
A User-level InfiniBand-based File System and
Checkpoint Strategy for Burst Buffers

Kento Sato

Dep. of Mathematical and Computing Science

Tokyo Institute of Technology

2-12-1-W8-33, Ohokayama,

Meguro-ku, Tokyo 152-8552 Japan

Email: kent@matsulab.is.titech.ac.jp

Kathryn Mohror, Adam Moody,
Todd Gamblin and Bronis R. de Supinski

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

Livermore, CA 94551 USA

Email: {kathryn, moody20, tgamblin, bronis}@llnl.gov

Naoya Maruyama

Advanced Institute for Computational Science

RIKEN

7-1-26, Minatojima-minami-machi,

Chuo-ku, Kobe, Hyogo, 650-0047 Japan

Email: nmaruyama@riken.jp

Satoshi Matsuoka

Global Scientific Information and Computing Center

Tokyo Institute of Technology

2-12-1-W8-33, Ohokayama,

Meguro-ku, Tokyo 152-8552 Japan

Email: matsu@is.titech.ac.jp

Abstract—Checkpoint/Restart is an indispensable fault toler-
ance technique commonly used by high-performance computing
applications that run continuously for hours or days at a time.
However, even with state-of-the-art checkpoint/restart techniques,
high failure rates at large scale will limit application efficiency.
To alleviate the problem, we consider using burst buffers. Burst
buffers are dedicated storage resources positioned between the
compute nodes and the parallel file system, and this new tier
within the storage hierarchy fills the performance gap between
node-local storage and parallel file systems. With burst buffers,
an application can quickly store checkpoints with increased
reliability. In this work, we explore how burst buffers can
improve efficiency compared to using only node-local storage.
To fully exploit the bandwidth of burst buffers, we develop a
user-level InfiniBand-based file system (IBIO). We also develop
performance models for coordinated and uncoordinated check-
point/restart strategies, and we apply those models to investigate
the best checkpoint strategy using burst buffers on future large-
scale systems.

Keywords-fault tolerance; checkpoint/restart; burst buffer;

I. INTRODUCTION

The growing computational power of high performance

computing (HPC) systems enables increasingly larger scien-

tific simulations. However, as the number of system compo-

nents increases, the overall failure rate of the system increases.

Furthermore, the mean time between failures (MTBF) of future

systems is projected to be on the order of tens of minutes or

hours [1], [2], [3]. In fact, an earlier failure analysis on Hera,

Atlas, and Coastal clusters at Lawrence Livermore National

Laboratory (LLNL) [4] showed that a production applica-

tion, the pF3D laser-plasma interaction code [5], experienced

191 failures in 5.6-million node-hours. Simple extrapolation

assuming a constant node-hour failure rate shows that the

estimated MTBF is 1.2 days for a 1,000-node cluster, 2.7 hours

for a 10,000-node cluster, and 18 minutes for a 100,000-node

cluster. Without fault tolerant techniques and more reliable

hardware, applications will be unable to run continuously for

even one day on such a large system. Therefore, as we look

towards future large-scale systems, fault tolerance is becoming

more important [6].

One indispensable technique for fault tolerance is check-

point/restart (C/R), in which the application periodically writes

a snapshot of its state to reliable storage, like a parallel file

system (PFS). Then when a failure occurs, the application

is restored to its previous state recorded in the snapshot.

Although storing checkpoints in the PFS is highly reliable,

this method imposes high overhead on application run time

at large scales. Multilevel C/R improves on this approach

by storing most checkpoints in fast, scalable storage on the

compute nodes and only copying a select few to the more

reliable PFS [7], [8]. This reduces the overhead of writing

checkpoints in the common case, which greatly increases

application efficiency. Further efficiency gains can be achieved

by combining multilevel C/R with asynchronous I/O [4], [9]

or uncoordinated checkpointing [10], [11], [12].

However, even with these state-of-the-art C/R techniques,

high failure rates at large scale will significantly limit appli-

cation efficiency. Our earlier failure analysis study showed

that most failures affect a single compute node [4], [7]. To

tolerate node failures, multilevel checkpointing libraries apply

redundancy schemes to the cached checkpoints across node-

local storage (e.g. local SSDs). For example, each checkpoint

may be copied to a partner node, or the library may utilize a

RAID algorithm and spread redundancy data across multiple

compute nodes. This allows the application to recover from

node failures assuming the number of nodes lost is less than

what is tolerated by the redundancy scheme. However, with

higher failure rates, the likelihood of multiple simultaneous

node failures increases. If the simultaneous failures affect

2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-2784-5/14 $31.00 © 2014 IEEE

DOI 10.1109/CCGrid.2014.24

21



nodes in a shared redundancy set, the cached checkpoints will

be lost and the application will need to restart from the PFS.

This could mean the application would spend the majority of

its time in C/R activities [4]. Thus, writing checkpoints to

node-local storage is a scalable, but not reliable solution, and

application efficiency may suffer at extreme scales.

Burst buffers have been proposed as node-local storage to

alleviate the problems of writing to a shared PFS [13], [14].

Burst buffers are a new tier in the storage hierarchy to fill

the performance gap between node-local storage and the PFS.

They absorb the bursty I/O requests from applications and

thus reduce the effective load on the PFS. System software

can manage moving data between the burst buffers and the

PFS asynchronously. The storage design is expected to be a

promising architecture of future supercomputers.

In this paper, we consider using burst buffers to improve sys-

tem resiliency. With burst buffers, an application can quickly

store checkpoints with increased reliability. We explore how

burst buffers can improve efficiency compared to using only

node-local storage, and we develop and apply models to

investigate the best checkpoint strategy with burst buffers for

a wide range of C/R strategies. Our key contributions include:

• An InfiniBand-based file system (IBIO) that exploits the

bandwidth of burst buffers;

• A model to evaluate system resiliency given C/R and

storage configurations;

• Simulation results showing how system resiliency im-

proves from the use of burst buffers;

• A quantitative examination of the trade-offs between

coordinated and uncoordinated multilevel C/R;

• An analysis of which tiers in the storage hierarchy impact

system reliability and efficiency; and

• An exploration of burst buffer configurations to discover

the best for future large-scale systems.

In the next section, we categorize C/R strategies and de-

scribe the targets for our study. In Section III, we introduce

our SSD burst buffer machine. In Section IV, we detail IBIO.

We model multi-tiered storage and C/R strategies in Section V.

In Section VI, we show IBIO performance, and in Section VII

we simulate system efficiency given C/R strategies and storage

configurations. In Section VIII we detail related work, and we

conclude in Section IX.

II. C/R STRATEGIES

Over the years, many C/R strategies have been studied.

These techniques can be roughly categorized into single or

multilevel, synchronous or asynchronous, and coordinated

or uncoordinated C/R. We explain each C/R strategy and

their advantages and disadvantages. We describe our target

checkpointing strategies.

A. Single vs. Multilevel Checkpointing

The simplest approach for C/R is to write all checkpoints to

a single location, such as the PFS [15], [16]. However, when

a large number of compute nodes write their checkpoints to

a PFS, contention for shared PFS resources leads to low I/O

Checkpointing 

Process (a1) 

Process (a2) 

Process (b1) 

Process (b2) 

Cl
us

te
r A

 
Cl

us
te

r B
 

Checkpointing 
Waiting time 

Fig. 1. Indirect global synchronization on uncoordinated C/R

throughput. Multilevel checkpointing is an approach for allevi-

ating this bottleneck [7]. Earlier failure analysis showed most

failures on current supercomputers affect a single compute

node, which does not necessarily require writing checkpoints

to the reliable, but slow PFS [7]. For example, only 15%

of failures on the Hera, Atlas and Coastal systems at LLNL

required checkpoints on the PFS for restarts. The study also

showed multilevel C/R can benefit application efficiency in the

face of higher failure rates and increased relative overhead of

checkpointing to the PFS that may occur on future systems.

Therefore, in this study we only target multilevel C/R.

B. Synchronous vs. Asynchronous Checkpointing

Checkpointing libraries can write checkpoints either syn-

chronously or asynchronously. Synchronous checkpointing

methods write checkpoints such that all processes write their

own checkpoints concurrently, and are blocked until the

checkpoint operation completes [15], [7]. In asynchronous

checkpointing [16], [4], [8], the methods write checkpoints

to the PFS in the background of application computation,

which can reduce checkpointing overhead experienced by

applications. With asynchronous checkpointing, after each

process writes its checkpoint data to RAM or node-local

storage, it can continue its computation. Another process or

thread reads the checkpoint from the storage location, and

writes it to the PFS. Although asynchronous checkpointing can

increase an application’s runtime due to resource contention

from the background checkpoint transfer process, it resolves

the blocking problem of synchronous checkpointing.

Intuitively, one would expect asynchronous checkpointing to

be more efficient than synchronous checkpointing. However,

our earlier study showed that simple asynchronous checkpoint-

ing can inflate an application’s runtime and can be worse than

synchronous checkpointing [4]. But with our asynchronous

checkpointing system using RDMA, we minimized the inflated

overhead, and showed that the asynchronous checkpointing

is more efficient given current and future failure rates, and

expected checkpointing overhead. Thus, in this paper, we

explore only asynchronous checkpointing.

C. Coordinated vs. Uncoordinated Checkpointing

Last, we consider whether C/R is coordinated or uncoor-

dinated. With coordinated C/R, all processes globally syn-

chronize before taking checkpoints to ensure the checkpoints

are consistent and that no messages are in flight. Coordinated

C/R is applicable to a wide range of applications. However,

at large scales the global synchronization can cause overhead

due to propagation of system noise at extreme scale [17]. In

22



addition, when checkpointing to or restarting from a PFS,

tens of thousands of compute nodes concurrently write or

read checkpoints, which can cause large overhead due to con-

tention. Meanwhile, uncoordinated checkpointing [10] does

not require global synchronization, and allows processes to

write/read checkpoints at different times, which lowers check-

point overhead. However, with uncoordinated checkpointing

there may be messages in flight from one process to another

when a checkpoint is taken. To handle this, uncoordinated

checkpointing libraries log messages, which has its own over-

head problem. This protocol can cause the so-called domino
effect preventing an application from rolling-back to the last

checkpoint at restart [18] without message logging.

Earlier uncoordinated checkpoint techniques [11], [12]

reduce the message logging overhead by partitioning processes

into clusters, and only logging the inter-cluster communica-

tions. Although the clustering approach can reduce message

logging overhead while minimizing the number of processes

that need to restart on failure, application runtime is still

inflated by the logging overhead. In addition, if we apply

uncoordinated checkpointing to MPI applications, indirect
global synchronization can occur. In Figure 1, for example,

process (a2) in cluster (A) wants to send a message to

process (b1) in cluster (B), which is writing its checkpoint

at that time. Process (a2) waits for process (b1) because

process (b1) is doing I/O and can not receive or reply to

any messages, which keeps process (a1) waiting to checkpoint

with process (a2). If such a dependency propagates across all

processes, it results in indirect global synchronization. Many

MPI applications exchange messages between processes in a

shorter period of time than is required for checkpoints. In

uncoordinated checkpointing, we assume applications restart

with uncoordinated manner (partial restart), but globally syn-

chronize before checkpointing like coordinated checkpointing.

Thus, as in the model specified in Section V, we estimate

the times for uncoordinated checkpointing and for coordinated

checkpointing in the same model.

D. Target C/R Strategies

As discussed previously, multilevel and asynchronous

software-level approaches are more efficient than single and

synchronous C/R respectively. However, there is a trade-off

between coordinated and uncoordinated checkpointing given

an application and the configuration. In this work, we compare

the efficiency of multilevel asynchronous coordinated and un-

coordinated C/R. However, because we have already found that

these software-level approaches may be limited in increasing

application efficiencies at extreme scale [4], we also consider

storage architecture approaches.

III. STORAGE DESIGNS

Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-

ware approach via C/R techniques (software-level approach),

but also consider different storage architectures (architecture-

level approach). In this section, we introduce an mSATA-based

������ ������ ������������ ������ ������ ������ ������

	
��
���
�
�����

	
��
���
�
�����

	
��
���
�
�����

	
��
���
�
�����

	
��
���
�
������

	
��
���
�
�����

	
��
���
�
�����

	
��
���
�
�����

�������������������������� ��������������������������

A single node 

Fig. 2. (a) Left: Flat buffer system (b) Right: Burst buffer system

SSD burst buffer system (Burst buffer system), and explore the

advantages by comparing to a representative current storage

system (Flat buffer system).

A. Current Flat Buffer System

In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design

is scalable with increasing number of compute nodes. Several

supercomputers employ this flat buffer system [19], [20], [21].

However this design has drawbacks: unreliable checkpoint

storage and inefficient utilization of storage resources for

partial restart. Storing checkpoints in node-local storage is not

reliable because an application cannot restart its execution if

a checkpoint is lost due to a failed compute node, which is

the most common failure [4], [7]. For example, if compute

node 1 in Figure 2 (a) fails, a checkpoint on SSD 1 will be

lost because SSD 1 is connected to the failed compute node 1.

In addition, storage devices can be underutilized with partial

restart by uncoordinated C/R. While the system can limit the

number of processes to restart, i.e., perform a partial restart, in

a flat buffer system, local storage is not utilized by processes

which are not involved in the partial restart. For example, if

compute node 1 and 3 are in a same cluster for uncoordinated

C/R, and restart from a failure, the bandwidth of SSD 2 and

4 will not be utilized.

B. Burst Buffer System

To solve the problems in a flat buffer system, we consider a

burst buffer system [22]. A burst buffer is a storage space to

bridge the gap in latency and bandwidth between node-local

storage and the PFS, and is usually shared by a subset of com-

pute nodes. Additional nodes are required for burst buffers,

and the increasing number of nodes may inflate the overall

failure rate. However, a burst buffer can offer a system many

advantages including higher reliability and efficiency over a

flat buffer system. A burst buffer system is more reliable for

checkpointing because burst buffers are located on a smaller

number of dedicated I/O nodes, so the probability of lost

checkpoints is decreased. In addition, even if a large number

of compute nodes fail concurrently, an application can still

access the checkpoints from the burst buffers. A burst buffer

system provides more efficient utilization of storage resources

for partial restart of uncoordinated C/R because processes

involving restart can exploit higher storage bandwidth. For

example, if compute node 1 and 3 are in the same cluster, and

both restart from a failure, the processes can utilize all SSD

bandwidth (Bandwidth of SSD 1 and 2 for node 1, SSD 3

23



and 4 for node 3) unlike a flat buffer system. This capability

accelerates the partial restart of uncoordinated C/R.

TABLE I
NODE SPECIFICATION

CPU Intel Core i7-3770K CPU (3.50 GHz x 4 cores)
Memory Cetus DDR3-1600 (16 GB)

M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 CT256M4SSD3 (256GB, mSATA)

(Peak read: 500 MB/s, Peak write: 260 MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Frame
RAID Card Adaptec ASR-7805Q Single

To build a reliable burst buffer system at extreme scale,

minimizing the number of system components is critical while

maximizing high I/O throughput under minimal budget. To

explore the bandwidth we can achieve by a single node with

only commodity devices, we developed an mSATA-based SSD

test system. The detailed specification is shown in Table I.

The theoretical peak throughputs of sequential read and write

operation of the mSATA-based SSD is 500 MB/sec and 260

MB/sec, respectively. We aggregate the eight SSDs into a

RAID card, and connect the RAID cards via PCIe 3.0 (x8).

The theoretical peak performance of this configuration is 4

GB/sec for read and 2.08 GB/sec for write in total. To use

the storage systems as burst buffers, the mSTA-based SSDs

must be accessed via a high-speed network (e.g., InfiniBand)

with a network-based file system. However, simple methods

cannot exploit the bandwidth. For example, if we use NFS with

IPoIB for the network-based file system, the useful bandwidth

is only 1 GB/s for both read and write (details in Section VI).

A new network-based file system is required to exploit the

PCIe-attached high bandwidth storage.

IV. USER-LEVEL INFINIBAND-BASED FILE SYSTEM FOR

BURST BUFFERS

To exploit the bandwidth of burst buffers, we developed

a user-level InfiniBand-based file system and I/O API called

IBIO. Our earlier work showed that I/O operations with

concurrent multiple threads can effectively exploit the high

bandwidth of PCIe-attached storage [23] as well as the PFS

[4]. Thus, we parallelize the operations of IBIO with multiple

reader and writer threads. The current API of IBIO includes

open, write, read and close. The interfaces are identical

to POSIX except that of open. The IBIO open requires a

hostname as well as a pathname so that IBIO clients can access

any files on any IBIO servers. IBIO open sends a query to the

IBIO server to open the file, and it returns the file descriptor

(fd).

Figure 3 and Figure 4 show the design of IBIO write and

read. When a client on a compute node writes its file to

remote storage via the IBIO write call (Figure 3), the IBIO

client divides the data into smaller chunks, and it transfers

the chunks using an RDMA API we developed in prior

work [4] (Step 1). The RDMA transfer API enables one-sided

Hi 
	�������
��	��

Si 

i  = 0 i  > 0 

1 2 mi 

Hi-1 Hi-1 Hi-1 

Fig. 5. Recursive structured storage model

communications from the client to the server using a low-

level, user-space InfiniBand API called ibverbs. Once the IBIO

server thread receives a write request from a client, the IBIO

server reads the chunk into the selected buffer according to

the fd by using an RDMA read (Step 2). Then, the IBIO

server creates a writer thread to asynchronously write the

chunk to the file (Step 3) so that the IBIO server thread can

receive subsequent chunks from IBIO clients while writing

the chunk. When all chunks for the write call are written, the

writer threads inform the IBIO server (Step 4), and the IBIO

server informs the IBIO client that the write is complete (Step

5).

Since communications from server to client are required

for IBIO read operations, we extended the RDMA transfer

API from prior work to support bi-directional communications.

When an IBIO client reads a file from remote storage via

IBIO read (Figure 4), the IBIO client sends the read request

containing the fd to the IBIO server (Step 1). Once the

IBIO server receives the read request, the IBIO server thread

identifies the file according to the fd, and it creates a reader
thread to handle the read request (Step 2). Then the IBIO

server thread waits for the next request. The reader thread

reads a chunk of the file with file descriptor fd into its buffer

(Step 3). The reader thread requests that the IBIO server thread

sends the chunk to the IBIO client (Step 4), and then reads

the next chunk. When all chunks for the read call have been

read, the reader thread informs the IBIO server, and the IBIO

server informs the IBIO client that the read is complete (Step

5).

V. MODELING

As described in Sections II and III, each checkpoint strategy

and storage architecture have advantages and disadvantages.

Here we discuss the model we developed to identify the best

checkpoint strategy for a given configuration.

A. Recursive Structured Storage Model

We introduce a recursive structured storage model to gener-

alize storage architectures to describe both flat and burst buffer

systems with a single model. Figure 5 shows the recursive

structured storage model based on a restricted context-free
grammar. A tier i hierarchical entity, Hi, has storage Si shared

by mi upper hierarchical entities, Hi−1. We denote Hi=0 as

a compute node. If each tier of hierarchical storage is shared

as {m1, m2, . . . , mN} within N -tired hierarchical storage, we

denote the storage architecture as HN {m1, m2, . . . , mN}.

For example, the flat buffer system in Figure 2 (a) can be

24



Chunk buffers 

Compute node 1  Compute node 2 Compute node 3 Compute node 4 

IBIO�
client�

IBIO�
client�

IBIO�
client�

IBIO server thread�

file4�
Storage 

file3�file2�file1�

��
fd1 

fd2 

fd3 

fd4 

��

Writer thread 
Writer thread 
Writer thread 
Writer thread 

Writer threads 

chunk ��

��

��

IBIO�
client�

Fig. 3. IBIO Write: four IBIO clients and one IBIO server

Compute node 1  Compute node 2 Compute node 3 Compute node 4 

IBIO�
client�

IBIO�
client�

IBIO�
client�

IBIO�
client�

IBIO server thread�

file4�
Storage 

file3�file2�file1�

Chunk buffers 

�� ��

Reader threads 

�� ��

Reader thread 
Reader thread 
Reader thread 
Reader thread 

��
fd1 

fd2 

fd3 

fd4 

Fig. 4. IBIO Read: four IBIO clients and one IBIO server

represented as H2 {1, 4}. It has 2 levels of storage: the node-

local storage is not shared, so m1 = 1; however, the PFS

is shared across all compute nodes, so m2 = 4. In the

same manner, the burst buffer system in Figure 2 (b) can be

represented as H2 {2, 2}. The total number of compute nodes

can be calculated as
∏2

i=1 mi = 4 nodes.

TABLE II
TIER i STORAGE (Si) PERFORMANCE PARAMETERS

ri Sequential read throughput from compute nodes (Hi=0)
wi Sequential write throughput from compute nodes (Hi=0)
mi The number of a upper hierarchical entities (Hi−1) sharing Si

In this model, we do not distinguish between node-local

storage and network-attached storage. Instead, we differentiate

the storage levels using performance parameters. We consider

only sequential read/write bandwidth because typically the I/O

pattern of C/R is sequential. Note that the read and write

bandwidth values are not the peak performance of the storage

but the effective throughput between compute nodes and the

storage location. For example, if tier i storage has a read

bandwidth of r, but the network-based file system delivers

a bandwidth of r̂ < r, then the model parameter is set as

ri = r̂. Using these performance parameters, we estimate C/R

time. However, as we show in Section VI, We can minimize

the performance gap between local and remote read/write

accesses with IBIO.

B. Modeling of C/R Strategies
Given the storage performance parameters of each tier, we

model level i checkpoint overhead (Oi), checkpoint latency
(Li), and restart overhead (Ri) in a multilevel checkpointing

library [4]. For simplicity, if multiple compute nodes con-

currently access a single storage location, we assume the

read/write throughput scales down linearly with the number

of concurrent accesses.
Checkpoint overhead Oi is the increased execution time of

an application because of checkpointing. Checkpoint latency

Li and restart overhead Ri are the times to complete a check-

point and restart respectively. If a checkpoint strategy conducts

erasure encoding, such as XOR [7] and Reed-Solomon en-

coding [8], the checkpoint overhead and latency also include

the encoding overhead and latency. We differentiate between

checkpoint overhead and latency to show the differences be-

tween synchronous and asynchronous checkpointing. During

synchronous checkpointing, checkpoint overhead and latency

are equal, i.e., Oi = Li, because each process is blocked until

the checkpoint is completed. Asynchronous checkpointing,

meanwhile, incurs only initialization overhead, so checkpoint

overhead is equal or smaller than checkpoint latency, i.e.,

Oi < Li.
We model level i checkpoint overhead and latency as

Oi =
{

Ci + Ei (synchronous checkpointing)
Ii (asynchronous checkpointing)

Li = Ci + Ei

where Ci denotes actual checkpointing time, Ei denotes

encoding time, and Ii denotes initialization time for asyn-

chronous checkpointing. If the level i checkpointing does not

encode checkpoints, Ei becomes 0; otherwise we model the

encoding time as Ei = D/ei where D is the checkpoint size

per compute node and ei is encoding throughput. The actual

checkpointing time Ci, i.e., sequential write time, is calculated

as

Ci =

⎧⎪⎨
⎪⎩

D × M/wi (i = N)

D ×
⌈

MQN
k=i+1 mk

⌉
/wi (otherwise)

where M denotes the total number of checkpointing compute

nodes, i.e., M =
∏N

i=1 mi. With uncoordinated checkpointing,

we assume the checkpointing time is identical to coordinated

checkpointing time because of indirect global synchronization

as described in Section II-C. Because
∏N

k=i+1 mk is the

number of storage locations Si, the quantity
⌈

MQN
k=i+1 mk

⌉
represents the max number of compute nodes per storage

location Si.
When restarting with uncoordinated checkpointing, the

restart overhead is different from coordinated checkpointing.

We model the restart overhead Ri, i.e., sequential read time,

as:

Ri =

⎧⎪⎨
⎪⎩

D × K/ri (i = N)

D ×
⌈

KQN
k=i+1 mk

⌉
/ri (otherwise)

25



where K is the number of restarting compute nodes. With

coordinated restart, all compute nodes concurrently read their

checkpoints, so K is identical to the total number of compute

nodes M . With uncoordinated restart, only the cluster which

includes failed compute nodes will read its checkpoints and

restart. Here, K is the cluster size, and we assume that each

compute node in a cluster is distributed across Si>N storage

locations with a topology-aware process mapping technique.

C. Multilevel Asynchronous C/R Model

Our multilevel asynchronous C/R model [4] computes the

expected runtime T̂ given the checkpoint overheads at each

storage level O = {O1, O2, . . .}, the checkpoint latencies

L = {L1, L2, . . .}, the restart overheads R = {R1, R2, . . .},

the failure rates F = {F1, F2, . . .}, the checkpoint frequencies

V = {v1, v2, . . .}, and the checkpoint interval T . Here, vi

is the number of level i checkpoints within each level i +

1 period. For example, if an application writes fifteen level

1 checkpoints for every level 2 checkpoint, and five level

2 checkpoints for every level 3 checkpoint, V is {15, 5, 1}.

Given these parameters, we can compute the optimal check-

point interval by minimizing T̂ , where f(O, L, R, F, V, T ) ⇒
T̂ .

To evaluate the checkpoint strategies given a storage con-

figuration, we use efficiency defined as

efficiency =
ideal time

expected time
=

I

T̂
.

I is the minimum run time assuming the application spends

no time in checkpointing activities and encounters no failures.

So I is simply computed as:

I = T × (v1 + 1) × · · · × (vN−1 + 1)

= T ·
N−1∏
i=1

(vi + 1).

We use this metric to compare the checkpoint strategies. Our

earlier study provides more details of the model [4].

VI. PERFORMANCE OF IBIO

For a burst buffer system, it is important to exploit the high

bandwidth of the burst buffers through network access. To

evaluate this property of IBIO we conducted sequential read

and write tests using the mSATA-based SSD system described

in Section III-B. Figure 6 shows sequential read and write

throughputs of local I/O, and I/O with IBIO and NFS. We

connected the mSATA-based SSD system to an InfiniBand

network with a Mellanox FDR HCA (Model No.: MCX354A-

FCBT) for remote access evaluations of IBIO and NFS. We

use 64 MB for the maximal chunk size to read and write

files to and from the NFS and IBIO servers to maximize the

sequential read and write throughputs. In NFS, the parameters

are configured by rsize and wsize options.

We find that the read and write throughputs of IBIO are

almost identical to the local throughputs with 8 processes or

more. When the number of read processes is 4 or less, we see

TABLE III
SIMULATION CONFIGURATION

Flat buffer system Burst buffer system

H2{m1, m2} H2{1, 1088} H2{32, 34}
{r1, r2} {500 MB/s, 10 GB/s} {16 GB/s, 10 GB/s}
{w1, w2} {260 MB/s, 10 GB/s} {8.32 GB/s, 10 GB/s}
{e1, e2} {400 MB/s, N/A}

D 5 GB
{F1, F2} {2.14e-6, 4.28e-7} {2.63e-6, 1.33e-8}

performance degradation of read operations on IBIO (Read-

IBIO) compared to the local read access (Read-Local). In IBIO

read, the client first sends a message to request the first 64 MB

chunk of the file, and the constant request latency is added

to the read time. Because of the constant latency, the read

throughput decreases with a smaller number of clients. How-

ever, when applications write and read checkpoints, multiple

processes concurrently access the storage, so applications can

exploit the bandwidth. In contrast, when IBIO clients write

data to a file, the clients send the first chunk with the first

request message. Thus, the write throughput does not decrease

with the fewer processes.

We also evaluate the sequential read and write performance

of NFS. Because NFS runs on IPoIB, NFS incurs as much

as 49.7% and 35.3% performance degradation compared to

local read and write, respectively, while IBIO incurs only 4.3

% over local read and 2.7 % over local write. NFS can not

exploit the FDR network bandwidth, because IPoIB becomes

a bottleneck. In contrast, IBIO uses the low-level InfiniBand

API (ibverbs). Thus IBIO can minimize data transfer overhead

even over networks.

VII. RESILIENCY EXPLORATION

In this section, we evaluate the trade-offs of different

checkpointing and storage configurations.

A. Experimental Setup

We describe our experimental setup including configuration

details for C/R and storage configurations, and how we deter-

mine the failure rates to use in our model.

1) C/R and Storage Configuration: In this study, we eval-

uate multilevel C/R on a 2-tiered storage system. Table III

shows the base configuration. The system sizes (Hi) are

based on the Coastal cluster at LLNL, which is an 88.5

TFLOP theoretical peak system consisting of 1,088 batch

nodes. We use 500 MB/s for local read throughput, and 260

MB/s for local write throughput for the Flat buffer system.

The burst buffer system has 34 burst buffer nodes, each of

which is shared by 32 compute nodes. In this exploration,

we simulate that we aggregate the 32 storage into the single

burst buffer node, and connect the burst buffer nodes via a

high speed interconnect which does not create a bottleneck

in bandwidth to simulate future extreme scale system. With

IBIO, applications can remotely access the burst buffers with

almost the same throughput as local access throughput. Thus,

26



0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

0 2 4 6 8 10 12 14 16 Re
ad

/W
ri

te
 th

ro
ug

hp
ut

 (G
B/

se
co

nd
s)

 

# of Processes 

Read - Peak Read - Local Read - IBIO Read - NFS 
Write - Peak Write - Local Write - IBIO Write - NFS 

Fig. 6. Sequential read and write throughput
of local I/O, and I/O with IBIO and NFS via
FDR InfiniBand networks

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 2 10 50 100 

Ef
fic

ie
nc

y 

Scale factor (xF, xL2) 

Coordinated Flat Buffer Uncoordinated Flat Buffer 
Coordinated Burst Buffer Uncoordinated Burst Buffer 

Fig. 7. Efficiency of multilevel coordinated
and uncoordinated C/R on a flat buffer system
and a burst buffer system

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 2 5 10 20 

Ef
fic

ie
nc

y 

Scale factor (L1/) 

Coordinated Flat Buffer Uncoordinated Flat Buffer 
Coordinated Burst Buffer Uncoordinated Burst Buffer 

Fig. 8. Efficiency in increasing level-1 C/R per-
formance in x100 failure rate: L1 C/R time/scale
factor

we use 16 GB/s for read throughput, and 8.32 GB/s for write

throughput in the burst buffer system.

For uncoordinated checkpointing, we use 16 nodes for the

cluster size (K). Earlier studies showed that the optimal cluster

size is from 32 to 128 processes, i.e., 4 to 16 nodes for a 8-core

Coastal compute node, to provide a good trade-off between

the size of the clusters and the amount of messages to log for

most applications [11], [24]. Because the cluster size is small

enough to assign a compute node to a single burst buffer node,⌈
KQ2

k=2 mk

⌉
is computed as 1 compute node for uncoordinated

restart.

We use asynchronous checkpointing for PFS, and syn-

chronous checkpointing for XOR. For the encoding rate, we

only provide an encoding rate (e1) for level 1 (XOR) because

PFS does not need encoding.

2) Failure Rate Estimation: Failure rates (F ) are based on

a failure analysis study using a multilevel C/R library called

the Scalable C/R (SCR) Library [7]. SCR provides several

checkpoint options: LOCAL, XOR, and PFS. With LOCAL, SCR

simply writes the checkpoint data to node-local storage. In

this case, if one of the checkpoints is lost due to a failure,

an application would not be able to restart its execution. So,

SCR provides XOR, which is a RAID-5 strategy that computes

XOR parity across subgroups of processes so that SCR can

restore the lost checkpoint data. SCR also provides PFS to keep

checkpoint data on the most reliable storage level, the PFS.

The failure analysis study shows that the average failure rate (#

of failures/second) per a single compute node requiring LOCAL
is 1.96×10−10, XOR is 1.77×10−9, and PFS is 3.93×10−10.

In a flat buffer system, each failure rate is calculated

by simply multiplying the failure rate by the number of

compute nodes, 1088 nodes. This leads to failure rates of

2.14×10−7 (= 1.96×10−10×1, 088) for LOCAL, 1.92×10−6

(= 1.77 × 10−9 × 1, 088) for XOR, and 4.28 × 10−7 (=

3.93× 10−10 × 1, 088) for PFS. The failure rates are identical

to the measured ones of the LLNL Coastal cluster. Actually,

if the level-i failure rate is lower than the level-i + 1 rate,

the optimal level i checkpoint count is zero because a level i
failure can be recovered with a level i + 1 checkpoint, which

is written more frequently than level i [21] . Thus, we do not

consider LOCAL checkpointing for the simulation. We evaluate

the two level C/R case where level 1 is XOR, and level 2 is PFS,

with failure rates of {F1, F2} = {2.14× 10−6, 4.28× 10−7}
(See Table IV).

In a burst buffer system, we use 34 burst buffer nodes, and

assume the failure rate of a burst buffer node is identical to

a compute node. On a compute node failure, an application

does not lose checkpoint data because the checkpoint data is

not in compute nodes. However, if a burst buffer node fails,

checkpoint data on the failed burst buffer nodes is lost. Thus,

we also use two level C/R where level 1 is XOR, and level 2 is

PFS. Because the total number of nodes increases, failure rate

requiring level 1 checkpoint increases according to the number

of burst buffer nodes. For 34 burst buffer nodes, the level 1

failure rate is calculated as 6.67 × 10−8 (= (1.96 × 10−10 +
1.77 × 10−9) × 34). Meanwhile, checkpoint data is stored on

fewer nodes, which decreases the failure rate requiring PFS for

recovery. The level 2 failure is 1.33 × 10−8 (See Table IV).

On compute node failures, application can restart from level 1

checkpoint regardless of the number of failed compute nodes

in a burst buffer system. Thus, the failure rate of each level is

{F1, F2} = {2.63 × 10−6, 1.33 × 10−8} for the burst buffer

system. Because the burst buffer system uses more nodes for

burst buffers, the overall failure rate of the burst buffer system

(2.64 × 10−6) is higher than one of the flat buffer system

(2.57 × 10−6).

B. Efficiency with Increasing Failure Rates and Level 2 C/R
Costs

We expect the failure rates and aggregate checkpoint sizes

to increase on future extreme scale systems. To explore the

effects, we increase failure rates and level 2 (PFS) C/R costs

by factors of 1, 2, 10, 50 and 100 from the base configuration

in Table III, and compare the efficiencies of multilevel coor-

dinated and uncoordinated C/R on a flat buffer system and

on a burst buffer system. We do not change the level 1 (XOR)

checkpoint cost; because the total performance of node-local

storage and burst buffer will scale with increasing system size.

For uncoordinated C/R, we assume that the message logging

overhead is 0. We discuss the allowable message logging

overhead in Section VII-C.
Figure 7 shows application efficiency under increasing

failure rates (xF) and level 2 C/R costs (xL2). When we

27



TABLE IV
CHECKPOINT LEVELS AND FAILURE RATES

Flat Buffer System Burst Buffer System

C/R method XOR on local store XOR on burst buffer
Level 1 Failure rate (1.96 × 10−10 + 1.77 × 10−9) × 1, 088 Fflat + (1.96 × 10−10 + 1.77 × 10−9) × 34

(# of failures / second) = 2.14 × 10−6 = 2.63 × 10−6

C/R method PFS PFS
Level 2 Failure rate (3.93 × 10−10) × 1, 088 (3.93 × 10−10) × 34

(# of failures / second) = 4.28 × 10−7 = 1.33 × 10−8

Overall failure rate (Level 1+2) 2.57 × 10−6(= Fflat) 2.64 × 10−6

compute efficiency, we optimize the level-1 and 2 checkpoint

frequencies (v1 and v2), and the interval between checkpoints

(T ) to discover the maximal efficiency. The burst buffer system

achieves a higher efficiency than the flat buffer system in most

cases. The efficiency gap becomes more apparent with higher

failure rates and higher checkpoint costs because the burst

buffer system stores checkpoints on fewer burst buffer nodes.

By using uncoordinated C/R and leveraging burst buffers,

we achieve 70% efficiency even on systems that are two

orders of magnitude larger. This is because partial restart with

uncoordinated checkpointing can limit the number of compute

nodes that read checkpoints on burst buffers and the PFS,

which accelerates restart time.

C. Allowable Message Logging Overhead

The efficiencies shown in Figure 7 do not include message

logging overhead. We consider this factor in Table V which

shows how much message logging overhead of uncoordinated

checkpointing is allowed in order to achieve a higher efficiency

than coordinated checkpointing. As in Figure 7, we increase

both the failure rates and level 2 C/R cost by the scale factor

shown on each row. We find that the logging overhead must be

relatively small, less than a few percent, for scale factors up to

10. However, at scale factors of 50 and 100, very high message

logging overheads are tolerated. This shows that uncoordinated

checkpointing can be more efficient on future systems even

with high logging overheads.

D. Effect of Improving Storage Performance

When building a reliable data center or supercomputer,

significant efforts are made to maximize system performance

given a fixed budget. It can be challenging to decide which

system resources will most affect overall system performance.

TABLE V
ALLOWABLE MESSAGE LOGGING OVERHEAD

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

To explore how the performance of different tiers of the

storage hierarchy impact system efficiency, we increase per-

formance of each tier of storage by factors of 1, 2, 10, and 20.

Figures 8 and 9 show efficiency with increasing performance

of level 1 and 2 C/R, i.e., decreasing level 1 and 2 C/R

time, using failures rates at 100 × current rates. We see that

improvement of level 1 C/R does not impact efficiency for

either flat buffer or burst buffer systems. However, as shown

in Figure 9, increasing the performance of the PFS does impact

system efficiency. We can achieve over 80% efficiency with

both coordinated and uncoordinated C/R on the burst buffer

system with improved PFS performance of 10 and 20 ×. These

results tell us that level 2 C/R overhead is a major cause of

degrading efficiency, and its performance affects the system

efficiency much more than that of level 1. We also find that

prevention of level 2 failures is important for future extreme

scale systems.

E. Optimal Ratio of Compute Nodes to Burst Buffer Nodes

Another thing to consider when building a burst buffer

system is the ratio of compute nodes to burst buffer nodes.

A large number of burst buffer nodes can increase the total

bandwidth, but the large node counts increase the overall

failure rate of the system. To explore the effect of the ratio

of compute node and burst buffer node counts, we evaluate

efficiency under different failure rates and level 2 C/R costs

while keeping I/O throughput of a single burst buffer node

constant. Figures 10 and 11 show the results with coordinated

and uncoordinated C/R. We see that the ratio is not significant

up to scale factors of 10 ×. However, at a scale factor

of 50 ×, a larger number of burst buffer nodes decreases

efficiency. Adding additional burst buffer nodes increases the

failure rate which degrades system efficiency more than the

efficiency gained by the increased bandwidth. Thus, increasing

the number of compute nodes sharing a burst buffer node is

optimal as long as the burst buffer throughput can scale to the

number of sharing compute nodes.

VIII. RELATED WORK

Fast C/R is important for an application running for days

and weeks at extreme scale to achieve efficient execution in

the presence of failures. Multilevel C/R [7], [8] is an approach

for increasing application efficiency. Multilevel checkpoint

libraries utilize multiple tiers of storage, such as node-local

storage and the PFS. Uncoordinated C/R [10], [11], [12]

28



0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 2 5 10 20 

Ef
fic

ie
nc

y 

Scale factor (L2/) 

Coordinated Flat Buffer Uncoordinated Flat Buffer 
Coordinated Burst Buffer Uncoordinated Burst Buffer 

Fig. 9. Efficiency in increasing level-2 C/R per-
formance in x100 failure rate: L2 C/R time/scale
factor

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 2 10 50 

Ef
fic

ie
nc

y 

Scale factor (xF, xL2) 

1  node/burst buffer 2  nodes/burst buffer 
4  nodes/burst buffer 8  nodes/burst buffer 
16  nodes/burst buffer 32  nodes/burst buffer 

Fig. 10. Coordinated: Efficiency in different
ratios of compute nodes to a single burst buffer
nodes with coordinated C/R

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 2 10 50 

Ef
fic

ie
nc

y 

Scale factor (xF, xL2) 

1  node/burst buffer 2  nodes/burst buffer 
4  nodes/burst buffer 8  nodes/burst buffer 
16  nodes/burst buffer 32  nodes/burst buffer 

Fig. 11. Uncoordinated: Efficiency in different
ratios of compute nodes to a single burst buffer
nodes with uncoordinated C/R

works effectively when coupled with multilevel C/R. The

approach can limit the number of processes that need to

be restarted, i.e., only a partial restart instead of the whole

job, which can decrease restart time from shared file system

resources, such as a PFS or burst buffer. These techniques can

be improved further when coupled with incremental check-

pointing [25], [26], and checkpoint compression [27], [28].

Over the years, many C/R strategies have been studied, but

there is no studies that model and evaluate the efficiency of

the wide-range of C/R strategies.

The state-of-the art C/R strategies themselves are limited

in their ability to improve application efficiency at extreme

scale because C/R time depends on underlying I/O storage

performance. Another approach is to accelerate I/O perfor-

mance itself by altering the storage architecture. Adding a

new tier of storage is one solution. Rajachandrasekar et al.

[29] presented a staging server which drains checkpoints

on compute nodes using RDMA (Remote Direct Memory

Access), and asynchronously transfers them to the PFS via

FUSE (Filesystem in Userspace). Hasan et al. [9] achieved

high I/O throughput by using additional nodes. To deal with

bursty I/O requests, Liu et al. [22] proposed a storage system

that integrates SSD buffers on I/O nodes. As we observed,

optimizing performance and reliability requires determination

of the proper number of burst buffers for a given number

of compute nodes. However, a comprehensive study on the

problem has not yet been done.

Wickberg et al. [30] introduced an aggregated DRAM

buffer on top of the PFS called RAMDISK Storage Accelerator

(RSA). RSA constructs a low latency and high bandwidth

buffer on the fly, and asynchronously stages in files ahead of

execution coupled with an I/O scheduler. Kannan et al. [31]

also presented a data staging approach using active NVRAM

(Non-volatile RAM) [32] technology. These studies focused

on only I/O throughput. As we have seen, storing application’s

data as well as checkpoints in a fewer number of extra nodes is

a reliable solution. Our model evaluates the system efficiency

and is useful for designing future storage architectures at

extreme scale. To the best our knowledge, our work is the

first focusing on a co-designed approach for increasing both

I/O throughput and reliability with burst buffers at extreme

scale.

IX. CONCLUSION

In this work, we explored the use of burst buffer storage for

scalable C/R, and developed IBIO to exploit the high band-

width of the burst buffers for future extreme scale systems.

We also developed a model to explore the performance differ-

ence of checkpointing strategies, specifically coordinated and

uncoordinated checkpointing. We used the model to evaluate

multilevel checkpointing on flat buffer storage systems that

are currently available on today’s machines and hierarchical

storage systems using burst buffers.

From our exploration, we found that burst buffers are indeed

beneficial for C/R on future systems, increasing reliability and

efficiency. We also found that the performance of the parallel

file system has a high impact on the efficiency of a machine,

while increased bandwidth to burst buffers did not affect

overall machine efficiency. However, the reliability of burst

buffers does impact efficiency, because unreliable buffers mean

more I/O traffic to a PFS when multiple burst buffer nodes

fail, and checkpoints on the failed burst buffer nodes are lost.

Overall, uncoordinated checkpointing was more efficient than

coordinated checkpointing, even with high message logging

overhead. These findings can benefit system designers in

making the trade-offs in performance of components so that

they can create efficient and cost-effective machines.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. (LLNL-CONF-645876). This work
was also supported by Grant-in-Aid for Research Fellow of the Japan
Society for the Promotion of Science (JSPS Fellows) 24008253, and
Grant-in-Aid for Scientific Research S 23220003.

REFERENCES

[1] B. Schroeder and G. A. Gibson, “Understanding Failures in Petascale
Computers,” Journal of Physics: Conference Series, vol. 78, no. 1,
pp. 012 022+, Jul. 2007. [Online]. Available: http://dx.doi.org/10.1088/
1742-6596/78/1/012022

[2] A. Geist and C. Engelmann, “Development of Naturally Fault Tolerant
Algorithms for Computing on 100,000 Processors,” 2002.

[3] J. Daly et al., “Inter-Agency Workshop on HPC Resilience at Extreme
Scale,” February 2012. [Online]. Available: http://institutes.lanl.gov/
resilience/docs/Inter-AgencyResilienceReport.pdf

29



[4] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R.
de Supinski, and S. Matsuoka, “Design and Modeling of a Non-Blocking
Checkpointing System,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
ser. SC ’12. Salt Lake City, Utah: IEEE Computer Society Press, 2012.
[Online]. Available: http://portal.acm.org/citation.cfm?id=2389022

[5] R. L. Berger, C. H. Still, E. A. Williams, and A. B. Langdon, “On
the Dominant and Subdominant Behavior of Stimulated Raman and
Brillouin Scattering Driven by Nonuniform Laser Beams,” Physics of
Plasmas, vol. 5, p. 4337, 1998.

[6] J. Dongarra et al., Int. J. High Perform. Comput. Appl., vol. 25,
no. 1, pp. 3–60, Feb. 2011. [Online]. Available: http://dx.doi.org/10.
1177/1094342010391989

[7] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’10. Washington, DC, USA: IEEE Computer
Society, Nov. 2010, pp. 1–11. [Online]. Available: http://dx.doi.org/10.
1109/sc.2010.18

[8] L. Bautista-Gomez, D. Komatitsch, N. Maruyama, S. Tsuboi, F. Cap-
pello, and S. Matsuoka, “FTI: High Performance Fault Tolerance In-
terface for Hybrid Systems,” in Proceedings of the 2011 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, Seattle, WS, USA, 2011.

[9] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and
F. Zheng, “DataStager: Scalable Data Staging Services for Petascale
Applications,” in Proceedings of the 18th ACM international symposium
on High performance distributed computing, ser. HPDC ’09. New
York, NY, USA: ACM, 2009, pp. 39–48. [Online]. Available:
http://dx.doi.org/10.1145/1551609.1551618

[10] A. Bouteiller, T. Herault, G. Bosilca, and J. J. Dongarra, “Correlated
Set Coordination in Fault Tolerant Message Logging Protocols,” in
Proceedings of the 17th international conference on Parallel processing
- Volume Part II, ser. Euro-Par’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 51–64. [Online]. Available: http://portal.acm.org/citation.cfm?
id=2033415

[11] T. Ropars, A. Guermouche, B. Uçar, E. Meneses, L. V. Kalé, and
F. Cappello, “On the Use of Cluster-Based Partial Message Logging to
Improve Fault Tolerance for MPI HPC Applications,” in Proceedings of
the 17th international conference on Parallel processing - Volume Part I,
ser. Euro-Par’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 567–
578. [Online]. Available: http://portal.acm.org/citation.cfm?id=2033406

[12] L. B. Gomez, T. Ropars, N. Maruyama, F. Cappello, and S. Matsuoka,
“Hierarchical Clustering Strategies for Fault Tolerance in Large Scale
HPC Systems,” in Proceedings of the 2012 IEEE International
Conference on Cluster Computing, ser. CLUSTER ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 355–363. [Online].
Available: http://dx.doi.org/10.1109/CLUSTER.2012.71

[13] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the Role of Burst Buffers in
Leadership-Class Storage Systems,” in Symposium on Mass Storage
Systems and Technologies, MSST 2012, April 2012.

[14] D. Kimpe, K. Mohror, A. Moody, B. Van Essen, M. Gokhale, R. Ross,
and B. R. de Supinski, “Integrated In-System Storage Architecture for
High Performance Computing,” in Proceedings of the 2nd International
Workshop on Runtime and Operating Systems for Supercomputers, ser.
ROSS ’12, 2012.

[15] J. W. Young, “A First Order Approximation to the Optimum Checkpoint
Interval,” Commun. ACM, vol. 17, pp. 530–531, Sep. 1974. [Online].
Available: http://dx.doi.org/10.1145/361147.361115

[16] N. H. Vaidya, “On Checkpoint Latency,” College Station, TX, USA,
Tech. Rep., 1995. [Online]. Available: http://portal.acm.org/citation.
cfm?id=892900

[17] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the
Influence of System Noise on Large-Scale Applications by Simulation,”
in Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
1–11. [Online]. Available: http://dx.doi.org/10.1109/SC.2010.12

[18] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A

Survey of Rollback-Recovery Protocols in Message-Passing Systems,”
ACM Computing Surveys, vol. 34, no. 3, pp. 375–408, 2002.

[19] S. Matsuoka, T. Aoki, T. Endo, H. Sato, S. Takizawa, A. Nomura, and
K. Sato, TSUBAME2.0: The First Petascale Supercomputer in Japan
and the Greatest Production in the World. Chapman & Hall/CRC
Computational Science, Apr. 2013, vol. 1, ch. 20, pp. 525–556. [Online].
Available: http://www.crcnetbase.com/doi/book/10.1201/b14677

[20] J. He, A. Jagatheesan, S. Gupta, J. Bennett, and A. Snavely, “DASH:
A Recipe for a Flash-based Data Intensive Supercomputer,” ACM/IEEE
conference on Supercomputing, Nov. 2010.

[21] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Detailed
Modeling, Design, and Evaluation of a Scalable Multi-level Checkpoint-
ing System,” https://library- ext.llnl.gov, Lawrence Livermore National
Laboratory, Tech. Rep., Jul. 2010.

[22] N. Liu, C. Jason, C. Philip, C. Christopher, R. Robert, G. Gary, C. Adam,
and M. Carlos, “On the Role of Burst Buffers in Leadership-class
Storage Systems,” in MSST/SNAPI, Apr. 2012.

[23] T. Saito, K. Sato, H. Sato, and S. Matsuoka, “Energy-Aware
I/O Optimization for Checkpoint and Restart on a NAND Flash
Memory System,” in Proceedings of the 3rd Workshop on Fault-
tolerance for HPC at extreme scale, ser. FTXS ’13. New
York, NY, USA: ACM, 2013, pp. 41–48. [Online]. Available:
http://doi.acm.org/10.1145/2465813.2465822

[24] A. Guermouche, T. Ropars, M. Snir, and F. Cappello, “HydEE:
Failure Containment without Event Logging for Large Scale Send-
Deterministic MPI Applications,” in Parallel &amp; Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International. IEEE,
May 2012, pp. 1216–1227. [Online]. Available: http://dx.doi.org/10.
1109/ipdps.2012.111

[25] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
Checkpointing under Unix,” Knoxville, TN, USA, Tech. Rep., 1994.

[26] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira,
“Adaptive Incremental Checkpointing for Massively Parallel
Systems,” in Proceedings of the 18th annual international
conference on Supercomputing, ser. ICS ’04. New York,
NY, USA: ACM, 2004, pp. 277–286. [Online]. Available:
http://doi.acm.org/10.1145/1006209.1006248

[27] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R. de Supinski,
and R. Eigenmann, “McrEngine: A Scalable Checkpointing System
Using Data-Aware Aggregation and Compression,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389020

[28] D. Ibtesham, D. Arnold, K. B. Ferreira, and P. G. Bridges, “On
the Viability of Checkpoint Compression for Extreme Scale Fault
Tolerance,” in Proceedings of the 2011 international conference
on Parallel Processing - Volume 2, ser. Euro-Par’11. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 302–311. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29740-3\ 34

[29] R. Rajachandrasekar, X. Ouyang, X. Besseron, V. Meshram, and
D. K. Panda, “Can Checkpoint/Restart Mechanisms Benefit from
Hierarchical Data Staging?” in Proceedings of the 2011 international
conference on Parallel Processing - Volume 2, ser. Euro-Par’11. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 312–321. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29740-3\ 35

[30] T. Wickberg and C. Carothers, “The RAMDISK storage accelerator:
a method of accelerating I/O performance on HPC systems using
RAMDISKs,” in Proceedings of the 2nd International Workshop on
Runtime and Operating Systems for Supercomputers, ser. ROSS ’12.
New York, NY, USA: ACM, 2012, pp. 5:1–5:8. [Online]. Available:
http://doi.acm.org/10.1145/2318916.2318922

[31] S. Kannan, A. Gavrilovska, K. Schwan, D. Milojicic, and V. Talwar,
“Using Active NVRAM for I/O Staging,” in Proceedings of the 2nd
international workshop on Petascal data analytics: challenges and
opportunities, ser. PDAC ’11. New York, NY, USA: ACM, 2011,
pp. 15–22. [Online]. Available: http://doi.acm.org/10.1145/2110205.
2110209

[32] S. Kannan, D. Milojicic, V. Talwar, A. Gavrilovska, K. Schwan, and
H. Abbasi, “Using Active NVRAM for Cloud I/O,” Open Cirrus Summit,
vol. 0, pp. 32–36, 2011.

30


