous MLC 
achieve high efficiency even 

with much higher failure rate 

If both L1 & L2 failure rate 
increase, and checkpoint size is 
large, efficiency drops rapidly  

Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi 
Matsuoka, "A User-level InfiniBand-based File System and Checkpoint Strategy for Burst Buffers", 

 CCGrid2014 (May 23th, Best Paper Session) 
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LimitaGon-and-Future-support-

•  FMI-is-an-on#going-project,-several-limitaGons-exist-

•  Limited-MPI-funcGons-
–  The-current-FMI-implementaGon-only-supports-a-subset-of-MPI-

funcGons.--

–  e.g.)-MPI_IO-

•  C/R-of-communicators-
–  Several-applicaGons-dynamically-split-a-communicator-in-order-to-

balance-the-workloads-across-processes-

–  Such-applicaGons-change-not-only-applicaGon-state-but-also-
communicator-state-over-the-iteraGons-

•  MulG#level-C/R-
–  Future-versions-of-FMI-will-support-mulGlevel-C/R-to-be-able-to-

recover-from-any-failures-occurring-on-HPC-systems.-
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Conclusion-

•  We-developed-Fault-Tolerant-Messaging-Interface-
(FMI)-for-fast-and-transparent-recovery-
–  Scalable-failure-detecGon-
–  Survivable-messaging-interface--

– Dynamic-node-allocaGon-

–  Fast-checkpoint/restart-

•  Experimental-results-show-FMI-incurs-only-a-28%(
overhead-with-a-very-high-MTBF(of(1(minute(
–  The-result-presents-good-prospect-to-implement-
resilience-capability-on-top-of-other-fault-tolerant-
MPIs-(e.g.-ULFM-&-NR#MPI)-
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