APIs, Architecture and Modeling
for Extreme Scale Resilience

Dagstuhl Seminar: Resilience in Exascale Computing
9/30/2014

Kento Sato

Lug Lawrence Livermore
National Laboratory

LLNL-PRES-661421

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Failures on HPC systems

System resilience is critical for future extreme-scale
computing

191 failures out of 5-million node-hours

A production application using Laser-plasma interaction code (pF3D)

* Hera, Atlas and Coastal clusters @LLNL => MTBF: 1.2 day
— C.f.) TSUBAME2.0 => MTBF: a day

= |In extreme scale, failure rate will increase

Now, HPC systems must consider failures as usual
events

Lawrence Livermore National Laboratory LLNL-PRES-GGMZ%UL-

Motivation to resilience APIs

= Current MPI implementation does not have the —r
Capabilities MPI initialization

4

« Standard MPI employs a fail-stop model v

) End " AApplication run
= When a fqllure occurs ... V Checkpointing
- MPI terminates all processes Failure
« The user locate, replace failed nodes with spare v
nodes Terminate processes

« Re-initialize MPI
« Restore the last checkpoint

\ 4

Locate failed node

= Applications will use more time for recovery v

- Users manually locate and replace the failed nodes with | Replace failed node
spare nodes via machinefile

4

« The manual recovery operations may introduce extra MPI re-initialization
overhead and human errors {
= APIs to handle the failures are critical s
checkpoint

Lawrence Livermore National Laboratory LLNL-PRES-GSMZ?UL-

Resilience APIls, Architecture and the

model

= Resilience APls

= Fault tolerant messaging
interface (FMI)

Resilience APIs:
Fault tolerant messaging interface (FMI)

=Sl =Tl

IS T Ty Vi iy i

Parallel file system

Lawrence Livermore National Laboratory

o (=
LLNL-PRES-661421

FMI: Fault Tolerant Messaging Interface
[IPDPS2014]

FMI rank (virtual rank)
o) (1) (2)(3)(a)(5)(6) (1) —

User’s view FMI
FMTI’s view
o e) G0 [Fast checkpoint/restart
\Parity 4/ 88 Parity 5/ e | e o B s
“Piz | | Poo | Parity 6 J Parity 7| P55 [pie
® O e
— Node 1 Node 2 Node 3 — Dynamic node allocation
= == Scalable failure detection
FMI is a survivable messaging interface providing MPI-like interface

« Scalable failure detection = Overlay network

Dynamic node allocation = FMI ranks are virtualized
« Fast checkpoint/restart = In-memory diskless checkpoint/restart
LLNL-PRES-66142? LLL

Lawrence Livermore National Laboratory

How FMI applications work ?
= FMI_Loop enables transparent recovery and

roll-back on a failure
Periodically write a checkpoint

int main (int *argc, char *argv[]) {
FMI_Init(&argc, &argv);
FMI_Comm_rank(FMI_COMM_WORLD, &rank); « Restore the last checkpoint on a failure
/* Application’s initialization */
while ((n = FMI_Loop(..)) < numloop) {
/* Application’s program */

= Processes are launched via fmirun

« fmirun spawns fmirun.task on each
node

/* Application’s finalization */ . fm} run.task calls fork/exgc a.user prggram
« fmirun broadcasts connection information

FMI_Finalize(); (endpoints) for FMI_init(....)

Launch FMI processes

machine_file

node@. fmi.gov
nodel. fmi.gov
{ fmirun }4 node2. fmi.gov
node3. fmi.gov
node4. fmi.gov

v

__

E Node 0 E Node 1 i Node 2 : Node 3 Node 4
v v v v

E fmirun.task } E fmirun.task } E fmirun.task] { fmirun.task }

Spare

wie | [

Lawrence Livermc

User perspective: No failures

Node ONode 1Node 2Node 3

©U26EW6E

int main (int *argc, char *argv[]) { UL Init YVVYVYVYVYVVY
FMI_Init(&argc, &argv); —-omm-_ran
FMI_Comm_rank(FMI_COMM_WORLD, &rank); VVYVVVYVVY

: . AR ? @ = FMI_Loop(..
/* Application’s initialization */ | —Loop(..)

while ((n = FMI_Loop(.)) < 4) {

|1 = FMI_Loop(..)

/* Application’s program */
YV V VVVVYVY

/* Application’s finalization */ \2=FMmeCJ
FMI_Finalize();

1 |3 = FMI_Loop(..)

4 = FMI_Loop(..)

vVVVVVVVY

FMI_Finalize

User perspective when no failures happens R R

Iterations: 4
Checkpoint frequency: Every 2 iterations
FMI_Loop returns incremented iteration id

Lawrence Livermore National Laboratory LLNL-PRES-6614ZZLLL

User perspective : Failure

FMI example code

int main (int *argc, char *argv[]) { UL Init VYVYVVVYVY
FMI_Init(&argc, &argv); —-omm-ran
FMI_Comm_rank(FMI_COMM_WORLD, &rank); "0 = MLLoop(d VVYVVVVVY
/* Application’s initialization */ - T-00PR-
while ((n = FMI_Loop(.)) < 4) { T VY VvYVvyVv Vv
/* Application’s program */ = FMI_Loop(.)
VVVVVVVY
/* Application’s finalization */ | 2 = FMI_Loop(..)
FMI_Finalize();
¥ |3 = FMI_Loop(..) V.V YV Vv
* * VVVVVY
. ‘ 2 = FMI_Loop(..)
* Transparently migrate FMI rank O
& 1 to a spare node -l Y Y YV VYV VY
* Restart form the last checkpoint)Y Y YV VYV VY
— 2t checkpoint at iteration 2 | A A A A
* With FMI, applications still use the FUL Finalize
same series of ranks even after VVVVVVVY
failures
Lawrence Livermore National Laboratory LLNL-PRES-66142?LLL

Resilience API: FMI_Loop

ckpt

len

Array of sizes of each checkpointed variables
Length of arrays, ckpt and sizes

returns iteration 1id

int FMI_Loop(void **ckpt, size_t *sizes, int len)
. Array of pointers to variables containing data that needs to be checkpointed
sizes:

= FMI constructs in-memory RAID-5 across compute nodes

Checkpoint group size
e.g.) group_size =4

FMI checkpointing

Encoding group

Encoding group

P5-0

— niow S ﬁi}:‘fj
2 (45 5 V5
2
P30 250 g%t% P60
‘\PBTI/ e Parity 4 ‘\pT;f
o S S o |
Node 1 Node 2 Node 6 Node 7

Application runtime with failures

 Benchmark: Poisson’s equation solver using Jacobi iteration method

— Stencil application benchmark

— MPI_Isend, MPI_Irecv, MPI_Wait and MPI_Allreduce within a single iteration
 For MPI, we use the SCR library for checkpointing

— Since MPI is not survivable messaging interface, we write checkpoint memory on

« Checkpoint interval is optimized by Vaidya’s model for FMI| and MPI

tmpfs
2500
—~MPI

~i9000 | EFFMI -
2 MPI + C

o FMI + C

21500

) FMI + C/R

=

<

£

~

s

o MTBEF: 1 minute

0 500 1000 1500
of Processes (12 processes/node)

P2P communication performance

1-byte Latency

Bandwidth (8MB)

MPI 3.555 usec

3.227 GB/s

FMI 3.573 usec

3.211 GB/s

FMI directly writes
| checkpoints via memcpy, and
can exploit the bandwidth

Even with the high failure rate,
FMI incurs only a 28% overhead

10
LLNL-PRES-661421 LLL

Asynchronous multi-level checkpointing

(MLC) [SC12]

Time

stecioone et))]

PFS
checkpoint

Level-2

Source: K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski, and S. Matsuoka, “Design and Modeling of a Non-
Blocking Checkpointing System,” in Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC '12. Salt Lake City, Utah: IEEE Computer Society Press, 2012

* Asynchronous MLC is a technique for achieving high
reliability while reducing checkpointing overhead
* Asynchronous MLC Use storage levels hierarchically

— RAID-5 checkpoint: Frequent for one node or a few
node failure

— PFS checkpoint: Less frequent and asynchronous for
multi-node failure
e QOur previous work model the asynchronous
MLC

Failure analysis on Coastal cluster

L1 failure

130 hours

2.13°6

L2 failure

650 hours

4.277

Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de
Supinski, “Design, Modeling, and Evaluation of a Scalable
Multi-level Checkpointing System,” in Proceedings of the
2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and

Analysis (SC 10).

Lawrence Livermore National Laboratory

11

1
LLNL-PRES-661421 LLL

] Scale factor

Simulation based on Asynchronous MLC
Async. MLC (Multi-level C/R) model

@@ ©
= Checkpoint size: 1 and 10 GB/node soole! ‘ﬁ@ﬂ@

= We increase L1 & L2 failure rates fﬁ'@ fﬁ'

t.
c,
.
A

f High efficiency with current
1 @// L failure rate

0.3] T s 4
L1 &2 -1 GB/node “N. If both L1 & L2 failure rate
~—=L1&2- 10 GB/node O increase, and checkpoint size is

0.1 large, efficiency decrease faster
0 \

0 5 10 15 20 25 30 35 40 45 50

12
LLNL-PRES-661421 LLL

EOWICTIVO =IVOTTTIVIC TYAOULIVITATl =avVvT ﬂl\ll’

Resilience APIls, Architecture and the

model

= Resilience APIs

 In near future, applications must
have capabilities of handling
failures as usual events

= Fault tolerant messaging
interface (FMI)

= Resilience architecture and
model

- Software level approaches are
not enough

= Architecture using Burst buffer

Resilience APIs:
Fault tolerant messaging interface (FMI)

Compute nodes

Y Y T
p 4 vy /
Resilience architecture:
Burst buffers

—— e "gp— Sp— oy

- Parallel file system i, '

Lawrence Livermore National Laboratory

13
LLNL-PRES-661421 LLL

Burst buffer storage architecture

= Burst buffer

« A new tier in storage hierarchies

« Absorb bursty I/0 requests from applications 4 Compute nodes

+ Fill performance gap between node-local
storage and PFSs in both latency and

bandwidth . -" —i_ =4 '
Resilience architecture: /
: - Burst buffers
= |f you write checkpoints to burst buffers, - E > -

~—— p— p— p— =

« Faster checkpoint/restart time than PFS

+ More reliable than storing on compute nodes . Parallel file system |

™ ™ ™ ™ ™ p——

et D D — D— Dm—

Lawrence Livermore National Laboratory TR

Burst buffer storage architecture (cont’d)

Network bottleneck
= IBIO: InfinBand-based I/0 interface

Reliability
= Storage model

PFS (Parallel file system)

= Exploiting storage bandwidth of burst buffers
« Burst buffers are connected to networks, networks can be bottleneck

= Analyzing reliability of systems with burst buffers
« Adding burst buffer nodes increase total system size
« System efficiency may decrease due to Increased overall failure by added burst buffers

Lawrence Livermore National Laboratory TR

APIs for burst buffers:
InfiniBand-based 1/O interface (IBIO)

= Provide POSIX-like I/O interfaces

« Open, read, write and close operations
« Client can open any files on any servers
— open(“hostname:/path/to/file”, mode)

= |IBIO use ibverbs for communication between clients and servers
+ Exploit network bandwidth of infiniBand

IBIO
client

1 5 chunk

IBIO server thread IBIO server thread
2 4 3 Ty 2 4 3
fdl B W W] Writer thread) (__Reader thread) [1 1 |
fdz B W]+ Writer thread) faz (__Reader thread) [1 |
fd3 B W+ Writer thread) fd3 (__Reader thread) [] |
fd4 (Writer thread > fdd (Reader thread)
N~ N~
k Chunk buffers Writer threads Storage J k Storage Reader threads Chunk buffers J

IBIO write: four IBIO clients and one IBIO server IBIO read: four IBIO clients and one IBIO server

ETTTT TG =T Voo TVt oI Ta T =T OTaToTy CCNC-PRES-00T4Z T %%

Resilience modeling overview

« To find out the best checkpoint/restart strategy for systems with burst
buffers, we model checkpointing strategies

C/R strategy model Recursive structured storage model

Hi, | |Hi | H;,

0= Gt (sme) L=C+E N 1 1
I (Async) ’

4+ —

< C/R date size / node >X <# of C/R nodes per SI-* >

Cor B; = Storage Model- Hy, im,, m my #
! ! < write perf. (w;) > or <read perf. (r;)> 8 N{ e)22 P\

Async. MLC model [2] ‘

Duration

g Efficiency
Po(t+c,) Po(n)
e ®_> 1,(t+c,) H 1,(n)
O |70 0 Fraction of time an application
D7 1 t(t+c,) MI ,(r,) d |

. Interval n(T) = {PO(T) : No failure for T seconds S pen S on y
iv : ¢ -level checkpoinF time :jg; : %(1 R tn(;) EXPECted Fime when po(T) i n u Sefu | CO m p u tati O n
¢ ¢-level recovery time Lo T4 1) e {P,() @ 1-level failure for T seconds
A ¢ ilevel checkpoint time u@ = A (1—) ,(T) : Expected time when p(T)

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12

Sequential IBIO read/write performance

Set chunk size to 64MB

for both IBIO and NFS to
maximize the throughputs

mSATA X 8
(Read: 500MB/s, Adaptec RAID X 1

Write: 260MB/s)

—#—Read - Local == Read - IBIO -=%=-Read - NFS EBD I/O
—#— Write - Local == Write - IBIO = -=%-- Write - NFS .)
Node specification
s 3 5 CPU Intel Core 17-3770K CPU (3.50GHz x 4 cores)
8 Memory Cetus DDR3-1600 (16GB)
R 3 M/B GIGABYTE GA-Z77X-UD5SH
A SSD Crucial m4 msata 256GB CT256M4SSD3
g (Peak read: S00MB/s, Peak write: 260MB/s)
457 2 . 5 SATA converter | KOUTECH I0-ASS110 mSATA to 2.5° SATA
o, Device Converter with Metal Fram
fn 9 RAID Card Adaptec RAID 7805Q ASR-7805Q Single
=}
o Interconnect :Mellanox FDR HCA (Model No.: MCX354A-FCBT)
215 N
@ .
Eoq IBIO achieve the same remote
% read/write performance as the
g 0.5 local read/write performance
by using RDMA
0 \ Y,
0 2 6 8 10 12 14 16
of Processes
LLNL-PRES-661412? LLL

Lawrence Livermore National Laboratory

Efficiency with Increasing Failure Rates
and Checkpoint Costs

* Assuming there is no message logging overhead

Flat Buffer-Coordinated Flat Buffer-Uncoordinated
¥ Burst Buffer-Coordinated M Burst Buffer-Uncoordinated I In days oF & day o MTBF,
! o — - there 1s no big efficiency
09 differences
08 <
07 — ‘ .
06 | In a few hours of MTBE, with
g burst buffers, systems can
g 0> still achieve high efficiency
£ 04 — | A /
03 |~ Even in a hour of MTBF, with
02 — MTBF =days uncoordinated, systems can
01 - still achieve 70% efficiency
0

= Partial restart can decrease recovery
1 2 10 50 100) £ e d
Scale factor (xF, xL.2) time rom burst buffers and PFS
checkpoint

Lawrence Livermore National Laboratory LLNLPRES 661421

Allowable Message Logging overhead

Message logging overhead allowed in uncoordinated checkpointing to
achieve a higher efficiency than coordinated checkpointing

Flat buffer Burst buffer
scale factor | Allowable message | scale factor | Allowable message
logging overhead logging overhead

1 0.0232% I 1 0.00435%

2 0.09299 Coordinated 2 0.0175%

10 2.45% [10 0.468%

50 §F57 ! =7 32.0%

100 ~ 100 Uncoordinated) 00,99,

= Logging overhead must be relatively small, less than a few percent in days
or a day of MTBF

« In afew hours or a hour, very high message logging overheads are tolerated

= Uncoordinated checkpointing can be more effective on future systems

Lawrence Livermore National Laboratory T

Effect of Improving Storage Performance

Efficiency

Efficiency

Flat Buffer-Coordinated
B Burst Buffer-Coordinated

1

09 [—

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Flat Buffer-Uncoordinated
B Burst Buffer-Uncoordinated

L1 performance improvement

5
Scale factor (Li1/)

10

L2 performance improvement

1 2 5 10

To see which storage impact to efficiency,
we increase performance of level-1 and level-2

storage while keeping MTBF a hour

-

Improvement of level-1 storage
performance does not impact
efficiency for both flat buffer and
burst buffer systems

~

v

Increasing the performance of the

PFS does impact system efficiency

L2 C/R overhead is a major cause of
degrading efficiency, so reducing level-2
failure rate and improving level-2 C/R is

critical on future systems

Scale factor (L2/)

21 l!!
LLNL-PRES-661421

Summary: Towards extreme scale resiliency

= Resilient APls

« Resilient APIs in MPI is critical for fast and transparent
recovery in HPC applications

« In-memory C/R by FMI incurs only a 28% overhead even
with the high failure rate

« Software-level solution may not enough at extreme scale

= Resilient Architecture
« Burst buffers are beneficial for C/R at extreme scale

« Uncoordinated C/R

— When MTBEF is days or a day, uncoordinated C/R may not be
effective

— |f MTBF is a few hours or less, will be effective

- Level-2 failure, and Level-2(PFS) performance

— Reducing Level-2 failure, increasing Level-2 (PFS) performance
are critical to improve overall system efficiency

Lawrence Livermore National Laboratory S W

Q&A

Speaker

Kento Sato
Lawrence Livermore National Laboratory
kento@lInl.gov

External collaborators

Satoshi Matsuoka, Tokyo Tech
Naoya Maruyama, RIKEN AICS

IB{LFRAR
® RIKEN

RIK=N

TOKYO TECH

Lawrence Livermore National Laboratory R

B Lawrence Livermore
National Laboratory

