
LLNL#PRES#654744,

Kento Sato†1, Kathryn Mohror†2, Adam Moody†2, Todd Gamblin†2,  
Bronis R. de Supinski†2, Naoya Maruyama†3 and Satoshi Matsuoka†1 

†1 Tokyo Institute of Technology 
†2  Lawrence Livermore National Laboratory 

†3 RIKEN Advanced institute for Computational Science 
 

This,work,performed,under,the,auspices,of,the,U.S.,Department,of,Energy,by,Lawrence,Livermore,NaFonal,Laboratory,,

under,Contract,DE#AC52#,07NA27344.,LLNL#PRES#654744#DRAFT,

May,27th,,2014,CCGrid2014@Chicago 



LLNL#PRES#654744,

Failures,on,HPC,systems,

•  ExponenFal,growth,in,computaFonal,power,

–  Enables,finer,grained,simulaFons,with,shorter,period,Fme,

•  Overall,failure,rate,increase,accordingly,because,of,the,increasing,
system,size,

•  191,failures,out,of,5#million,node#hours,,

–  A,producFon,applicaFon,of,Laser#plasma,interacFon,code,(pF3D),
–  Hera,,Atlas,and,Coastal,clusters,@LLNL,

2,

1,000,nodes, 10,000,nodes, 100,000,nodes,

MTBF, 1.2,days,

(Measured),

2.9,hours,

(EsFmaFon),

17,minutes,

(EsFmaFon),

Estimated MTBF (w/o hardware reliability improvement per component in future) 

•  Will,be,difficult,for,applicaFons,to,conFnuously,run,for,a,long,

Fme,without,fault,tolerance,at,extreme,scale,



LLNL#PRES#654744,

Checkpoint/Restart,

Checkpoint/Restart,(So^ware#Lv.),

•  Idea,of,Checkpoint/Restart,
–  Checkpoint,

•  Periodically,save,snapshots,of,
an,applicaFon,state,to,PFS,

–  Restart,
•  On,a,failure,,restart,the,
execuFon,from,the,latest,
checkpoint,

3,

•  Improved,Checkpoint/Restart,
–  MulF#level,checkpoinFng,[1],

–  Asynchronous,checkpoinFng,[2],
–  In#memory,diskless,checkpoinFng,[3],

•  We,found,that,so^ware#level,approaches,may,be,limited,in,
increasing,resiliency,at,extreme,scale,

check,

point,

check,

point,

check,

point,

Failure,

Parallel,file,system,(PFS),

CheckpoinFng,overhead,

[1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing System (SC 10) 
[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12 
[3] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "FMI: Fault Tolerant Messaging 
Interface for Fast and Transparent Recovery", IPDPS2014 



LLNL#PRES#654744,

Storage,architectures,

•  We,consider,architecture#level,approaches,

•  Burst,buffer,
–  A,new,Fer,in,storage,hierarchies,
–  Absorb,bursty,I/O,requests,from,

applicaFons,

–  Fill,performance,gap,between,node#local,
storage,and,PFSs,in,both,latency,and,
bandwidth,

•  If,you,write,checkpoints,to,burst,buffers,,
–  Faster,checkpoint/restart,Fme,than,PFS,

–  More,reliable,than,storing,on,compute,
nodes,

4,

[4] Doraimani, Shyamala and Iamnitchi, Adriana, “File Grouping for Scientific Data Management: Lessons from Experimenting with 
Real Traces”, HPDC '08  

•  However,…,

–  Adding,burst,buffer,nodes,may,increase,total,system,size,,and,failure,rates,

accordingly,,

•  ,It’s,not,clear,if,burst,buffers,improve,overall,system,efficiency,

–  Because,burst,buffers,also,connect,to,networks,,the,burst,buffers,may,sFll,be,a,

bofleneck,

Compute nodes 

Parallel file system 

Burst buffers 



LLNL#PRES#654744,

Goal,and,ContribuFons,

•  Goal:,,,
–  Develop,an,interface,to,exploit,bandwidth,of,burst,buffers,
–  Explore,effecFveness,of,burst,buffers,
–  Find,out,the,best,C/R,strategy,on,burst,buffers,

•  Contribu,ons:,,
–  Development,of,IBIO,exploiFng,bandwidth,to,burst,buffers,

–  A,model,to,evaluate,system,resiliency,given,a,C/R,strategy,

and,storage,configuraFon,

–  Our,experimental,results,show,a,direcFon,to,build,resilient,

systems,for,extreme,scale,compuFng,



LLNL#PRES#654744,

Outlines,

•  IntroducFon,
•  Checkpoint,strategies,
•  Storage,designs,
•  IBIO:,InfiniBand#based,I/O,interface,
•  Modeling,

•  Experiments,

•  Conclusion,

6,



LLNL#PRES#599833,

8% 15% 

Diskless,checkpoint/restart,(C/R),

7,

ckpt,A3,

ckpt,A2,

ckpt,A1,

Parity,1,

ckpt,B3,

ckpt,B2,

Parity,2,

ckpt,B1,

ckpt,C3,

Parity,3,

ckpt,C2,

ckpt,C1,

Parity,4,

ckpt,D3,

ckpt,D2,

ckpt,D1,

Node%1% Node%2% Node%3% Node%4%

XOR,encoding,example,

failu
re,

Failure analysis on TSUBAME2.0 

•  Most,of,failures,comes,from,one,node,,or,can,recover,from,XOR,checkpoint,

–  e.g.,1),TSUBAME2.0:,92%,failures,

–  e.g.,2),LLNL,clusters:,85%,failures,

•  Diskless,C/R,

–  Create,redundant,data,across,local,storages,

on,compute,nodes,using,a,encoding,

technique,such,as,XOR,

–  Can,restore,lost,checkpoints,on,a,failure,

caused,by,small,#,of,nodes,like,RAID#5,

7,Failure analysis on LLNL clusters 

LOCAL/XOR/PARTNER checkpoint 
PFS checkpoint 

92% 85% Diskless,checkpoint,is,

promising,approach,

Rest,of,failures,sFll,require,a,checkpoint,on,a,reliable,PFS,



LLNL#PRES#654621,

MulF#level,Checkpoint/Restart,(MLC/R),[1,2] 

•  MLC,hierarchically,use,storage,levels,

–  Diskless,checkpoint:,Frequent,,for,one,
node,for,a,few,node,failure,

–  PFS,checkpoint:,Less,frequent,and,
asynchronous,for,mulF#node,failure,

•  Our,evaluaFon,showed,system,efficiency,

drops,to,less,than,10%,when,MTBF,is,a,

few,hours,

,

8,

[1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing System (SC 10) 
[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 2 10 50 100 
Ef

fic
ie

nc
y 

Scale factor (xF, xL2) 

Level#1,

Level#2,

Diskless,
checkpoint,

PFS,
checkpoint,

MLC,

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

k 
p0 (t + ck )
t0 (t + ck )

k pi (t + ck )
ti (t + ck )i 

k 

k i 

p0 (rk )

pi (rk )

p0 (rk )
t0 (rk )

ti (rk )

Duration 
t + ck rk

No 
failure 

Failure 

λi : i -level checkpoint time 

: c -level checkpoint time 
rc : c -level recovery time 

cc
t : Interval 

k 1 

k 

Successful 
 Level-k  
recovery 

Successful 
Computation 

Level     k  
Failures during 

recovery 

! Level < k  
Failures during 

recovery 

Level     k  
Failures during 
computation or 
checkpointing 

!

Level < k  
Failures during 
computation or 
checkpointing 

1 
Successful 

Computation 

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1 

k 

Successful 
 Level-k  
recovery 

Successful 
Computation 

Level     k  
Failures during 

recovery 

! Level < k  
Failures during 

recovery 

Level     k  
Failures during 
computation or 
checkpointing 

!

Level < k  
Failures during 
computation or 
checkpointing 

1 
Successful 

Computation 

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

p0 (T )
t0 (T )

: No failure for T seconds  
: Expected time when  p0 (T )

pi (T )

ti (T )
: i - level failure for T seconds  
: Expected time when  pi (T )

MLC,model,

MTBF 
a few hours 

MTBF 
days or a day 



LLNL#PRES#654621,

Coordinated,C/R,

Uncoordinated,C/R,+,MLC 

9,

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 2 10 50 100 
Ef

fic
ie

nc
y 

Scale factor (xF, xL2) 

Coordinated C/R Uncoordinated C/R •  Coordinated,C/R,
–  All,processes,globally,synchronize,before,

taking,checkpoints,and,restart,on,a,failure,,

–  Restart,overhead,
•  Uncoordinated,C/R,

–  Create,clusters,,and,log,messages,
exchanged,between,clusters,

–  Message,logging,overhead,is,incurred,,but,
rolling#back,only,a,cluster,can,restart,the,
execuFon,on,a,failure,

�,MLC,+,Uncoordinated,C/R,(So^ware#level),
approaches,may,be,limited,at,extreme,scale,

P0,

P1,

P2,

P3,

ckpt, ckpt,

Cl
us
te
r/A

/
Cl
us
te
r/B

/

P0,

P1,

P2,

P3,

ckpt,

ckpt,

ckpt,

ckpt,

msg,logging,

Uncoordinated,C/R,

Failure, Failure,

MTBF 
a few hours 

MTBF 
days or a day 



LLNL#PRES#654744,

Storage,designs,

•  AddiFon,to,the,so^ware#level,approaches,,we,also,explore,two,
architecture#level,approaches,,

–  Flat,buffer,system:,,
•  ,Current,storage,system,

–  Burst,buffer,system:,,
•  Separated,buffer,space,

10,

SSD,1, SSD,2, SSD,3, SSD,4,

Compute,

node,1,

Compute,

node,2,
Compute,

node,3,

Compute,

node,4,
Compute,

node,1,,

Compute,

node,2,
Compute,

node,3,

Compute,

node,4,

PFS,(Parallel,file,system), PFS,(Parallel,file,system),

Flat,buffer,system, Burst,buffer,system,

SSD,2, SSD,3, SSD,4,SSD,1,



LLNL#PRES#654744,

Cluster,

Flat,Buffer,Systems,

•  Design,concept,
–  Each,compute,node,has,its,

dedicated,node#local,,

storage,

–  Scalable,with,increasing,,
number,of,compute,nodes,

11,

Compute,

node,1,

Compute,

node,2,
Compute,

node,3,

Compute,

node,4,

PFS,(Parallel,file,system),•  This,design,has,drawbacks:,
1.  Unreliable,checkpoint,storage,

e.g.),If,compute,node,2,fails,,a,checkpoint,on,SSD,2,will,be,lost,because,SSD,2,is,physically,

afached,to,the,failed,compute,node,2,

2.  Inefficient,uFlizaFon,of,storage,resources,on,uncoordinated,checkpoinFng,

e.g.),If,compute,node,1,&,3,are,in,a,same,cluster,,and,restart,from,a,failure,,the,bandwidth,of,

SSD,2,&,4,will,not,be,uFlized,

SSD,2, SSD,3, SSD,4,SSD,1,
idle, idle,

Flat,buffer,system,



LLNL#PRES#654744,

Burst,buffer,system,

Cluster,

Burst,Buffer,Systems,

•  Design,concept,
–  A,burst,buffer,is,a,storage,
space,to,bridge,the,gap,in,
latency,and,bandwidth,
between,node#local,storage,
and,the,PFS,

–  Shared,by,a,subset,of,compute,
nodes,

12,

•  Although,addiFonal,nodes,are,required,,several,advantages,
1.  More,Reliable,because,burst,buffers,are,located,on,a,smaller,#,of,nodes,

e.g.),Even,if,compute,node,2,fails,,a,checkpoint,of,compute,node,2,is,accessible,from,the,

other,compute,node,1,

2.  Efficient,uFlizaFon,of,storage,resources,,on,uncoordinated,checkpoinFng,

e.g.),if,compute,node,1,and,3,are,in,a,same,cluster,,and,both,restart,from,a,failure,,the,

processes,can,uFlize,all,SSD,bandwidth,unlike,a,flat,buffer,system,

SSD,1, SSD,2, SSD,3, SSD,4,

Compute,

node,1,,

Compute,

node,2,
Compute,

node,3,

Compute,

node,4,

PFS,(Parallel,file,system),

failure,



LLNL#PRES#654744,

Challenges,for,using,burst,buffer,system,

Challenges,for,using,burst,buffers,

•  ExploiFng,storage,bandwidth,of,burst,buffers,
–  Burst,buffers,are,connected,to,networks,,networks,can,be,bofleneck,

•  Analyzing,reliability,of,systems,with,burst,buffers,
–  Adding,burst,buffer,nodes,increase,total,system,size,

–  System,efficiency,may,decrease,due,to,Increased,overall,failure,by,added,
burst,buffers,

13,

SSD,1, SSD,2, SSD,3, SSD,4,

Compute,

node,1,,

Compute,

node,2,
Compute,

node,3,

Compute,

node,4,

PFS,(Parallel,file,system),

Network bottleneck 
� IBIO: InfinBand-based I/O interface 

Reliability 
� Storage model 



LLNL#PRES#654744,

Burst,buffer,prototype,,

mulF#mSATA,High,I/O,BW,&,cost�

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node 

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node 

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

0 2 4 6 8 10 12 14 16 

Re
ad

/W
ri

te
 th

ro
ug

hp
ut

 (G
B/
�

) 

# of Processes 

Read - Peak Read - Local Read - NFS 
Write - Peak Write - Local Write - NFS 

Interconnect :Mellanox FDR HCA (Model No.: MCX354A-FCBT)  

mSATA � 8 
(Read: 500MB/s, Write: 260MB/s) Adaptec RAID � 1 

mSATA mSATA 
mSATA mSATA 

mSATA mSATA 
mSATA mSATA 

14,



LLNL#PRES#654744,

IBIO,read,

IBIO:,InfiniBand#based,I/O,interface,

•  Provide,POSIX,I/O,interfaces,

–  open,,read,,write,and,close,
–  Client,can,open,any,files,on,any,servers,

•  open(“hostname:/path/to/file”, mode)	
•  IBIO,use,ibverbs,for,communicaFon,between,clients,and,servers,

–  Exploit,network,bandwidth,of,infiniBand,,

15,

Chunk buffers 

Compute 
node 1  

Compute 
node 2 

Compute 
node 3 

Compute 
node 4 

IBIO	
client	

IBIO	
client	

IBIO	
client	

IBIO server thread	

file4,

Compute 
node 1  

Compute 
node 2 

Compute 
node 3 

Compute 
node 4 

IBIO	
client	

IBIO	
client	

IBIO	
client	

IBIO	
client	

Storage 

IBIO server thread	

file3,file2,file1	
3,

file4,
Storage 

file3,file2,file1,

Chunk buffers 

4, 3,

fd1,

fd2,

fd3,

fd4,

2,

Writer thread 
Writer thread 
Writer thread 
Writer thread 

Writer threads Reader threads 

chunk,1,

4,

5,

IBIO	
client	

1, 5,

Reader thread 
Reader thread 
Reader thread 
Reader thread 

2,
fd1,

fd2,

fd3,

fd4,

IBIO,write:,four,IBIO,clients,and,one,IBIO,server, IBIO,read:,four,IBIO,clients,and,one,IBIO,server,

IBIO,write,



LLNL#PRES#654744,

IBIO,write/read,

16,

Chunk buffers 

Compute 
node 1  

Compute 
node 2 

Compute 
node 3 

Compute 
node 4 

IBIO	
client	

IBIO	
client	

IBIO	
client	

IBIO server thread	

file4,
Storage 

file3,file2,file1	
3,

fd1,

fd2,

fd3,

fd4,

2,

Writer thread 
Writer thread 
Writer thread 
Writer thread 

Writer threads 

chunk,1,

4,

5,

IBIO	
client	

IBIO,write:,four,IBIO,clients,and,one,IBIO,server,

IBIO,write,

•  IBIO,write,
1.  ApplicaFon,call,IBIO,client,funcFon,with,data,to,write,

2.  IBIO,client,divides,the,data,into,chunks,,then,send,the,address,to,IBIO,server,for,RDMA,

3.  IBIO,server,issues,RDMA,read,to,the,address,,and,reply,ack,

4.  ConFnues,unFl,all,chunks,are,sent,,and,return,to,applicaFon,

5.  Writer,threads,asynchronously,,write,received,data,to,storage,

•  IBIO,read,
–  Reads,chunks,by,reader,threads,and,send,to,clients,in,the,same,way,as,IBIO,

write,by,using,RDMA,

Compute node Burst buffer node 

Application 
IBIO 
Client 

IBIO 
Server 

Write 
threads 

addr 
RDMA 

ack 



LLNL#PRES#654744,

Challenges,for,using,burst,buffer,system,

Challenges,for,using,burst,buffers,

•  ExploiFng,storage,bandwidth,of,burst,buffers,
–  Burst,buffers,are,connected,to,networks,,networks,can,be,bofleneck,

•  Analyzing,reliability,of,systems,with,burst,buffers,
–  Adding,burst,buffer,nodes,increase,total,system,size,

–  System,efficiency,may,decrease,due,to,Increased,overall,failure,by,added,
burst,buffers,

17,

SSD,1, SSD,2, SSD,3, SSD,4,

Compute,

node,1,,

Compute,

node,2,
Compute,

node,3,

Compute,

node,4,

PFS,(Parallel,file,system),

Network bottleneck 
� IBIO: InfinBand-based I/O interface 

Reliability 
� Storage model 



LLNL#PRES#654744,

Modeling,overview,

18,
[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12 

•  To,find,out,the,best,checkpoint/restart,strategy,for,systems,with,burst,

buffers,,we,model,checkpoinFng,strategies,

Efficiency,
FracFon,of,Fme,an,applicaFon,

spends,only,,
in,useful,computaFon,,

,

,

Hi 
Compute,

node,

Si 

i  = 0, i  > 0,

1 2 mi 

Hi-1 Hi-1 Hi-1 

Storage,Model: HN {m1, m2, . . . , mN }  

Recursive,structured,storage,model,C/R,strategy,model,

Li = Ci + Ei,Oi =,
Ci + Ei   (Sync.) ,

Ii               (Async.),

Ci or Ri  =,
<,C/R,date,size,/,node,>�,<#,of,C/R,nodes,per,Si

*,>,,

<,write,perf.,(,wi ),,>,,,or,,,<read,perf.,(,ri ),>,,

+,

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

k 
p0 (t + ck )
t0 (t + ck )

k pi (t + ck )
ti (t + ck )i 

k 

k i 

p0 (rk )

pi (rk )

p0 (rk )
t0 (rk )

ti (rk )

Duration 
t + ck rk

No 
failure 

Failure 

λi : i -level checkpoint time 

: c -level checkpoint time 
rc : c -level recovery time 

cc
t : Interval 

k 1 

k 

Successful 
 Level-k  
recovery 

Successful 
Computation 

Level     k  
Failures during 

recovery 

! Level < k  
Failures during 

recovery 

Level     k  
Failures during 
computation or 
checkpointing 

!

Level < k  
Failures during 
computation or 
checkpointing 

1 
Successful 

Computation 

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1 

k 

Successful 
 Level-k  
recovery 

Successful 
Computation 

Level     k  
Failures during 

recovery 

! Level < k  
Failures during 

recovery 

Level     k  
Failures during 
computation or 
checkpointing 

!

Level < k  
Failures during 
computation or 
checkpointing 

1 
Successful 

Computation 

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

p0 (T )
t0 (T )

: No failure for T seconds  
: Expected time when  p0 (T )

pi (T )

ti (T )
: i - level failure for T seconds  
: Expected time when  pi (T )

MLC,model,[2] 



LLNL#PRES#654744,

MulF#level,Asynchronous,C/R,Model,[2],,
•  OpFmize,checkpoint,intervals,and,compute,checkpoint/restart,

“Efficiency” using,Markov,model,

–  Vertex:,Compute,state,OR,CheckpoinFng,state,OR,Recovery,state,

–  Edge:,CompleFon,of,each,state,

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12 

Efficiency

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

k 
p0 (t + ck )
t0 (t + ck )

k pi (t + ck )
ti (t + ck )

i 

k 

k i 

p0 (rk )

pi (rk )

p0 (rk )
t0 (rk )

ti (rk )

Duration t + ck rk

No 
failure 

Failure 

λi : i -level checkpoint time 

: c -level checkpoint time 
rc : c -level recovery time 

cc
t : Interval 

k 1 

k 

Successful 
 Level-k  
recovery 

Successful 
Computation 

Level     k  
Failures during 

recovery 

! Level < k  
Failures during 

recovery 

Level     k  
Failures during 
computation or 
checkpointing 

!

Level < k  
Failures during 
computation or 
checkpointing 

1 
Successful 

Computation 

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1 

k 

Successful 
 Level-k  
recovery 

Successful 
Computation 

Level     k  
Failures during 

recovery 

! Level < k  
Failures during 

recovery 

Level     k  
Failures during 
computation or 
checkpointing 

!

Level < k  
Failures during 
computation or 
checkpointing 

1 
Successful 

Computation 

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

p0 (T )
t0 (T )

: No failure for T seconds  
: Expected time when  p0 (T )

pi (T )

ti (T )
: i - level failure for T seconds  
: Expected time when  pi (T )

•  Input:,Each,level,of,,
–  Li :,Checkpoint,Latency,
–  Oi :,Checkpoint,overhead,
–  Ri :,Restart,Fme,

–  Fi :,Failure,rate,

•  Output:,“Efficiency”,
,

L i=1...N Oi=1...N Ri=1...N F i=1...N

Efficiency,
FracFon,of,Fme,an,applicaFon,

spends,only,in,computaFon,in,

opFmal,checkpoint,interval,

,

,



LLNL#PRES#654744,

Modeling,of,C/R,Strategies,

Ci or Ri  =,
<,C/R,data,size,/,node,>,,�,,,<#,of,C/R,nodes,per,Si

*,>,,

<,write,perf.,(,wi ),,>,,,or,,,<read,perf.,(,ri ),>,,

Synchronous,checkpoinFng,(Diskless,C/R),,

Checkpoint, Encoding,

,C i E i

L i :,,Checkpoint,latency,

Oi :,,Checkpoint,overhead,

Asynchronous,checkpoinFng,(PFS),

Init,

Encoding,

I i
E i

L i :,,Checkpoint,latency,

Oi :,,Checkpoint,overhead,

Checkpoint, C i

Li = Ci + Ei,
Oi =,

Ci + Ei   (Sync.) ,

Ii               (Async.),

•  Li     :,Checkpoint,Latency,
–  Time,to,complete,a,checkpoint,(Ci),and,

encoding,(Ei),

•  Oi    :,Checkpoint,overhead,
–  The,increased,execuFon,Fme,of,an,

applicaFon,,

•  Ci & Ri    :,Checkpoint/Restart,Fme,



LLNL#PRES#654744,

Recursive,structured,storage,model,
•  GeneralizaFon,of,storage,architectures,

with,”context.free%grammar”,
–  A,Fer,i%hierarchical,enFty,(Hi),,has,a,

storage,(Si%)shared,by,(mi)%upper,
hierarchical,enFFes,(Hi−1,),

–  Hi=0 ,is,a,compute,node,

–  HN {m1, m2, . . . , mN },
,

21,

Hi 
Compute,

node,

Si 

i  = 0, i  > 0,

1 2 mi 

Hi-1 Hi-1 Hi-1 

S1 

S2 

Storage,Model: HN {m1, m2, . . . , mN }  

S1 H2 

S2 

H1 H1 

compute%
node%1%

compute%
node%2%

compute%
node%3%

compute%
node%4%

compute%
node%5%

compute%
node%6%

compute%
node%7%

compute%
node%8%

H0 H0, H0, H0, H0, H0, H0, H0,

•  e.g.,),H2 {4, 2 } 
–  H2,has,an,S2,shared,by,2,H1 
–  H1,has,an,S1,shared,by,4,H0 
–  H0,is,a,compute,node,

Recursive,Structured,Storage,Model,



LLNL#PRES#654744,

Recursive,Structured,Storage,Model,(cont’d),

22,

•  The,number,of,nodes,accessing,to,Si 

<#,of,C/R,nodes,per,Si,>,,
K 

=
<#,of,Si,>,

K : C/R,cluster,size,

<#,of,Si,>,=,,
ΠN

k=i+1 mk,,,(i,<,N,),

1                 (i,=,N),

S1 

S2 

S1 

compute%
node%1%

compute%
node%2%

compute%
node%3%

compute%
node%4%

compute%
node%5%

compute%
node%6%

compute%
node%7%

compute%
node%8%

•  e.g.,),K = 4 

–  #,of,C/R,nodes,per,S1,,
•  4/2,=,2,nodes,

–  #,of,C/R,nodes,per,S2 
•  4/1 = 4 ,nodes,



LLNL#PRES#654744,

EvaluaFons,

•  IBIO,performance,

– SequenFal,read/write,for,C/R,
•  Several,system,efficiency,evaluaFons,

23,



LLNL#PRES#654744,

SequenFal,IBIO,read/write,performance,

24,

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

0 2 4 6 8 10 12 14 16 

Re
ad

/W
ri

te
 th

ro
ug

hp
ut

 (G
B/

se
c)

 

# of Processes 

Read - Peak Read - Local Read - IBIO Read - NFS 
Write - Peak Write - Local Write - IBIO Write - NFS 

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node 

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node 

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

Interconnect :Mellanox FDR HCA (Model No.: MCX354A-FCBT)  

IBIO achieve the same remote 
read/write performance as the 
local read/write performance 

by using RDMA 

•  Set,chunk,size,to,64MB,
for,both,IBIO,and,NFS,to,
maximize,the,
throughputs,

mSATA � 8 
(Read: 500MB/s, 
Write: 260MB/s) 

Adaptec RAID � 1 

mSATA mSATA mSATA mSATA mSATA mSATA mSATA mSATA 



LLNL#PRES#654744,

,*,Guermouche,,A.,,Ropars,,T.,,Snir,,M.,and,

Cappello,,F.:,HydEE:,Failure,Containment,

without,Event,Logging,for,Large,Scale,Send#,

DeterminisFc,MPI,ApplicaFons,

Experimental,setup,

Checkpoint,size:,

5,GB/node,

Logging,cluster,size:,

16,nodes,*,

25,

S1 S1 

Node,

1,
Node,

2,
Node,

1088,

S2 

S1 S1 

Node,

32,

S2 

S1 

Read:,10,GB/s,

Write:,10,GB/s,

Aggregate,Read:,

544,GB/s,

Aggregate,Write:,

283,GB/s,

Burst,buffer,system:,H2 {32, 34},

Flat,buffer,system:,H2 {1, 1088},

1,Compute,node,

32,Compute,node,

Read:,500,MB/s,

Write:,260,MB/s,

Read:,16,GB/s,

Write:,8.32,GB/s,

Node,

1,
Node,

1088,

The,system,sizes,are,

based,on,the,Coastal,

cluster,at,LLNL,

(88.5TFLOPS),



LLNL#PRES#654744,

Level,2,
(PFS,checkpoint,required),

1.33,x,10#8,

Level,1,
(XOR,checkpoint,required),

2.63,x,10#6,

Level,2,
(PFS,checkpoint,required),
4.28,x,10#7,

Level,1,
(XOR,checkpoint,required),

2.14,x,10#6,

Experimental,setup,

26,

Node,

1,
Node,

2,
Node,

1088,

Node,

32,

Burst,buffer,system:,H2 {32, 34},

Flat,buffer,system:,H2 {1, 1088},

Node,

1,
Node,

1088,

EsFmated,failure,rates,are,

based,on,failure,analysis,on,

the,Coastal,cluster,at,LLNL,

(88.5TFLOPS),[1] 

S1 S1 S1 

S2 

S1 S1 

S2 

[1] A. Moody, G. Bronevetsky, K. 
Mohror, and B. R. de Supinski, 
“Design, Modeling, and Evaluation of 
a Scalable Multi-level Checkpointing 
System (SC 10) 



LLNL#PRES#654744,

Efficiency,with,Increasing,Failure,Rates,

and,Checkpoint,Costs,,

IPSJ SIG Technical Report

Table 3 Simulation configuration

level 1 level 2
ri 16 GB/sec 10 GB/sec
wi 8.32 GB/sec 10 GB/sec

Flat buffer Burst buffer
H2 {v1, v2} H2 {1, 1088} H2 {32, 34}
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 7.61 × 10−8}

Checkpoint size per node (D) 5GB
Encoding rate node (e1) 400MB/sec

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 10" 50" 100"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 3 Efficiency of multi-level coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

compute nodes.
Failure rates(F) are based on failure analysis using pF3D [8].

The failure analysis shows that average failure rates of a single
compute node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9,
PFS is 3.93 × 10−10. In a flat buffer system, each failure rate
is calculated by multiplying the each failure rate by the num-
ber of compute nodes, i.e., 1088 nodes. This leads to failure
rates of Failure rate of a single Coastal nodes is We use fail-
ure analysis in 2.14 × 10−7 for LOCAL, 1.92 × 10−6 for XOR,
and 4.27 × 10−7 for PFS. Actually, if a level-i failure rate is
lower than a level-i+ 1 one, the optimal level i checkpoint counts
is zero because level i can be recovery level i + 1 checkpoint,
which is written more frequently than level i. If a compute nodes
failure occurs, a flat buffer system lose checkpoint data on the
failed compute node, so XOR is required to restore the lost check-
point data. Thus, we use 2 level checkpoint/restart where level
1 is XOR, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, 34 burst buffer nodes are used, so fail-
ure rate of entire burst buffer nodes is calculated as 6.67 × 10−8,
failure rate requiring PFS as 1.33 × 10−8. Even on a com-
pute nodes failure, a burst buffer nodes can keep checkpoint
data, so LOCAL checkpoint is enough to tolerate a compute node
failure. Thus, we use 2 level checkpoint/restart where level 1
is LOCAL, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14×10−7 +1.92×10−6, 6.28×10−8 +1.33×10−8}
for burst buffer system.

5.2 Results
At extreme systems will be larger, overall failure rates and

checkpoint size are expected to increase. To explore the effects,
we increase failure rates and level 2 checkpoint costs by factors
of 1, 2, 10, 50 and 100, and compare efficiency between multi-
level coordinated and uncoordinated checkpoint/restart on a flat
buffer system and a burst buffer system. We do not change level
1 checkpoint cost, since the performance of flat and burst buffer
is expected to scale with system size.

As Figure 3 shows the efficiency under different failure rates
and checkpoint costs. When we computes the efficiency, we op-
timize level-1 and 2 checkpoint frequency (v1 and v2), and inter-
val between checkpoints (T ) using our multi-level asynchronous
checkpoint/restart model, which yields the maximal efficiency.
The burst buffer system always achieves higher efficiency than
the flat buffer system. The efficiency gap becomes more apparent
with higher failure rates and higher checkpoint cost because the
burst buffer system integrate checkpoints into the fewer number
of burst buffer nodes than compute nodes, which decrease proba-
bility of losing checkpoints, and restarting from a slower PFS.

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

The efficiency in Figure 3 does not include message logging
overhead, so validity of uncoordinated checkpoint/restart depends
on degree of message logging overhead. Table 4 shows allowable
message logging overhead. To achieve higher efficiency than co-
ordinated checkpoint/restart, the logging overhead must be below
a few percent in a current and a 10 times scaled system. In sys-
tems whose failure rates and checkpoint costs is 50 times higher
than a current system, uncoordinated checkpoint/restart is neces-
sary even with high logging overhead. By using uncoordinated
checkpoint/restart, we can leverage a burst buffer, and achieve
70% of efficiency even on two order of magnitude larger scale
systems because partial restart of uncoordinated checkpoint can
exploit bandwidth of both burst buffers and a PFS, and accelerate
restart time.

Building a reliable data center or supercomputer, and maxi-
mizing system efficiency are significant given fixed amount of
cost. To explore which tiers of storage can impact system ef-
ficiency improvement, we increase performance of each tier of
storage failure by factors of 1, 2, 10 and 20. Figure 4 shows
efficiency in increasing scale factor of performance of level-1
checkpoint/restart in 100 times scaled systems in Figure 3. As
shown, improvement of flat buffer and burst buffer performance
does not impact the system efficiency. But, as in Figure 5, in-
creasing PFS performance improve the system efficiency, and we
can achieve over 80% efficiency with both coordinated and unco-
ordinated checkpoint/restart on the burst buffer system. The both

c⃝ 2013 Information Processing Society of Japan 5

27,

•  Assuming,there,is,no,message,logging,overhead,

,

In days or a day of MTBF, 
there is no big efficiency 

differences 

In a few hours of MTBF, with 
burst buffers, systems can 
still achieve high efficiency 

Even in a hour of MTBF, with 
uncoordinated, systems can 
still achieve 70% efficiency 

� Partial restart accelerate recovery time 
from burst buffers and  PFS checkpoint 

MTBF = days a day 2, 3H 1H 



LLNL#PRES#654744,

Allowable,Message,Logging,overhead,,

•  Logging,overhead,must,be,relaFvely,small,,less,than,a,few,percent,in,days,
or,a,day,of,MTBF,
–  In,a,few,hours,or,a,hour,,very,high,message,logging,overheads,are,tolerated,,

�,Uncoordinated,checkpoinFng,can,be,more,effecFve,on,future,systems,,

,

28,

IPSJ SIG Technical Report

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 10" 50" 100"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 4 Efficiency of multilevel coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

the failure rate requiring PFS for recovery. The level 2 failure is
calculated as 1.33 × 10−8. Thus, the failure rate of each level is
{F1, F2} = {2.14× 10−7 + 1.92× 10−6 + 6.67× 10−8, 1.33× 10−8}
for the burst buffer system. F1 increases because the burst buffer
system requires additional nodes for the burst buffer.

We use asynchronous checkpointing for PFS, and synchronous
checkpointing for XOR. For the encoding rate, we only provide
an encoding rate (e1) for level 1 (XOR) because PFS does not need
encoding.

6. Resiliency Exploration
In this section, we evaluate the trade-offs of different check-

pointing and storage configurations. In particular, we evaluate
the system efficiency with increasing failure rates and checkpoint
costs; the allowable message logging overhead for uncoordinated
checkpointing; the effect of improving the performance at dif-
ferent levels of the storage hierarchy; and the optimal ratio of
compute nodes to burst buffer nodes.

6.1 Efficiency with Increasing Failure Rates and Checkpoint
Costs

We expect the failure rates and aggregate checkpoint sizes to
increase on future extreme scale systems. To explore the effects,
we increase failure rates and level 2 (PFS) checkpoint costs by
factors of 1, 2, 10, 50 and 100, and compare the efficiencies of
multilevel coordinated and uncoordinated checkpoint/restart on a
flat buffer system and on a burst buffer system. We do not change
the level 1 (XOR) checkpoint cost; because it is node-local storage,
its performance will scale with increasing system size.

Figure 4 shows application efficiency under increasing failure
rates and checkpoint costs. When we compute efficiency, we op-
timize the level-1 and 2 checkpoint frequencies (v1 and v2), and
the interval between checkpoints (T ) to discover the maximal ef-
ficiency. The burst buffer system always achieves a higher effi-
ciency than the flat buffer system. The efficiency gap becomes
more apparent with higher failure rates and higher checkpoint
costs because the burst buffer system stores checkpoints on fewer
burst buffer nodes. By using uncoordinated checkpoint/restart
and leveraging burst buffers, we achieve 70% efficiency even

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 5" 10" 20"

Effi
ci
en

cy
(

Scale(factor((L1/)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 5 Efficiency in increasing level-1 checkpoint/restart performance

on systems that are two orders of magnitude larger. This is be-
cause partial restart with uncoordinated checkpointing can exploit
the bandwidth of both burst buffers and the PFS, and accelerate
restart time.

6.2 Allowable Message Logging Overhead
The efficiencies shown in Figure 4 do not include message log-

ging overhead. We consider this factor in Table 4 which shows the
message logging overhead allowed in uncoordinated checkpoint-
ing to achieve a higher efficiency than coordinated checkpoint-
ing. As in Figure 4, we increase both the failure rates and level
2 checkpointing cost by the scale factor shown on each row. We
find that the logging overhead must be relatively small, less than a
few percent, for scale factors up to 10. However, at scale factors
of 50 and 100, very high message logging overheads are toler-
ated. This shows that uncoordinated checkpointing can be more
efficient on future systems even with high logging overheads.

6.3 Effect of Improving Storage Performance
When building a reliable data center or supercomputer, signif-

icant efforts are made to maximize system performance given a
fixed budget. It can be challenging to decide which system re-
sources will most affect overall system performance. To explore
how the performance of different tiers of the storage hierarchy
impact system efficiency, we increase performance of each tier
of storage by factors of 1, 2, 10, and 20. Figures 5 and 6 show
efficiency with increasing performance of level 1 and 2 check-
point/restart, using failures rates at 100 × current rates. We see
that improvement of level 1 checkpoint/restart does not impact
efficiency for either flat buffer or burst buffer systems. However,
as shown in Figure 6, increasing the performance of the PFS does

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

c⃝ 2013 Information Processing Society of Japan

Message,logging,overhead,allowed,in,uncoordinated,checkpoinFng,

to,achieve,a,higher,efficiency,than,coordinated,checkpoinFng,

Coordinated,,

Uncoordinated,,



LLNL#PRES#654744,

Effect,of,Improving,Storage,Performance,

29,

To,see,which,storage,impact,to,efficiency,,

we,increase,performance,of,level#1,and,

level#2,storage,while,keeping,MTBF,a,hour,,

IPSJ SIG Technical Report

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 10" 50" 100"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 4 Efficiency of multilevel coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

the failure rate requiring PFS for recovery. The level 2 failure is
calculated as 1.33 × 10−8. Thus, the failure rate of each level is
{F1, F2} = {2.14× 10−7 + 1.92× 10−6 + 6.67× 10−8, 1.33× 10−8}
for the burst buffer system. F1 increases because the burst buffer
system requires additional nodes for the burst buffer.

We use asynchronous checkpointing for PFS, and synchronous
checkpointing for XOR. For the encoding rate, we only provide
an encoding rate (e1) for level 1 (XOR) because PFS does not need
encoding.

6. Resiliency Exploration
In this section, we evaluate the trade-offs of different check-

pointing and storage configurations. In particular, we evaluate
the system efficiency with increasing failure rates and checkpoint
costs; the allowable message logging overhead for uncoordinated
checkpointing; the effect of improving the performance at dif-
ferent levels of the storage hierarchy; and the optimal ratio of
compute nodes to burst buffer nodes.

6.1 Efficiency with Increasing Failure Rates and Checkpoint
Costs

We expect the failure rates and aggregate checkpoint sizes to
increase on future extreme scale systems. To explore the effects,
we increase failure rates and level 2 (PFS) checkpoint costs by
factors of 1, 2, 10, 50 and 100, and compare the efficiencies of
multilevel coordinated and uncoordinated checkpoint/restart on a
flat buffer system and on a burst buffer system. We do not change
the level 1 (XOR) checkpoint cost; because it is node-local storage,
its performance will scale with increasing system size.

Figure 4 shows application efficiency under increasing failure
rates and checkpoint costs. When we compute efficiency, we op-
timize the level-1 and 2 checkpoint frequencies (v1 and v2), and
the interval between checkpoints (T ) to discover the maximal ef-
ficiency. The burst buffer system always achieves a higher effi-
ciency than the flat buffer system. The efficiency gap becomes
more apparent with higher failure rates and higher checkpoint
costs because the burst buffer system stores checkpoints on fewer
burst buffer nodes. By using uncoordinated checkpoint/restart
and leveraging burst buffers, we achieve 70% efficiency even

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 5" 10" 20"

Effi
ci
en

cy
(

Scale(factor((L1/)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 5 Efficiency in increasing level-1 checkpoint/restart performance

on systems that are two orders of magnitude larger. This is be-
cause partial restart with uncoordinated checkpointing can exploit
the bandwidth of both burst buffers and the PFS, and accelerate
restart time.

6.2 Allowable Message Logging Overhead
The efficiencies shown in Figure 4 do not include message log-

ging overhead. We consider this factor in Table 4 which shows the
message logging overhead allowed in uncoordinated checkpoint-
ing to achieve a higher efficiency than coordinated checkpoint-
ing. As in Figure 4, we increase both the failure rates and level
2 checkpointing cost by the scale factor shown on each row. We
find that the logging overhead must be relatively small, less than a
few percent, for scale factors up to 10. However, at scale factors
of 50 and 100, very high message logging overheads are toler-
ated. This shows that uncoordinated checkpointing can be more
efficient on future systems even with high logging overheads.

6.3 Effect of Improving Storage Performance
When building a reliable data center or supercomputer, signif-

icant efforts are made to maximize system performance given a
fixed budget. It can be challenging to decide which system re-
sources will most affect overall system performance. To explore
how the performance of different tiers of the storage hierarchy
impact system efficiency, we increase performance of each tier
of storage by factors of 1, 2, 10, and 20. Figures 5 and 6 show
efficiency with increasing performance of level 1 and 2 check-
point/restart, using failures rates at 100 × current rates. We see
that improvement of level 1 checkpoint/restart does not impact
efficiency for either flat buffer or burst buffer systems. However,
as shown in Figure 6, increasing the performance of the PFS does

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

c⃝ 2013 Information Processing Society of Japan

IPSJ SIG Technical Report

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 5" 10" 20"

Effi
ci
en

cy
(

Scale(factor((L2/)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 6 Efficiency in increasing level-2 checkpoint/restart performance

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 10" 50"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

1""compute"nodes" 2"compute"nodes"
4"compute"nodes" 8"compute"nodes"
16"compute"nodes" 32"compute"nodes"

Fig. 7 Coordinated: Efficiency in different ratios of compute nodes to
a single burst buffer nodes with coordinated checkpoint/restart

impact system efficiency. We can achieve over 80% efficiency
with both coordinated and uncoordinated checkpoint/restart on
the burst buffer system with improved PFS performance of 10 and
20 ×. These results tell us that level 2 checkpoint/restart overhead
is a major cause of degrading efficiency, and its performance af-
fects the system efficiency much more than that of level 1. We
also find that improvement of system reliability for failures re-
quiring level 2 checkpoint is important.

6.4 Optimal Ratio of Compute Nodes to Burst Buffer Nodes
Another thing to consider when building a burst buffer system

is the ratio of compute nodes to burst buffer nodes. A large num-
ber of burst buffer nodes can increase the total bandwidth, but
the large node counts increase the failure rate of the system and
add to system cost. To explore the effect of the ratio of com-
pute node and burst buffer node counts, we evaluate efficiency
under different failure rates and level 2 checkpoint costs while
keeping I/O throughput of a single burst buffer node constant.
Figures 7 and 8 show the results with coordinated and uncoordi-
nated checkpoint/restart. We see that the ratio is not significant
up to scale factors of 10 ×. However, at a scale factor of 50 ×, a
larger number of burst buffer nodes decreases efficiency. Adding
additional burst buffer nodes increases the failure rate which de-

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 10" 50"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

1""compute"nodes" 2"compute"nodes"
4"compute"nodes" 8"compute"nodes"
16"compute"nodes" 32"compute"nodes"

Fig. 8 Uncoordinated: Efficiency in different ratios of compute nodes
to a single burst buffer nodes with uncoordinated check-
point/restart

grades system efficiency more than the efficiency gained by the
increased bandwidth. Thus, increasing the number of compute
nodes sharing a burst buffer node is optimal as long as the burst
buffer throughput can scale to the number of sharing compute
nodes.

7. Related Work
Fast checkpoint/restart is important for an application running

for days and weeks at extreme scale to achieve efficient execu-
tion in the presence of failures. Multilevel checkpoint/restart
[3], [23] is an approach for increasing application efficiency.
Multilevel checkpoint libraries utilize multiple tiers of storage,
such as node-local storage and the PFS. Uncoordinated check-
point/restart [5], [11], [28] works effectively when coupled with
multilevel checkpoint/restart. The approach can limit the number
of processes that need to be restarted, i.e., only a partial restart
instead of the whole job, which can decrease restart time from
shared file system resources, such as a PFS or burst buffer. These
techniques can be improved further when coupled with incre-
mental checkpointing [2], [6], [26], and checkpoint compression
[15], [16]. However, such combined approaches are limited in
their ability to improve application efficiency at extreme scale be-
cause checkpoint/restart time depends on underlying I/O storage
performance.

Another approach is to accelerate I/O performance itself by al-
tering the storage architecture. Adding a new tier of storage is
one solution. Rajachandrasekar et al. [27] presented a staging
server which drains checkpoints on compute nodes using RDMA
(Remote Direct Memory Access), and asynchronously transfers
them to the PFS via FUSE (Filesystem in Userspace). Hasan et
al. [1] achieved high I/O throughput by using additional nodes.
As we observed, optimizing performance requires determination
of the proper number of burst buffers for a given number of com-
pute nodes. However, a comprehensive study on the problem has
not yet been done. To deal with bursty I/O requests, Liu et al. [21]
proposed a storage system design that integrates SSD buffers on
I/O nodes. The system achieved high aggregate I/O bandwidth.
However, to the best our knowledge, our work is the first focus-

c⃝ 2013 Information Processing Society of Japan 7

IPSJ SIG Technical Report

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 5" 10" 20"

Effi
ci
en

cy
(

Scale(factor((L2/)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 6 Efficiency in increasing level-2 checkpoint/restart performance

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 10" 50"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

1""compute"nodes" 2"compute"nodes"
4"compute"nodes" 8"compute"nodes"
16"compute"nodes" 32"compute"nodes"

Fig. 7 Coordinated: Efficiency in different ratios of compute nodes to
a single burst buffer nodes with coordinated checkpoint/restart

impact system efficiency. We can achieve over 80% efficiency
with both coordinated and uncoordinated checkpoint/restart on
the burst buffer system with improved PFS performance of 10 and
20 ×. These results tell us that level 2 checkpoint/restart overhead
is a major cause of degrading efficiency, and its performance af-
fects the system efficiency much more than that of level 1. We
also find that improvement of system reliability for failures re-
quiring level 2 checkpoint is important.

6.4 Optimal Ratio of Compute Nodes to Burst Buffer Nodes
Another thing to consider when building a burst buffer system

is the ratio of compute nodes to burst buffer nodes. A large num-
ber of burst buffer nodes can increase the total bandwidth, but
the large node counts increase the failure rate of the system and
add to system cost. To explore the effect of the ratio of com-
pute node and burst buffer node counts, we evaluate efficiency
under different failure rates and level 2 checkpoint costs while
keeping I/O throughput of a single burst buffer node constant.
Figures 7 and 8 show the results with coordinated and uncoordi-
nated checkpoint/restart. We see that the ratio is not significant
up to scale factors of 10 ×. However, at a scale factor of 50 ×, a
larger number of burst buffer nodes decreases efficiency. Adding
additional burst buffer nodes increases the failure rate which de-

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 10" 50"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

1""compute"nodes" 2"compute"nodes"
4"compute"nodes" 8"compute"nodes"
16"compute"nodes" 32"compute"nodes"

Fig. 8 Uncoordinated: Efficiency in different ratios of compute nodes
to a single burst buffer nodes with uncoordinated check-
point/restart

grades system efficiency more than the efficiency gained by the
increased bandwidth. Thus, increasing the number of compute
nodes sharing a burst buffer node is optimal as long as the burst
buffer throughput can scale to the number of sharing compute
nodes.

7. Related Work
Fast checkpoint/restart is important for an application running

for days and weeks at extreme scale to achieve efficient execu-
tion in the presence of failures. Multilevel checkpoint/restart
[3], [23] is an approach for increasing application efficiency.
Multilevel checkpoint libraries utilize multiple tiers of storage,
such as node-local storage and the PFS. Uncoordinated check-
point/restart [5], [11], [28] works effectively when coupled with
multilevel checkpoint/restart. The approach can limit the number
of processes that need to be restarted, i.e., only a partial restart
instead of the whole job, which can decrease restart time from
shared file system resources, such as a PFS or burst buffer. These
techniques can be improved further when coupled with incre-
mental checkpointing [2], [6], [26], and checkpoint compression
[15], [16]. However, such combined approaches are limited in
their ability to improve application efficiency at extreme scale be-
cause checkpoint/restart time depends on underlying I/O storage
performance.

Another approach is to accelerate I/O performance itself by al-
tering the storage architecture. Adding a new tier of storage is
one solution. Rajachandrasekar et al. [27] presented a staging
server which drains checkpoints on compute nodes using RDMA
(Remote Direct Memory Access), and asynchronously transfers
them to the PFS via FUSE (Filesystem in Userspace). Hasan et
al. [1] achieved high I/O throughput by using additional nodes.
As we observed, optimizing performance requires determination
of the proper number of burst buffers for a given number of com-
pute nodes. However, a comprehensive study on the problem has
not yet been done. To deal with bursty I/O requests, Liu et al. [21]
proposed a storage system design that integrates SSD buffers on
I/O nodes. The system achieved high aggregate I/O bandwidth.
However, to the best our knowledge, our work is the first focus-

c⃝ 2013 Information Processing Society of Japan 7

Improvement,of,level#1,storage,

performance,does,not,impact,

efficiency,for,both,flat,buffer,and,

burst,buffer,systems,

Increasing,the,performance,of,the,

PFS,does,impact,system,efficiency,

L1 performance improvement 

L2,C/R,overhead,is,a,major,cause,of,

degrading,efficiency,,so,reducing,

level#2,failure,rate,and,improving,

level#2,C/R,is,criFcal,on,future,systems,

L2 performance improvement 



LLNL#PRES#654744,

RaFo,of,Compute,nodes,to,Burst,Buffer,nodes,,

•  The,raFo,is,not,important,mafer,when,MTBF,is,from,a,day,to,days,

•  When,MTBF,is,a,few,hours,,a,larger,number,of,burst,buffer,nodes,decreases,
efficiency,,
�,Adding,addiFonal,burst,buffer,nodes,increases,the,failure,rate,which,degrades,
system,efficiency,more,than,the,efficiency,gained,by,the,increased,bandwidth,

30,

IPSJ SIG Technical Report

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 5" 10" 20"

Effi
ci
en

cy
(

Scale(factor((L2/)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 6 Efficiency in increasing level-2 checkpoint/restart performance

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 10" 50"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

1""compute"nodes" 2"compute"nodes"
4"compute"nodes" 8"compute"nodes"
16"compute"nodes" 32"compute"nodes"

Fig. 7 Coordinated: Efficiency in different ratios of compute nodes to
a single burst buffer nodes with coordinated checkpoint/restart

impact system efficiency. We can achieve over 80% efficiency
with both coordinated and uncoordinated checkpoint/restart on
the burst buffer system with improved PFS performance of 10 and
20 ×. These results tell us that level 2 checkpoint/restart overhead
is a major cause of degrading efficiency, and its performance af-
fects the system efficiency much more than that of level 1. We
also find that improvement of system reliability for failures re-
quiring level 2 checkpoint is important.

6.4 Optimal Ratio of Compute Nodes to Burst Buffer Nodes
Another thing to consider when building a burst buffer system

is the ratio of compute nodes to burst buffer nodes. A large num-
ber of burst buffer nodes can increase the total bandwidth, but
the large node counts increase the failure rate of the system and
add to system cost. To explore the effect of the ratio of com-
pute node and burst buffer node counts, we evaluate efficiency
under different failure rates and level 2 checkpoint costs while
keeping I/O throughput of a single burst buffer node constant.
Figures 7 and 8 show the results with coordinated and uncoordi-
nated checkpoint/restart. We see that the ratio is not significant
up to scale factors of 10 ×. However, at a scale factor of 50 ×, a
larger number of burst buffer nodes decreases efficiency. Adding
additional burst buffer nodes increases the failure rate which de-

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 10" 50"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

1""compute"nodes" 2"compute"nodes"
4"compute"nodes" 8"compute"nodes"
16"compute"nodes" 32"compute"nodes"

Fig. 8 Uncoordinated: Efficiency in different ratios of compute nodes
to a single burst buffer nodes with uncoordinated check-
point/restart

grades system efficiency more than the efficiency gained by the
increased bandwidth. Thus, increasing the number of compute
nodes sharing a burst buffer node is optimal as long as the burst
buffer throughput can scale to the number of sharing compute
nodes.

7. Related Work
Fast checkpoint/restart is important for an application running

for days and weeks at extreme scale to achieve efficient execu-
tion in the presence of failures. Multilevel checkpoint/restart
[3], [23] is an approach for increasing application efficiency.
Multilevel checkpoint libraries utilize multiple tiers of storage,
such as node-local storage and the PFS. Uncoordinated check-
point/restart [5], [11], [28] works effectively when coupled with
multilevel checkpoint/restart. The approach can limit the number
of processes that need to be restarted, i.e., only a partial restart
instead of the whole job, which can decrease restart time from
shared file system resources, such as a PFS or burst buffer. These
techniques can be improved further when coupled with incre-
mental checkpointing [2], [6], [26], and checkpoint compression
[15], [16]. However, such combined approaches are limited in
their ability to improve application efficiency at extreme scale be-
cause checkpoint/restart time depends on underlying I/O storage
performance.

Another approach is to accelerate I/O performance itself by al-
tering the storage architecture. Adding a new tier of storage is
one solution. Rajachandrasekar et al. [27] presented a staging
server which drains checkpoints on compute nodes using RDMA
(Remote Direct Memory Access), and asynchronously transfers
them to the PFS via FUSE (Filesystem in Userspace). Hasan et
al. [1] achieved high I/O throughput by using additional nodes.
As we observed, optimizing performance requires determination
of the proper number of burst buffers for a given number of com-
pute nodes. However, a comprehensive study on the problem has
not yet been done. To deal with bursty I/O requests, Liu et al. [21]
proposed a storage system design that integrates SSD buffers on
I/O nodes. The system achieved high aggregate I/O bandwidth.
However, to the best our knowledge, our work is the first focus-

c⃝ 2013 Information Processing Society of Japan 7

IPSJ SIG Technical Report

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 5" 10" 20"

Effi
ci
en

cy
(

Scale(factor((L2/)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 6 Efficiency in increasing level-2 checkpoint/restart performance

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 10" 50"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

1""compute"nodes" 2"compute"nodes"
4"compute"nodes" 8"compute"nodes"
16"compute"nodes" 32"compute"nodes"

Fig. 7 Coordinated: Efficiency in different ratios of compute nodes to
a single burst buffer nodes with coordinated checkpoint/restart

impact system efficiency. We can achieve over 80% efficiency
with both coordinated and uncoordinated checkpoint/restart on
the burst buffer system with improved PFS performance of 10 and
20 ×. These results tell us that level 2 checkpoint/restart overhead
is a major cause of degrading efficiency, and its performance af-
fects the system efficiency much more than that of level 1. We
also find that improvement of system reliability for failures re-
quiring level 2 checkpoint is important.

6.4 Optimal Ratio of Compute Nodes to Burst Buffer Nodes
Another thing to consider when building a burst buffer system

is the ratio of compute nodes to burst buffer nodes. A large num-
ber of burst buffer nodes can increase the total bandwidth, but
the large node counts increase the failure rate of the system and
add to system cost. To explore the effect of the ratio of com-
pute node and burst buffer node counts, we evaluate efficiency
under different failure rates and level 2 checkpoint costs while
keeping I/O throughput of a single burst buffer node constant.
Figures 7 and 8 show the results with coordinated and uncoordi-
nated checkpoint/restart. We see that the ratio is not significant
up to scale factors of 10 ×. However, at a scale factor of 50 ×, a
larger number of burst buffer nodes decreases efficiency. Adding
additional burst buffer nodes increases the failure rate which de-

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 10" 50"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

1""compute"nodes" 2"compute"nodes"
4"compute"nodes" 8"compute"nodes"
16"compute"nodes" 32"compute"nodes"

Fig. 8 Uncoordinated: Efficiency in different ratios of compute nodes
to a single burst buffer nodes with uncoordinated check-
point/restart

grades system efficiency more than the efficiency gained by the
increased bandwidth. Thus, increasing the number of compute
nodes sharing a burst buffer node is optimal as long as the burst
buffer throughput can scale to the number of sharing compute
nodes.

7. Related Work
Fast checkpoint/restart is important for an application running

for days and weeks at extreme scale to achieve efficient execu-
tion in the presence of failures. Multilevel checkpoint/restart
[3], [23] is an approach for increasing application efficiency.
Multilevel checkpoint libraries utilize multiple tiers of storage,
such as node-local storage and the PFS. Uncoordinated check-
point/restart [5], [11], [28] works effectively when coupled with
multilevel checkpoint/restart. The approach can limit the number
of processes that need to be restarted, i.e., only a partial restart
instead of the whole job, which can decrease restart time from
shared file system resources, such as a PFS or burst buffer. These
techniques can be improved further when coupled with incre-
mental checkpointing [2], [6], [26], and checkpoint compression
[15], [16]. However, such combined approaches are limited in
their ability to improve application efficiency at extreme scale be-
cause checkpoint/restart time depends on underlying I/O storage
performance.

Another approach is to accelerate I/O performance itself by al-
tering the storage architecture. Adding a new tier of storage is
one solution. Rajachandrasekar et al. [27] presented a staging
server which drains checkpoints on compute nodes using RDMA
(Remote Direct Memory Access), and asynchronously transfers
them to the PFS via FUSE (Filesystem in Userspace). Hasan et
al. [1] achieved high I/O throughput by using additional nodes.
As we observed, optimizing performance requires determination
of the proper number of burst buffers for a given number of com-
pute nodes. However, a comprehensive study on the problem has
not yet been done. To deal with bursty I/O requests, Liu et al. [21]
proposed a storage system design that integrates SSD buffers on
I/O nodes. The system achieved high aggregate I/O bandwidth.
However, to the best our knowledge, our work is the first focus-

c⃝ 2013 Information Processing Society of Japan 7

Coordinated, Uncoordinated,

Another,thing,to,consider,when,building,a,burst,buffer,system,is,

the,raFo,of,compute,nodes,to,burst,buffer,nodes,,



LLNL#PRES#654744,

Towards,resilient,extreme,scale,compuFng,

1.  Burst,buffers,,
–  Burst,buffers,are,beneficial,for,C/R,at,extreme,scale,

2.  Uncoordinated,C/R,
–  When,MTBF,is,days,or,a,day,,uncoordinated,C/R,may,not,be,effecFve,

–  If,MTBF,is,a,few,hours,or,less,,will,be,effecFve,

3.  Level#2,failure,,and,Level#2,performance,
–  Reducing,Level#2,failure,and,increasing,Level#2,performance,are,

criFcal,to,improve,overall,system,efficiency,

4.  Fewer,number,of,burst,buffers,
–  Adding,addiFonal,burst,buffer,nodes,increases,the,failure,rate,

–  May,degrades,system,efficiency,more,than,the,efficiency,gained,by,
the,increased,bandwidth,

–  We,need,to,be,careful,a,trade#off,between,I/O,performance,and,
reliability,of,burst,buffers,

31,



LLNL#PRES#654744,

Conclusion,

•  Fault,tolerance,is,criFcal,at,extreme,scale,
–  Both,C/R,strategy,and,storage,design,are,important,

•  We,developed,IBIO,to,maximize,remote,access,to,
burst,buffers,,and,modeled,C/R,strategy,and,storage,
design,

•  We,listed,up,key,factors,to,build,resilient,systems,
based,on,our,evaluaFons,

•  We,expect,our,findings,can,benefit,system,designers,to,
create,efficient,and,cost#effecFve,systems,

32,



LLNL#PRES#654744,

Q,&,A, Speaker:  
 

Kento Sato (�� ��) 
kent@matsulab.is.titech.ac.jp 

Tokyo Institute of Technology (Tokyo Tech) 
%Research Fellow of the Japan Society for the Promotion of Science 

http://matsu-www.is.titech.ac.jp/~kent/index_en.html 
 
 

33,

Collaborators 
 

Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R de. Supinski,  
Naoya Maruyama, Satoshi Matsuoka 

  

Acknowledgement 
 

This work was performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. (LLNL-
CONF-645209). This work was also supported by Grant-in-Aid for Research Fellow of the 

Japan Society for the Promotion of Science (JSPS Fellows) 24008253, and Grant-in-Aid for 
Scientific Research S 23220003.  

  


