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Failures on HPC systems 
!  Exponential growth in computational power 

•  Enables finer grained simulations with shorter period time 

!  Overall failure rate increase accordingly because of the increasing 
system size 

!  191 failures out of 5-million node-hours  
•  A production application of Laser-plasma interaction code (pF3D) 
•  Hera,&Atlas&and&Coastal&clusters&@LLNL&

1,000 nodes 10,000 nodes 100,000 nodes 

MTBF 1.2 days 
(Measured) 

2.9 hours 
(Estimation) 

17 minutes 
(Estimation) 

Estimated MTBF (w/o hardware reliability improvement per component in future) 

•  Will&be&difficult&for&applica:ons&to&con:nuously&run&for&a&long&
:me&without&fault&tolerance&at&extreme&scale&

Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a 
Scalable Multi-level Checkpointing System (SC 10) 
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Conventional fault tolerance in MPI apps 
!  Checkpoint/Recovery (C/R) 

•  Long running MPI applications are required to write 
checkpoints 

!  MPI  
•  De-facto communication library enabling parallel 

computing 
•  Standard MPI employs a fail-stop model 

!  When a failure occurs … 
•  MPI terminates all processes  
•  The user locate, replace failed nodes with spare nodes 
•  Re-initialize MPI 
•  Restore the last checkpoint 

!  The fail-stop model of MPI is quite simple 
•  All processes synchronize at each step to restart 

Replace failed node 

Restore 
checkpoint 

Locate failed node 

MPI initialization 

Terminate processes 

Checkpointing 

Application run 

MPI re-initialization 

End 

Start 

Failure 
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Requirement of fast and transparent 
recovery 

!  Failure rate will increase in future 
extreme scale systems 

Replace failed node 

Restore 
checkpoint 

Locate failed node 

MPI initialization 

Terminate processes 

Checkpointing 

Application run 

MPI re-initialization 

End 

Start 

Failure 

R
ecovery 

•  Applications will use more time for 
recovery  
–  Whenever a failure occurs,  users manually locate and 

replace the failed nodes with spare nodes via machinefile 
–  The&manual&recovery&opera:ons&may&introduce&extra&

overhead&and&human&errors&

•  Resilience&APIs&for&fast&and&transparent&
recovery&is&becoming&more&cri:cal&for&
extreme&scale&compu:ng&
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Resilience APIs, Architecture and the 
model 
!  Resilience APIs 
� Fault tolerant messaging 
interface (FMI) 

Parallel file system 

Compute nodes 

Resilience APIs:  
Fault tolerant messaging interface (FMI) 
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Challenges for fast and transparent recovery 

!  Scalable failure detection 
•  When recovering from a failure, all processes need 

to be notified 

!  Survivable messaging interface  
•  At extreme scale, even termination and 

Initialization of processes will be expensive 
•  Not terminating non-failed processes is important 

!  Transparent and dynamic node allocation 
•  Manually locating, and replacing failed nodes will 

introduce extra overhead and human errors 

!  Fast checkpoint/restart 

Replace failed node 

restore 
checkpoint 

Locate failed node 

MPI initialization 

Terminate processes 

Checkpointing 

Application run 

MPI re-initialization 

Start 

Failure 
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FMI: Fault Tolerant Messaging Interface  [IPDPS2014] 

!  FMI is a survivable messaging interface providing MPI-like 
interface	
•  Scalable failure detection => Overlay network 
•  Dynamic node allocation => FMI ranks are virtualized 
•  Fast checkpoint/restart => Diskless checkpoint/restart 

1 0 3 2 5 4 7 6 
FMI rank (virtual rank) 

FMI&overview&

Scalable failure detection 

MPI-like interface 
FMI 

User’s view 

P3 P2 P5 P4 

Node 1 Node 2 Node 3 

P9 P8 

Node 4 

P7 P6 

Dynamic node allocation 

Fast checkpoint/restart 
P2-2 
P2-1 

Parity 2 
P2-0 

P3-2 
P3-1 

Parity 3 
P3-0 

P4-2 
Parity 4 

P4-1 
P4-0 

P5-2 
Parity 5 

P5-1 
P5-0 

Parity 6 
P6-2 
P6-1 
P6-0 

Parity 7 
P7-2 
P7-1 
P7-0 

P0-2 
P0-1 
P0-0 

 Parity 0 

P1-2 
P1-1 
P1-0 

Parity 1 

0 
7 1 

6 2 
3 

4 5 

FMI’s view 

Node 0 

P1 P0 

P0-2 
P0-1 
P0-0 

Parity 0 

P1-2 
P1-1 
P1-0 

Parity 1 

P0-2 
P0-1 
P0-0 

 Parity 0 

P1-2 
P1-1 
P1-0 

Parity 1 
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fmirun.task	

P1&P0&

fmirun	

Node&0& Node&1&

node0.fmi.gov	
node1.fmi.gov	
node2.fmi.gov	
node3.fmi.gov	
node4.fmi.gov	

	

fmirun.task	

P3&P2&

Node&2&

fmirun.task	

P5&P4&

Node&3&

fmirun.task	

P7&P6&

machine_file	

How FMI applications work ? 

int main (int *argc, char *argv[]) {	
  FMI_Init(&argc, &argv);	
  FMI_Comm_rank(FMI_COMM_WORLD, &rank);	
  /* Application’s initialization */	
  while ((               ) < numloop) {	
    /* Application’s program */	
  }	
  /* Application’s finalization */	
  FMI_Finalize();	
}	

FMI&example&code&

n = FMI_Loop(…)  

Launch&FMI&processes&

Node&4&

Spare 
node 

•  FMI_Loop enables transparent recovery 
and roll-back on a failure 

–  Periodically write a checkpoint 
–  Restore the last checkpoint on a failure 

•  Processes are launched via fmirun	
–  fmirun spawns fmirun.task on each node	
–  fmirun.task calls fork/exec a user program 
–  fmirun broadcasts connection information 

(endpoints) for FMI_init(…) 
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int main (int *argc, char *argv[]) {	
  FMI_Init(&argc, &argv);	
  FMI_Comm_rank(FMI_COMM_WORLD, &rank);	
  /* Application’s initialization */	
  while ((               ) < 4) {	
    /* Application’s program */	
  }	
  /* Application’s finalization */	
  FMI_Finalize();	
}	

Node 0 Node 1 Node 2 Node 3 

User perspective:  No failures 

•  User&perspec:ve&when&no&failures&happens&
•  Itera:ons:&4&
•  Checkpoint&frequency:&Every&2&itera:ons&
•  FMI_Loop&returns&incremented&itera:on&id&&

FMI_Init	
FMI_Comm_rank	

4 = FMI_Loop(…)	

1 = FMI_Loop(…)	

FMI_Finalize	

0 1 2 3 4 5 6 7 

0 = FMI_Loop(…)	 checkpoint: 0 

2 = FMI_Loop(…)	 checkpoint: 1 

3 = FMI_Loop(…)	

FMI&example&code&

n = FMI_Loop(…)  
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User perspective :  Failure 

int main (int *argc, char *argv[]) {	
  FMI_Init(&argc, &argv);	
  FMI_Comm_rank(FMI_COMM_WORLD, &rank);	
  /* Application’s initialization */	
  while ((n = FMI_Loop(…)) < 4) {	
    /* Application’s program */	
  }	
  /* Application’s finalization */	
  FMI_Finalize();	
}	

FMI&example&code&

FMI_Init	
FMI_Comm_rank	

1 = FMI_Loop(…)	

0 1 2 3 4 5 6 7 

0 = FMI_Loop(…)	 checkpoint: 0 

2 = FMI_Loop(…)	 checkpoint: 1 

3 = FMI_Loop(…)	

2 = FMI_Loop(…)	 restart: 1 

4 = FMI_Loop(…)	

FMI_Finalize	

3 = FMI_Loop(…)	

•  Transparently&migrate&FMI&rank&0&
&&1&to&a&spare&node&

•  Restart&form&the&last&checkpoint&
–  2th&checkpoint&at&itera:on&2&

•  With&FMI,&applica:ons&s:ll&use&the&
same&series&of&ranks&even&aWer&
failures&
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FMI_Loop	
int FMI_Loop(void **ckpt, size_t *sizes, int len)	

ckpt : Array&of&pointers&to&variables&containing&data&that&needs&to&be&checkpointed&
sizes: Array&of&sizes&of&each&checkpointed&variables&
len  : Length&of&arrays,&ckpt&and&sizes	
returns iteration id	

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 

1 3 5 7 9 11 15 13 

0 2 4 6 8 10 14 12 

Encoding group 

P3-2 
P3-1 

Parity 3 
P3-0 

P4-2 
Parity 4 

P4-1 
P4-0 

P5-2 
Parity 5 

P5-1 
P5-0 

Parity 6 
P6-2 
P6-1 
P6-0 

Parity 7 
P7-2 
P7-1 
P7-0 

P0-2 
P0-1 
P0-0 

 Parity 0 

P1-2 
P1-1 
P1-0 

Parity 1 

P2-2 
P2-1 

Parity 2 
P2-0 

P4-2 
Parity 4 

P4-1 
P4-0 

P0-2 
P0-1 
P0-0 

 Parity 0 

P2-2 
P2-1 

Parity 2 
P2-0 

Parity 6 
P6-2 
P6-1 
P6-0 

P3-2 
P3-1 

Parity 3 
P3-0 

P5-2 
Parity 5 

P5-1 
P5-0 

Parity 7 
P7-2 
P7-1 
P7-0 

P1-2 
P1-1 
P1-0 

Parity 1 

Encoding group 

!  FMI constructs in-memory RAID-5 across compute nodes 

!  Checkpoint group size 
•  e.g.) group_size = 4 

FMI&checkpoin:ng&
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FMI: Fault Tolerant Messaging Interface 

!  FMI is an MPI-like survivable messaging interface	
•  Scalable failure detection => Overlay network for failure detection 
•  Dynamic node allocation => FMI ranks are virtualized 
•  Fast checkpoint/restart => Diskless checkpoint/restart 

1 0 3 2 5 4 7 6 
FMI rank (virtual rank) 

FMI&overview&

Scalable failure detection 

MPI-like interface 
FMI 

User’s view 

P3 P2 P5 P4 

Node 1 Node 2 Node 3 

P9 P8 

Node 4 

P7 P6 

Dynamic node allocation 

Fast checkpoint/restart 
P2-2 
P2-1 

Parity 2 
P2-0 

P3-2 
P3-1 

Parity 3 
P3-0 

P4-2 
Parity 4 

P4-1 
P4-0 

P5-2 
Parity 5 

P5-1 
P5-0 

Parity 6 
P6-2 
P6-1 
P6-0 

Parity 7 
P7-2 
P7-1 
P7-0 

P0-2 
P0-1 
P0-0 

 Parity 0 

P1-2 
P1-1 
P1-0 

Parity 1 

0 
7 1 

6 2 
3 

4 5 

FMI’s view 

Node 0 

P1 P0 

P0-2 
P0-1 
P0-0 

Parity 0 

P1-2 
P1-1 
P1-0 

Parity 1 

P0-2 
P0-1 
P0-0 

 Parity 0 

P1-2 
P1-1 
P1-0 

Parity 1 
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    FMI’s view       &       User’s view 

FMI_Init	
FMI_Comm_rank	

1 = FMI_Loop(…)	

0 1 2 3 4 5 6 7 

0 = FMI_Loop(…)	 checkpoint: 0 

2 = FMI_Loop(…)	 checkpoint: 1 

3 = FMI_Loop(…)	

4 = FMI_Loop(…)	

FMI_Finalize	

2 = FMI_Loop(…)	 restart: 1 

3 = FMI_Loop(…)	

User’s&view&FMI’s&view&
Node 0 Node 1 Node 2 Node 3 Node 4 

2 = FMI_Loop(…)	 restart: 1 

FMI_Init	
FMI_Comm_rank	

1 = FMI_Loop(…)	

P0 P1 P2 P3 P4 P5 P6 P7 

0 = FMI_Loop(…)	 checkpoint: 0 

2 = FMI_Loop(…)	 checkpoint: 1 

3 = FMI_Loop(…)	

0 1 2 3 4 5 6 7 

P8 P9 

0 1 

Skip 

4 = FMI_Loop(…)	

FMI_Finalize	

3 = FMI_Loop(…)	
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FMI’s&view&
Node 0 Node 1 Node 2 Node 3 Node 4 

FMI’s view 

2 = FMI_Loop(…)	 restart: 1 

FMI_Init	
FMI_Comm_rank	

1 = FMI_Loop(…)	

P0 P1 P2 P3 P4 P5 P6 P7 

0 = FMI_Loop(…)	 checkpoint: 0 

2 = FMI_Loop(…)	 checkpoint: 1 

3 = FMI_Loop(…)	

0 1 2 3 4 5 6 7 

P8 P9 

0 1 

Skip 

4 = FMI_Loop(…)	

FMI_Finalize	

3 = FMI_Loop(…)	

Transparent & Dynamic  
node allocation 

Scalable failure detection & 
notification 

Fast checkpoint/restart 
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!  If fmirun.task receives an unsuccessful exit signal from a child process 
•  fmirun.task kills any other running child processes in the node, and exits with EXIT_FAILURE	

!  When fmirun receives the EXIT_FAILURE from the fmirun.task, 
•  fmirun attempts to find spare nodes to replace the failed nodes in the machine_file	
•  fmirun  spawns new processes on the spare nodes	

!  fmirun boradcasts connection information (endpoint) of new processes, P8 and P9 

fmirun.task	

P1&P0&

fmirun	

Node&0& Node&1&

fmirun.task	

P3&P2&

Node&2&

fmirun.task	

P5&P4&

Node&3&

fmirun.task	

P7&P6&

Node&4&
fmirun.task	

P9&P8&

node0.fmi.gov	
node1.fmi.gov	
node2.fmi.gov	
node3.fmi.gov	
node4.fmi.gov	

	

machine_file	

fmirun&overview&

Node&4&

Transparent and dynamic node allocation 
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P1 P0 P3 P2 P5 P4 P7 P6 P9 P8 

FMI_COMM_WORLD	 0 1 2 3 4 5 6 7 
endpoint (epoch=0) 

FMI&

Node 0 Node 1 Node 2 Node 3 Node 4 

User’s view 
FMI’s view 

Transparent and dynamic node allocation 
(cont’d) 

P0 P1 P2 P3 P4 P5 P6 P7 

!  In FMI, FMI_COMM_WORLD manages process mapping between 
FMI ranks and processes 
•  Once receiving endpoints, the mapping table is updated (=> bootstrapping) 
—  Applications can still use the same ranks 

•  Then, increment a “epoch” number  to be able to discard staled messages  
—  After recovery, processes may receive old data which is sent before a failure 

happens 

P8 P9 epoch=1 
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Scalable failure detection  
!  FMI processes check if other processes are alive or not each other using overlay network 

!  Log-ring overlay network 
•  Each FMI rank  connects to 2k-hop neighbors (k= 0,1…)  
•  e.g. ) FMI rank 0 connects to FMI rank 1, 2, 4 and 8 

!  Log-ring overlay is scalable for both construction and detection  

0

8

4

12&

0

8

4

12&

Construc:on:&O(1) 
Global&detec:on:&O(N) 

Construc:on:&O(N) 
Global&detec:on:&O(1) 

Ring&overlay&

0

8

4
12&

Construc:on:&O(log N) 
Global&detec:on:&O(log N) 

Log]ring&overlay& Complete&overlay&
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!  Log-ring overlay network using ibverbs (constructed in FMI_init(…)) 
•  Connection-based communication: if a process is terminated, the peer 

processes receive the disconnection event 

!  FMI global failure notification 
•  When FMI processes receive disconnection events, the processes explicitly 

disconnect all of ibverbs connections 

0

8

4

12&

0

8

4
12&

0

8

4

12&

No:fied&by&explicit&disconnec:on&No:fied&by&:meout&disconnec:on&

Timeout&disconnec:on& Explicit&disconnec:on&

Example&of&global&failure&no:fica:on&

Not&No:fied&

Overlay&connec:on&

Scalable failure detection  (cont’d) 

! peer 
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 In-memory XOR checkpoint/restart 
algorithm 

!  XOR checkpoint/restart algorithm	
1.  Write checkpoint using memcpy	
2.  Divides into chunks, and allocate memory for party data 
3.  Send parity data to one neighbor, receive parity data from the 

other neighbor, and compute XOR 
4.  Continue 3. until first parity come back 
5.  (For restart) gather all restored data 

19 

Chunk 3 

Chunk 2  

Chunk 1 

Chunk 1 

Chunk 3 

Chunk 2 

Chunk 2 

Chunk 1 

Chunk 3 

Chunk 3 

Chunk 2 

Chunk 1 

Rank&0& Rank&1& Rank&2& Rank&3&

Parity&

Parity&

Parity&

Parity&

= 

s 

s/3 

Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable 
Multi-level Checkpointing System,” in Proceedings of the 2010 ACM/IEEE International Conference for High 
Performance Computing, Networking, Storage and Analysis (SC 10). 
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 In-memory XOR checkpoint/restart model 
!  In-memory XOR checkpoint/restart time depends on only 

XOR group size 

Chunk 3 

Chunk 2  

Chunk 1 

Chunk 1 

Chunk 3 

Chunk 2 

Chunk 2 

Chunk 1 

Chunk 3 

Chunk 3 

Chunk 2 

Chunk 1 

Rank&0& Rank&1& Rank&2& Rank&3&

Parity&

Parity&

Parity&

Parity&

memcpy parity transfer encoding gathering 

Checkpoint 

Restart 

Parity'

Chunk'3'

Chunk'2''

Chunk'1'

Chunk'1'

Parity'

Chunk'3'

Chunk'2'

Chunk'2'

Chunk'1'

Parity'

Chunk'3'

Chunk'3'

Chunk'2'
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Parity'
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Fig. 9: XOR encoding algorithm: The circled numbers are the steps of sending/receiving
parity

by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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Fig. 10: XOR checkpoint time
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Fig. 11: XOR restart time

and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of

Parity'

Chunk'3'

Chunk'2''

Chunk'1'

Chunk'1'

Parity'

Chunk'3'

Chunk'2'

Chunk'2'

Chunk'1'

Parity'

Chunk'3'

Chunk'3'

Chunk'2'

Chunk'1'

Parity'

�

�

��
	��� ��
	��� ��
	��� ��
	���

�

�

4

3

2

4

3

3

2

4

3

2

2

4

Fig. 9: XOR encoding algorithm: The circled numbers are the steps of sending/receiving
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,

0 
1 
2 
3 
4 
5 
6 
7 
8 

2 4 8 16 32 64 

C
he

ck
po

in
t t

im
e 

(S
ec

on
ds

) 
XOR Group Size 

Checkpoint (XOR: Encoding) 
Checkpoint (XOR: Communication) 
Checkpoint (memcpy) 
Checkpoint (Model) 

Fig. 10: XOR checkpoint time

0 
1 
2 
3 
4 
5 
6 
7 
8 

2 4 8 16 32 64 

R
es

ta
rt

 ti
m

e 
 (S

ec
on

ds
) 

XOR Group Size 

Restart (XOR: Gather) 
Restart (XOR: Decoding) 
Restart (XOR: Communication) 
Restart (memcpy) 
Restart (Model) 

Fig. 11: XOR restart time

and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of
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by the target rank. For example, if process A sends a message
before a failure, but process B does not receive it before the
failure, it may receive the stale message when it executes the
receive operation after recovery. To address the problem, FMI
increments an epoch variable after each recovery, and discards
all messages that arrive with an older epoch value.

V. FAST AND SCALABLE IN-MEMORY C/R

With FMI, an application can continue to run even if a
failure occurs. However, if a node fails, we may lose needed
simulation data from processes on the failed node, so C/R is
critical and must be scalable to be effective at large scales.
Because the most common failures affect only a single or a
few nodes [4], [11], multilevel C/R is effective and scalable.

A. Implementation

FMI employs the same level-1 checkpoint and encoding
algorithm as the Scalable Checkpoint/Restart library (SCR)
[4]. However, while SCR requires a file system interface for
storing checkpoints, FMI writes checkpoints directly to mem-
ory without involving a file system for faster C/R throughput.
Unlike with MPI, FMI does not terminate non-failed processes
on a failure, and in-memory checkpoint data is not flushed.

At initialization, FMI splits ranks into XOR encoding
groups (XOR group) with ranks in each group distributed
across nodes. Because the common failure affects a single
node, FMI ensures that each rank in the same node belongs
to a different XOR group. For example, when processes are
launched as in Figure 6, FMI splits the ranks as shown in
Figure 8. Figure 9 shows the encoding algorithm for one XOR
group. First, for an XOR group size of n, FMI divides a
checkpoint into n−1 chunks, and allocates an additional parity
chunk initialized with zeros. Each rank sends the parity chunk
to its “right-hand” neighbor, and receives from its “left-hand”
neighbor, and calculates ”parity ∧ = chunk 1”. In general,
each rank sends and receives a parity chunk, and computes
”parity ∧ = chunk k” at step k (k is circled number in
Figure 9). Thus, each rank receives back the encoded parity
chunk after n steps. When FMI restores a checkpoint, FMI
decodes it with the same algorithm as the encoding, and then
a newly launched rank collects the decoded checkpoint chunks
from the other ranks.

B. Performance Model

When FMI writes s bytes of checkpoint data and encodes it,
s bytes are copied by memcpy, s + s

n−1 bytes are transferred,
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Fig. 10: XOR checkpoint time
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Fig. 11: XOR restart time

and s bytes are encoded in total. Therefore, the time for C/R
can be modeled as:

s

mem bw
+

s + s/ (n − 1)
net bw

+
s

mem bw

where mem bw is memory bandwidth, and net bw is network
bandwidth. Because the XOR operation is memory-bound, the
time becomes s

mem bw . When restoring a checkpoint, a newly
launched rank collects the decoded checkpoint chunks from
the other ranks at the end (Gather in Figure 11), so s

net bw is
added for restart.

The model tells us that the C/R time is constant regardless
of the total number of processes. Thus, the our in-memory
XOR C/R is scalable as well as fast.

C. XOR Group Size Tuning
FMI directly uses memory to store checkpoints. Thus,

reducing memory consumption while maintaining resiliency
is important. If an XOR group size is small, memory con-
sumption and C/R time become large. For large XOR group
sizes, resiliency decreases because the XOR C/R encoding is
tolerant to only a single rank failure in a XOR group. We
performed experiments to evaluate the trade-offs of C/R time
and XOR group size.

Figures 10 and 11 show the checkpoint and restart times
where the checkpoint size is 6GB per node. For the memory
and network bandwidths in the model, we use the peak
bandwidth of the Sierra cluster at LLNL in Table II. We find
that the C/R time starts to saturate at an XOR group size of
16 nodes. For this XOR group size, the parity chunk size is
only 6.6 % of the full checkpoint size. Thus, we use 16 nodes
for the XOR group size in the rest of our experiments.

VI. EXPERIMENTAL RESULTS

To evaluate the performance and resiliency of FMI, we
measured several benchmarks with FMI, and predict the
performance of an FMI application run at extreme scale. We
ran our experiments on the Sierra cluster at LLNL. The details
of Sierra are in Table II. Because FMI follows the messaging
semantics of MPI, we want to compare the performance of

= 

= 

s : ckpt size, n : group size, mem_bw : memory bandwidth, net_bw :  network bandwidth 

s 

s/3 
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Process state manage 
!  FMI manages three states to make sure all processes to synchronously 

•  H1: Bootstrap for endpoint, process mapping update, and epoch 
•  H2: Construct overlay for scalable failure detection 
•  H3: Do computation and checkpoint 

!  Whenever failures happens, all processes transitions to H1 to restart 

21 

Bootstrapping 
state (H1) 

Overlay 
state (H2) 

C/R and compute 
state (H3) H3 

fmirun&

H1 

H2 

Process&states&
Failed transition 
Notified transition 
Successful transition 

FMI_Init	

FMI_Loop	 FMI_Init	

FMI_Loop	

user program in FMI_Loop	

fmirun	

H1 

H2 

H3 

FMI_Loop	

Detailed&Process&states&
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Evaluations 
!  Initialization 

•  FMI_Init time 

!  Detection 

!  Checkpoint/restart 

!  Benchmark run 

!  Simulations for extreme 
scale 

       C/R and compute state (H3) 

Overlay state (H2) 

   Bootstrapping state (H1) 

H3 

fmirun&

H1 

H2 



Lawrence Livermore National Laboratory  - Kento Sato LLNL-PRES-662034 
23 

Experimental environment 
!  Sierra cluster @LLNL 

Chapter 4: FMI: Fault Tolerant Messaging Interface 56
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Figure 4.11: XOR checkpoint time
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Figure 4.12: XOR restart time

Table 4.1: Sierra Cluster Specification

Nodes 1,856 compute nodes (1,944 nodes in total)
CPU 2.8 GHz Intel Xeon EP X5660 × 2 (12 cores in total)

Memory 24GB (Peak CPU memory bandwidth: 32 GB/s)
Interconnect QLogic InfiniBand QDR

the peak bandwidth of the Sierra cluster at LLNL in Table 5.1. We find that the

checkpoint/restart time starts to saturate at an XOR group size of 16 nodes. For this

XOR group size, the parity chunk size is only 6.6 % of the full checkpoint size. Thus,

we use 16 nodes for the XOR group size in the rest of our experiments.

4.6 Experimental Results

To evaluate the performance and resiliency of FMI, we measured several benchmarks

with FMI, and predict the performance of an FMI application run at extreme scale.

We ran our experiments on the Sierra cluster at LLNL. The details of Sierra are in

Table 5.1. Because FMI follows the messaging semantics of MPI, we want to compare

•  MPI: MVAPICH2 (1.2) 
–  Runs on top of SLURM 
–  srun instead of mpirun for launching MPI processes 
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MPI_Init vs. FMI_Init time 

(12 procs/node) 
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FMI failure detection time 
!  We measured the time for all processes to be notified of a failure 

•  Injected a failure by killing a process 

!  Once a process receive a  disconnection event, the notification 
exponentially propagate 
•  Time complexity: O (log(N)) to propagate 
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FMI Checkpoint/Restart throughput 
!  Checkpoint size:  6GB/node  

!  The checkpoint/restart time of FMI is scalable  
•  FMI directly write checkpoint to memory via memcpy 
•  As in the model, the checkpointing and restart times are constant regardless of the total 

number of processes 
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Fig. 12: Checkpoint/Restart scalability with 6 GB/node
checkpoints, 12 processes/node
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Fig. 13: Failure notification time with log-ring overlay
network
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Fig. 14: MPI Init vs. FMI Init
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Fig. 15: Himeno benchmark (Checkpoint size: 821
MB/node, MTBF: 1 minute)
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Fig. 16: Probability to continuously run for 24 hours
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Fig. 17: Efficiency of multilevel C/R under increasing failure
rate and L2 C/R time

run continuously with or without FMI, we simulated an
application running at extreme scale. If we assume failures
occur according to Poisson’s distribution, the probability that
an application runs for time T continuously is e−λ·T where λ
is the unrecoverable failure rate.

Figure 16 shows the probability to run continuously for 24
hours using failure rates from the LLNL failure analysis of the
Coastal cluster [4], with a level-1 failure rate of 2.13−6 (MTBF
= 130 hours) (recoverable by XOR encoding), and level-2
failure rate of 4.27−7 (MTBF = 650 hours) (unrecoverable
failures). We increase the failure rates from the observed level-
1 and 2 values by scale factors of 1 (observed values) to 50
to evaluate FMI’s performance at larger scales. With FMI,
80% of executions can run for 24 hours with even 6× higher
failure rates. At failure rates of 10× higher than today’s,
70% of FMI executions can run continuously for 24 hours,
while only 10% of non-FMI executions can do the same.
Executions without FMI are terminated by any failures, while
FMI executions are terminated by only level-2 failure. Thus,
using FMI effectively decreases unrecoverable failure rate, λ,
and thus the probability of long continuous runs is higher with
FMI, even at very high failure rates. At a scale factor 50, the
level-1 MTBF becomes 2.6 hours (= 130 hours / 50), which
is a quite long MTBF for FMI. As shown in Figure 15, FMI
achieves a only 28% overhead (72% of efficiency) even with
MTBF of 1 minute. Also, in the absence of unrecoverable
failures, an application can run with negligibly small overhead.

If FMI uses a multilevel C/R strategy and writes some
checkpoints to the PFS (level-2 C/R) in addition to XOR
C/R (level-1 C/R), level-2 failures can also be recoverable.

Here, we predict the efficiency of using multilevel C/R with
FMI, where efficiency is the ratio of time spent in useful
computation only versus computation, C/R activities, and
recomputation after recovery. As future systems become larger,
we expect higher failure rates and total aggregate checkpoint
sizes. Thus, to predict application efficiency at larger scales,
we increase failure rates and checkpoint costs up to 50×,
using the Coastal system as a base line. Because level-1 C/R
time is constant regardless of the total number of nodes, we
only increase level-2 C/R time. For level-2 C/R, we assume
we write checkpoints asynchronously to the PFS using the
framework and model developed in our prior work [16].

Figure 17 shows the efficiency of multilevel C/R in FMI.
Because we are uncertain as to whether level-2 failure rates
will increase at extreme scale, in our evaluation we increase
only the level-1 failure rate (L1) or both the level-1 and 2
failure rates (L1,2) with different checkpoint sizes per node
(1 or 10 GB/node). We estimate level-1 C/R time using the
performance model in Section V-B. For level-2 C/R time,
we use a PFS bandwidth of 50 GB/s, the bandwidth of the
LLNL Lustre file system /p/lscratchd. We find that we
can achieve fairly high efficiencies if future systems can keep
current level-2 failure rates constant, or the size of checkpoints
is small. However, if both level-1 and 2 failure rates increase
and the checkpoint size is large, the efficiency drops down to
under 2%. Thus, future systems must either decrease level-2
failure rates or increase PFS throughput to achieve high system
efficiency.

(12 procs/node) 

total size: 
384GB 

2 sec 

4 sec 
Fast checkpoint/restart 

FMI writes and reads 
checkpoints to/from 
memory via memcpy 

2.4 GB/sec per node 

1.3 GB/sec per node 

total size: 
768GB 
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Application runtime with failures 
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•  Benchmark: Poisson’s equation solver using Jacobi iteration method 
–  Stencil application benchmark 
–  MPI_Isend, MPI_Irecv, MPI_Wait and MPI_Allreduce within a single iteration 

•  For MPI, we use the SCR library for checkpointing 
–  Since MPI is not survivable messaging interface, we write checkpoint memory 

on tmpfs 

•  Checkpoint interval is optimized by Vaidya’s model for FMI and MPI 
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Figure 4.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [76].

4.6.1 FMI Performance

Table 4.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 4.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

P2P communication performance 

Even with the high failure rate,  
FMI incurs only a 28% overhead 

MTBF: 1 minute 

 FMI directly writes 
checkpoints via memcpy, and 

can exploit the bandwidth 
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Simulations for extreme scale 
!  FMI applications can continue to run as long as all failures are 

recoverable. To investigate how long an application can  

!  run continuously with or without FMI, we simulated an 
application running at extreme scale.  

!  Types of failures 
•  L1 failure: Recoverable by FMI 
•  L2 failure: Unrecoverable by FMI 

!  We scale out failure rates, evaluate 
1.  How long applications can  

continuously  run; 
2.  efficiency at extreme scale 

 

MTBF Failure rate 
L1 failure 130 hours 2.13-6 
L2 failure 650 hours 4.27-7  

Failure analysis on Coastal cluster 

Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de 
Supinski, “Design, Modeling, and Evaluation of a Scalable 
Multi-level Checkpointing System,” in Proceedings of the 
2010 ACM/IEEE International Conference for High 
Performance Computing, Networking, Storage and 
Analysis (SC 10). 
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Probability to run for 24 hours 
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Fig. 12: Checkpoint/Restart scalability with 6 GB/node
checkpoints, 12 processes/node
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Fig. 13: Failure notification time with log-ring overlay
network
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Fig. 14: MPI Init vs. FMI Init
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Fig. 15: Himeno benchmark (Checkpoint size: 821
MB/node, MTBF: 1 minute)
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Fig. 16: Probability to continuously run for 24 hours
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Fig. 17: Efficiency of multilevel C/R under increasing failure
rate and L2 C/R time

run continuously with or without FMI, we simulated an
application running at extreme scale. If we assume failures
occur according to Poisson’s distribution, the probability that
an application runs for time T continuously is e−λ·T where λ
is the unrecoverable failure rate.

Figure 16 shows the probability to run continuously for 24
hours using failure rates from the LLNL failure analysis of the
Coastal cluster [4], with a level-1 failure rate of 2.13−6 (MTBF
= 130 hours) (recoverable by XOR encoding), and level-2
failure rate of 4.27−7 (MTBF = 650 hours) (unrecoverable
failures). We increase the failure rates from the observed level-
1 and 2 values by scale factors of 1 (observed values) to 50
to evaluate FMI’s performance at larger scales. With FMI,
80% of executions can run for 24 hours with even 6× higher
failure rates. At failure rates of 10× higher than today’s,
70% of FMI executions can run continuously for 24 hours,
while only 10% of non-FMI executions can do the same.
Executions without FMI are terminated by any failures, while
FMI executions are terminated by only level-2 failure. Thus,
using FMI effectively decreases unrecoverable failure rate, λ,
and thus the probability of long continuous runs is higher with
FMI, even at very high failure rates. At a scale factor 50, the
level-1 MTBF becomes 2.6 hours (= 130 hours / 50), which
is a quite long MTBF for FMI. As shown in Figure 15, FMI
achieves a only 28% overhead (72% of efficiency) even with
MTBF of 1 minute. Also, in the absence of unrecoverable
failures, an application can run with negligibly small overhead.

If FMI uses a multilevel C/R strategy and writes some
checkpoints to the PFS (level-2 C/R) in addition to XOR
C/R (level-1 C/R), level-2 failures can also be recoverable.

Here, we predict the efficiency of using multilevel C/R with
FMI, where efficiency is the ratio of time spent in useful
computation only versus computation, C/R activities, and
recomputation after recovery. As future systems become larger,
we expect higher failure rates and total aggregate checkpoint
sizes. Thus, to predict application efficiency at larger scales,
we increase failure rates and checkpoint costs up to 50×,
using the Coastal system as a base line. Because level-1 C/R
time is constant regardless of the total number of nodes, we
only increase level-2 C/R time. For level-2 C/R, we assume
we write checkpoints asynchronously to the PFS using the
framework and model developed in our prior work [16].

Figure 17 shows the efficiency of multilevel C/R in FMI.
Because we are uncertain as to whether level-2 failure rates
will increase at extreme scale, in our evaluation we increase
only the level-1 failure rate (L1) or both the level-1 and 2
failure rates (L1,2) with different checkpoint sizes per node
(1 or 10 GB/node). We estimate level-1 C/R time using the
performance model in Section V-B. For level-2 C/R time,
we use a PFS bandwidth of 50 GB/s, the bandwidth of the
LLNL Lustre file system /p/lscratchd. We find that we
can achieve fairly high efficiencies if future systems can keep
current level-2 failure rates constant, or the size of checkpoints
is small. However, if both level-1 and 2 failure rates increase
and the checkpoint size is large, the efficiency drops down to
under 2%. Thus, future systems must either decrease level-2
failure rates or increase PFS throughput to achieve high system
efficiency.

80% of probability to run for 
24 hours on environment 
with current failure rate 

FMI execution: 80% 
non-FMI execution: 25% 

!  With FMI, application continuously run for longer time  

Even with FMI, most of  
executions cannot run for 24H 

Future FMI will support  
async. multi-level checkpoint/restart 
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8% 15% 

Single node failure is common 

Failure analysis on TSUBAME2.0 

•  Most&of&failures&comes&from&one&node,&or&can&recover&from&XOR&
checkpoint&
–  e.g.&1)&TSUBAME2.0:&92%&failures&
–  e.g.&2)&LLNL&clusters:&85%&failures&

30&

Failure analysis on LLNL clusters 

LOCAL/XOR/PARTNER checkpoint 
PFS checkpoint 

92% 85% 

Rest&of&failures&s:ll&require&a&checkpoint&on&a&reliable&PFS&
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Asynchronous multi-level checkpointing 
(MLC) [SC12] 

!  Asynchronous MLC is a technique for achieving high 
reliability while reducing checkpointing overhead 

!  Asynchronous MLC Use storage levels hierarchically 

•  XOR checkpoint: Frequent  for one node for a few node 
failure 

•  PFS checkpoint: Less frequent and asynchronous for multi-
node failure 

!  Our previous work model the asynchronous MLC 

 

 

Level-1 

Level-2 

XOR 
checkpoint 

PFS 
checkpoint 

31 

Source: K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski, and S. Matsuoka, “Design and Modeling of a Non-
Blocking Checkpointing System,” in Proceedings of the International Conference on High Performance Computing, Networking, 
Storage and Analysis, ser. SC ’12. Salt Lake City, Utah: IEEE Computer Society Press, 2012  
 

MTBF Failure rate 
L1 failure 130 hours 2.13-6 
L2 failure 650 hours 4.27-7  

Failure analysis on Coastal cluster 

Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de 
Supinski, “Design, Modeling, and Evaluation of a Scalable 
Multi-level Checkpointing System,” in Proceedings of the 
2010 ACM/IEEE International Conference for High 
Performance Computing, Networking, Storage and 
Analysis (SC 10). 
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Efficiency with FMI + Asynchronous MLC 
!  Checkpoint size: 1 and 10 GB/node 

!  We increase L1 and  L1 & L2 failure rates 
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If both L1 & L2 failure rate 
increase, and checkpoint size is 
large, efficiency drops rapidly  
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Coordinated&C/R&

Uncoordinated C/R + MLC 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 2 10 50 100 
Ef

fic
ie

nc
y 

Scale factor (xF, xL2) 

Coordinated C/R Uncoordinated C/R •  Coordinated C/R 
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–  Restart overhead 

•  Uncoordinated C/R 
–  Create clusters, and log messages exchanged 

between clusters 
–  Message logging overhead is incurred, but 

rolling-back only a cluster can restart the 
execution on a failure 

� MLC + Uncoordinated C/R (Software-level) 
approaches may be limited at extreme scale 
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Resilience APIs, Architecture and the 
model 
!  Resilience APIs 

•  In near future, applications must 
have capabilities of handling 
failures as usual events 

⇒  Fault tolerant messaging 
interface (FMI) [IPDPS2014] 

Parallel file system 

Resilience architecture: 
Burst buffers 

Compute nodes 

Resilience APIs:  
Fault tolerant messaging interface (FMI) 

!  Resilience architecture and 
model 
•  Software level approaches are 

not enough  
��Architecture using Burst buffer 
[CCGrid2014] 
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Burst buffer storage architecture 
!  Burst buffer 

•  A new tier in storage hierarchies 
•  Absorb bursty I/O requests from applications 
•  Fill performance gap between node-local 

storage and PFSs in both latency and 
bandwidth 

!  If you write checkpoints to burst buffers, 
•  Faster checkpoint/restart time than PFS 
•  More reliable than storing on compute nodes Parallel file system 

Resilience architecture: 
Burst buffers 

Compute nodes 



Lawrence Livermore National Laboratory  - Kento Sato LLNL-PRES-662034 
36 

Checkpoint/Restart&

Checkpoint/Restart (Software-Lv.) 
!  Idea of Checkpoint/Restart 

•  Checkpoint 
—  Periodically save snapshots of 

an application state to PFS 
•  Restart 
—  On a failure, restart the 

execution from the latest 
checkpoint 

36 

•  Improved Checkpoint/Restart 
–  Multi-level checkpointing [1] 
–  Asynchronous checkpointing [2] 
–  In-memory diskless checkpointing [3] 

•  We found that software-level approaches may be 
limited in increasing resiliency at extreme scale 

check 
point 

check 
point 

check 
point 

Failure 

Parallel file system 
(PFS) 

Checkpointing overhead 

[1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing System (SC 10) 
[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12 
[3] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "FMI: Fault Tolerant Messaging 
Interface for Fast and Transparent Recovery", IPDPS2014 
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Storage architectures 
!  We consider architecture-level approaches 

!  Burst buffer 
•  A new tier in storage hierarchies 
•  Absorb bursty I/O requests from applications 
•  Fill performance gap between node-local storage 

and PFSs in both latency and bandwidth 

!  If you write checkpoints to burst buffers, 
•  Faster checkpoint/restart time than PFS 
•  More reliable than storing on compute nodes 

37 [4] Doraimani, Shyamala and Iamnitchi, Adriana, “File Grouping for Scientific Data Management: Lessons from Experimenting with 
Real Traces”, HPDC '08  

•  However,… 
–  Adding burst buffer nodes may increase total system size, and failure rates 

accordingly  
•   It’s not clear if burst buffers improve overall system efficiency 

–  Because burst buffers also connect to networks, the burst buffers may still be 
a bottleneck 

Compute nodes 

Parallel file system 

Burst buffers 
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Multi-level Checkpoint/Restart (MLC/R) [SC10, 12] 

!  MLC hierarchically use storage levels 
•  Diskless checkpoint: Frequent  for one 

node for a few node failure 
•  PFS checkpoint: Less frequent and 

asynchronous for multi-node failure 

!  Our evaluation showed system 
efficiency drops to less than 10% 
when MTBF is a few hours 
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[1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing System (SC 10) 
[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12 
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Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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Storage designs 
!  Addition to the software-level approaches, we also 

explore two architecture-level approaches  
•  Flat buffer system:  
—   Current storage system 

•  Burst buffer system:  
—  Separated buffer space 
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Cluster 

Flat Buffer Systems 

!  Design concept 
•  Each compute node has its 

dedicated node-local  
storage 

•  Scalable with increasing  
number of compute nodes 
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node&4&

PFS&(Parallel&file&system)&•  This design has drawbacks: 
1.  Unreliable checkpoint storage 

e.g.) If compute node 2 fails, a checkpoint on SSD 2 will be lost because SSD 2 is 
physically attached to the failed compute node 2 

2.  Inefficient utilization of storage resources on uncoordinated checkpointing 
e.g.) If compute node 1 & 3 are in a same cluster, and restart from a failure, the 
bandwidth of SSD 2 & 4 will not be utilized 

SSD&2& SSD&3& SSD&4&SSD&1&
idle idle 

Flat&buffer&system&



Lawrence Livermore National Laboratory  - Kento Sato LLNL-PRES-662034 
41 

Burst&buffer&system&

Cluster 

Burst Buffer Systems 

!  Design concept 
•  A burst buffer is a storage space 

to bridge the gap in latency and 
bandwidth between node-local 
storage and the PFS 

•  Shared by a subset of compute 
nodes 

•  Although additional nodes are required, several advantages 
1.  More Reliable because burst buffers are located on a smaller # of nodes 

e.g.) Even if compute node 2 fails, a checkpoint of compute node 2 is accessible from 
the other compute node 1 

2.  Efficient utilization of storage resources  on uncoordinated checkpointing 
e.g.) if compute node 1 and 3 are in a same cluster, and both restart from a failure, 
the processes can utilize all SSD bandwidth unlike a flat buffer system 
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Challenges&for&using&burst&buffer&system&

Challenges for using burst buffers 

!  Exploiting storage bandwidth of burst buffers 
•  Burst buffers are connected to networks, networks can be bottleneck 

!  Analyzing reliability of systems with burst buffers 
•  Adding burst buffer nodes increase total system size, and increase overall 

failure rate 
•  System efficiency may decrease 
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Burst buffer prototype  
multi-mSATA High I/O BW & cost�

IPSJ SIG Technical Report
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Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.
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Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3
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IBIO read 

IBIO: InfiniBand-based I/O interface 
!  Provide POSIX I/O-like interfaces 

•  open, read, write and close 
•  Client can open any files on any servers 
—  open(“hostname:/path/to/file”, mode)	

!  IBIO use ibverbs for communication between clients and servers 
•  Exploit network bandwidth of infiniBand  
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IBIO write/read 
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•  IBIO write 
1.  Application call IBIO client function with data to write 
2.  IBIO client divides the data into chunks, then send the address to IBIO server for RDMA 
3.  IBIO server issues RDMA read to the address, and reply ack 
4.  Continues until all chunks are sent, and return to application 
5.  Writer threads asynchronously  write received data to storage 
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Challenges&for&using&burst&buffer&system&

Challenges for using burst buffers 

!  Exploiting storage bandwidth of burst buffers 
•  Burst buffers are connected to networks, networks can be bottleneck 

!  Analyzing reliability of systems with burst buffers 
•  Adding burst buffer nodes increase total system size 
•  System efficiency may decrease due to Increased overall failure by added burst 
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Modeling overview 

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12 

•  To find out the best checkpoint/restart strategy for systems with burst 
buffers, we model checkpointing strategies 
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Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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Multi-level Asynchronous C/R Model [SC12]  
!  Optimize checkpoint intervals and compute checkpoint/

restart “Efficiency” using Markov model&
•  Vertex: Compute state OR Checkpointing state OR Recovery state 
•  Edge:&Comple:on&of&each&state&

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12 
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Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

p0 (T )
t0 (T )

: No failure for T seconds  
: Expected time when  p0 (T )

pi (T )

ti (T )
: i - level failure for T seconds  
: Expected time when  pi (T )

•  Input:&Each&level&of&&
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–  Oi : Checkpoint overhead 
–  Ri : Restart time 
–  Fi : Failure rate 

•  Output: “Efficiency” 
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spends only in computation in 
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Modeling of C/R Strategies 

Ci or Ri  = 
<&C/R&data&size&/&node&>&&�&&&<#&of&C/R&nodes&per&Si

*&>&&

<&write&perf.&(&wi )&&>&&&or&&&<read&perf.&(&ri )&>&&

Synchronous checkpointing (Diskless C/R)  

Checkpoint& Encoding&
&C i E i

L i:  Checkpoint latency 

Oi:  Checkpoint overhead 

Asynchronous checkpointing (PFS) 
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Encoding&

I i
E i

L i:  Checkpoint latency 

Oi:  Checkpoint overhead 

Checkpoint& C i

Li = Ci + Ei&
Oi =&

Ci + Ei   (Sync.) &

Ii               (Async.)&

!  Li     : Checkpoint Latency 
•  Time to complete a checkpoint (Ci) and 

encoding (Ei) 

•  Oi    : Checkpoint overhead 
–  The increased execution time of an 

application  

•  Ci & Ri    : Checkpoint/Restart time 



Lawrence Livermore National Laboratory  - Kento Sato LLNL-PRES-662034 
50 

Recursive structured storage model !  Generalization of storage 
architectures with ”context-free 
grammar” 
•  A tier i hierarchical entity (Hi), has a storage 

(Si )shared by (mi) upper hierarchical entities 
(Hi−1 ) 

•  Hi=0  is a compute node 
•  HN {m1, m2, . . . , mN } 

 

Hi 
Compute&
node&

Si 

i  = 0& i  > 0&

1 2 mi 

Hi-1 Hi-1 Hi-1 

S1 

S2 

Storage&Model: HN {m1, m2, . . . , mN }  

S1 H2 

S2 

H1 H1 

compute(
node(1(
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•  e.g. ) H2 {4, 2 } 
–  H2 has an S2 shared by 2 H1 
–  H1 has an S1 shared by 4 H0 
–  H0 is a compute node 

Recursive Structured Storage Model 
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Recursive Structured Storage Model 
(cont’d) 

!  The number of nodes accessing to Si 

<# of C/R nodes per Si >  
K 

=
<# of Si > 

K : C/R&cluster&size&

<# of Si > =  
ΠN

k=i+1 mk   (i < N ) 

1                 (i = N) 

S1 

S2 

S1 
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•  e.g. ) K = 4 

–  # of C/R nodes per S1  
•  4/2 = 2 nodes 

–  # of C/R nodes per S2 
•  4/1 = 4  nodes 
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Evaluation   
!  IBIO performance 

!  Simulation 
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Sequential IBIO read/write performance 
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ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.
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ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.
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and Cappello, F.: HydEE: Failure 
Containment without Event Logging for 
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Efficiency with Increasing Failure Rates 
and Checkpoint Costs  
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Table 3 Simulation configuration

level 1 level 2
ri 16 GB/sec 10 GB/sec
wi 8.32 GB/sec 10 GB/sec

Flat buffer Burst buffer
H2 {v1, v2} H2 {1, 1088} H2 {32, 34}
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 7.61 × 10−8}

Checkpoint size per node (D) 5GB
Encoding rate node (e1) 400MB/sec
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Fig. 3 Efficiency of multi-level coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

compute nodes.
Failure rates(F) are based on failure analysis using pF3D [8].

The failure analysis shows that average failure rates of a single
compute node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9,
PFS is 3.93 × 10−10. In a flat buffer system, each failure rate
is calculated by multiplying the each failure rate by the num-
ber of compute nodes, i.e., 1088 nodes. This leads to failure
rates of Failure rate of a single Coastal nodes is We use fail-
ure analysis in 2.14 × 10−7 for LOCAL, 1.92 × 10−6 for XOR,
and 4.27 × 10−7 for PFS. Actually, if a level-i failure rate is
lower than a level-i+ 1 one, the optimal level i checkpoint counts
is zero because level i can be recovery level i + 1 checkpoint,
which is written more frequently than level i. If a compute nodes
failure occurs, a flat buffer system lose checkpoint data on the
failed compute node, so XOR is required to restore the lost check-
point data. Thus, we use 2 level checkpoint/restart where level
1 is XOR, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, 34 burst buffer nodes are used, so fail-
ure rate of entire burst buffer nodes is calculated as 6.67 × 10−8,
failure rate requiring PFS as 1.33 × 10−8. Even on a com-
pute nodes failure, a burst buffer nodes can keep checkpoint
data, so LOCAL checkpoint is enough to tolerate a compute node
failure. Thus, we use 2 level checkpoint/restart where level 1
is LOCAL, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14×10−7 +1.92×10−6, 6.28×10−8 +1.33×10−8}
for burst buffer system.

5.2 Results
At extreme systems will be larger, overall failure rates and

checkpoint size are expected to increase. To explore the effects,
we increase failure rates and level 2 checkpoint costs by factors
of 1, 2, 10, 50 and 100, and compare efficiency between multi-
level coordinated and uncoordinated checkpoint/restart on a flat
buffer system and a burst buffer system. We do not change level
1 checkpoint cost, since the performance of flat and burst buffer
is expected to scale with system size.

As Figure 3 shows the efficiency under different failure rates
and checkpoint costs. When we computes the efficiency, we op-
timize level-1 and 2 checkpoint frequency (v1 and v2), and inter-
val between checkpoints (T ) using our multi-level asynchronous
checkpoint/restart model, which yields the maximal efficiency.
The burst buffer system always achieves higher efficiency than
the flat buffer system. The efficiency gap becomes more apparent
with higher failure rates and higher checkpoint cost because the
burst buffer system integrate checkpoints into the fewer number
of burst buffer nodes than compute nodes, which decrease proba-
bility of losing checkpoints, and restarting from a slower PFS.

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

The efficiency in Figure 3 does not include message logging
overhead, so validity of uncoordinated checkpoint/restart depends
on degree of message logging overhead. Table 4 shows allowable
message logging overhead. To achieve higher efficiency than co-
ordinated checkpoint/restart, the logging overhead must be below
a few percent in a current and a 10 times scaled system. In sys-
tems whose failure rates and checkpoint costs is 50 times higher
than a current system, uncoordinated checkpoint/restart is neces-
sary even with high logging overhead. By using uncoordinated
checkpoint/restart, we can leverage a burst buffer, and achieve
70% of efficiency even on two order of magnitude larger scale
systems because partial restart of uncoordinated checkpoint can
exploit bandwidth of both burst buffers and a PFS, and accelerate
restart time.

Building a reliable data center or supercomputer, and maxi-
mizing system efficiency are significant given fixed amount of
cost. To explore which tiers of storage can impact system ef-
ficiency improvement, we increase performance of each tier of
storage failure by factors of 1, 2, 10 and 20. Figure 4 shows
efficiency in increasing scale factor of performance of level-1
checkpoint/restart in 100 times scaled systems in Figure 3. As
shown, improvement of flat buffer and burst buffer performance
does not impact the system efficiency. But, as in Figure 5, in-
creasing PFS performance improve the system efficiency, and we
can achieve over 80% efficiency with both coordinated and unco-
ordinated checkpoint/restart on the burst buffer system. The both
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•  Assuming there is no message logging overhead 
 

In days or a day of MTBF, 
there is no big efficiency 

differences 

In a few hours of MTBF, with 
burst buffers, systems can 
still achieve high efficiency 

Even in a hour of MTBF, with 
uncoordinated, systems can 
still achieve 70% efficiency 

� Partial restart accelerate recovery 
time from burst buffers and  PFS 
checkpoint 

MTBF = days a day 2, 3H 1H 
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Allowable Message Logging overhead  

!  Logging overhead must be relatively small, less than a few percent in days 
or a day of MTBF 
•  In a few hours or a hour, very high message logging overheads are tolerated  

� Uncoordinated checkpointing can be more effective on future systems  
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Fig. 4 Efficiency of multilevel coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

the failure rate requiring PFS for recovery. The level 2 failure is
calculated as 1.33 × 10−8. Thus, the failure rate of each level is
{F1, F2} = {2.14× 10−7 + 1.92× 10−6 + 6.67× 10−8, 1.33× 10−8}
for the burst buffer system. F1 increases because the burst buffer
system requires additional nodes for the burst buffer.

We use asynchronous checkpointing for PFS, and synchronous
checkpointing for XOR. For the encoding rate, we only provide
an encoding rate (e1) for level 1 (XOR) because PFS does not need
encoding.

6. Resiliency Exploration
In this section, we evaluate the trade-offs of different check-

pointing and storage configurations. In particular, we evaluate
the system efficiency with increasing failure rates and checkpoint
costs; the allowable message logging overhead for uncoordinated
checkpointing; the effect of improving the performance at dif-
ferent levels of the storage hierarchy; and the optimal ratio of
compute nodes to burst buffer nodes.

6.1 Efficiency with Increasing Failure Rates and Checkpoint
Costs

We expect the failure rates and aggregate checkpoint sizes to
increase on future extreme scale systems. To explore the effects,
we increase failure rates and level 2 (PFS) checkpoint costs by
factors of 1, 2, 10, 50 and 100, and compare the efficiencies of
multilevel coordinated and uncoordinated checkpoint/restart on a
flat buffer system and on a burst buffer system. We do not change
the level 1 (XOR) checkpoint cost; because it is node-local storage,
its performance will scale with increasing system size.

Figure 4 shows application efficiency under increasing failure
rates and checkpoint costs. When we compute efficiency, we op-
timize the level-1 and 2 checkpoint frequencies (v1 and v2), and
the interval between checkpoints (T ) to discover the maximal ef-
ficiency. The burst buffer system always achieves a higher effi-
ciency than the flat buffer system. The efficiency gap becomes
more apparent with higher failure rates and higher checkpoint
costs because the burst buffer system stores checkpoints on fewer
burst buffer nodes. By using uncoordinated checkpoint/restart
and leveraging burst buffers, we achieve 70% efficiency even

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 5" 10" 20"

Effi
ci
en

cy
(

Scale(factor((L1/)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 5 Efficiency in increasing level-1 checkpoint/restart performance

on systems that are two orders of magnitude larger. This is be-
cause partial restart with uncoordinated checkpointing can exploit
the bandwidth of both burst buffers and the PFS, and accelerate
restart time.

6.2 Allowable Message Logging Overhead
The efficiencies shown in Figure 4 do not include message log-

ging overhead. We consider this factor in Table 4 which shows the
message logging overhead allowed in uncoordinated checkpoint-
ing to achieve a higher efficiency than coordinated checkpoint-
ing. As in Figure 4, we increase both the failure rates and level
2 checkpointing cost by the scale factor shown on each row. We
find that the logging overhead must be relatively small, less than a
few percent, for scale factors up to 10. However, at scale factors
of 50 and 100, very high message logging overheads are toler-
ated. This shows that uncoordinated checkpointing can be more
efficient on future systems even with high logging overheads.

6.3 Effect of Improving Storage Performance
When building a reliable data center or supercomputer, signif-

icant efforts are made to maximize system performance given a
fixed budget. It can be challenging to decide which system re-
sources will most affect overall system performance. To explore
how the performance of different tiers of the storage hierarchy
impact system efficiency, we increase performance of each tier
of storage by factors of 1, 2, 10, and 20. Figures 5 and 6 show
efficiency with increasing performance of level 1 and 2 check-
point/restart, using failures rates at 100 × current rates. We see
that improvement of level 1 checkpoint/restart does not impact
efficiency for either flat buffer or burst buffer systems. However,
as shown in Figure 6, increasing the performance of the PFS does

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

c⃝ 2013 Information Processing Society of Japan

Message logging overhead allowed in uncoordinated checkpointing to 
achieve a higher efficiency than coordinated checkpointing 
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Effect of Improving Storage Performance 
To see which storage impact to efficiency, 
we increase performance of level-1 and 

level-2 storage while keeping MTBF a hour  
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Fig. 7 Coordinated: Efficiency in different ratios of compute nodes to
a single burst buffer nodes with coordinated checkpoint/restart

impact system efficiency. We can achieve over 80% efficiency
with both coordinated and uncoordinated checkpoint/restart on
the burst buffer system with improved PFS performance of 10 and
20 ×. These results tell us that level 2 checkpoint/restart overhead
is a major cause of degrading efficiency, and its performance af-
fects the system efficiency much more than that of level 1. We
also find that improvement of system reliability for failures re-
quiring level 2 checkpoint is important.

6.4 Optimal Ratio of Compute Nodes to Burst Buffer Nodes
Another thing to consider when building a burst buffer system

is the ratio of compute nodes to burst buffer nodes. A large num-
ber of burst buffer nodes can increase the total bandwidth, but
the large node counts increase the failure rate of the system and
add to system cost. To explore the effect of the ratio of com-
pute node and burst buffer node counts, we evaluate efficiency
under different failure rates and level 2 checkpoint costs while
keeping I/O throughput of a single burst buffer node constant.
Figures 7 and 8 show the results with coordinated and uncoordi-
nated checkpoint/restart. We see that the ratio is not significant
up to scale factors of 10 ×. However, at a scale factor of 50 ×, a
larger number of burst buffer nodes decreases efficiency. Adding
additional burst buffer nodes increases the failure rate which de-
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Fig. 8 Uncoordinated: Efficiency in different ratios of compute nodes
to a single burst buffer nodes with uncoordinated check-
point/restart

grades system efficiency more than the efficiency gained by the
increased bandwidth. Thus, increasing the number of compute
nodes sharing a burst buffer node is optimal as long as the burst
buffer throughput can scale to the number of sharing compute
nodes.

7. Related Work
Fast checkpoint/restart is important for an application running

for days and weeks at extreme scale to achieve efficient execu-
tion in the presence of failures. Multilevel checkpoint/restart
[3], [23] is an approach for increasing application efficiency.
Multilevel checkpoint libraries utilize multiple tiers of storage,
such as node-local storage and the PFS. Uncoordinated check-
point/restart [5], [11], [28] works effectively when coupled with
multilevel checkpoint/restart. The approach can limit the number
of processes that need to be restarted, i.e., only a partial restart
instead of the whole job, which can decrease restart time from
shared file system resources, such as a PFS or burst buffer. These
techniques can be improved further when coupled with incre-
mental checkpointing [2], [6], [26], and checkpoint compression
[15], [16]. However, such combined approaches are limited in
their ability to improve application efficiency at extreme scale be-
cause checkpoint/restart time depends on underlying I/O storage
performance.

Another approach is to accelerate I/O performance itself by al-
tering the storage architecture. Adding a new tier of storage is
one solution. Rajachandrasekar et al. [27] presented a staging
server which drains checkpoints on compute nodes using RDMA
(Remote Direct Memory Access), and asynchronously transfers
them to the PFS via FUSE (Filesystem in Userspace). Hasan et
al. [1] achieved high I/O throughput by using additional nodes.
As we observed, optimizing performance requires determination
of the proper number of burst buffers for a given number of com-
pute nodes. However, a comprehensive study on the problem has
not yet been done. To deal with bursty I/O requests, Liu et al. [21]
proposed a storage system design that integrates SSD buffers on
I/O nodes. The system achieved high aggregate I/O bandwidth.
However, to the best our knowledge, our work is the first focus-
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Improvement of level-1 storage 
performance does not impact 
efficiency for both flat buffer 

and burst buffer systems 

Increasing the performance of 
the PFS does impact system 

efficiency 
L2 C/R overhead is a major cause of 

degrading efficiency, so reducing level-2 
failure rate and improving level-2 C/R is 

critical on future systems 
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Fig. 4 Efficiency of multilevel coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

the failure rate requiring PFS for recovery. The level 2 failure is
calculated as 1.33 × 10−8. Thus, the failure rate of each level is
{F1, F2} = {2.14× 10−7 + 1.92× 10−6 + 6.67× 10−8, 1.33× 10−8}
for the burst buffer system. F1 increases because the burst buffer
system requires additional nodes for the burst buffer.

We use asynchronous checkpointing for PFS, and synchronous
checkpointing for XOR. For the encoding rate, we only provide
an encoding rate (e1) for level 1 (XOR) because PFS does not need
encoding.

6. Resiliency Exploration
In this section, we evaluate the trade-offs of different check-

pointing and storage configurations. In particular, we evaluate
the system efficiency with increasing failure rates and checkpoint
costs; the allowable message logging overhead for uncoordinated
checkpointing; the effect of improving the performance at dif-
ferent levels of the storage hierarchy; and the optimal ratio of
compute nodes to burst buffer nodes.

6.1 Efficiency with Increasing Failure Rates and Checkpoint
Costs

We expect the failure rates and aggregate checkpoint sizes to
increase on future extreme scale systems. To explore the effects,
we increase failure rates and level 2 (PFS) checkpoint costs by
factors of 1, 2, 10, 50 and 100, and compare the efficiencies of
multilevel coordinated and uncoordinated checkpoint/restart on a
flat buffer system and on a burst buffer system. We do not change
the level 1 (XOR) checkpoint cost; because it is node-local storage,
its performance will scale with increasing system size.

Figure 4 shows application efficiency under increasing failure
rates and checkpoint costs. When we compute efficiency, we op-
timize the level-1 and 2 checkpoint frequencies (v1 and v2), and
the interval between checkpoints (T ) to discover the maximal ef-
ficiency. The burst buffer system always achieves a higher effi-
ciency than the flat buffer system. The efficiency gap becomes
more apparent with higher failure rates and higher checkpoint
costs because the burst buffer system stores checkpoints on fewer
burst buffer nodes. By using uncoordinated checkpoint/restart
and leveraging burst buffers, we achieve 70% efficiency even

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 5" 10" 20"

Effi
ci
en

cy
(

Scale(factor((L1/)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 5 Efficiency in increasing level-1 checkpoint/restart performance

on systems that are two orders of magnitude larger. This is be-
cause partial restart with uncoordinated checkpointing can exploit
the bandwidth of both burst buffers and the PFS, and accelerate
restart time.

6.2 Allowable Message Logging Overhead
The efficiencies shown in Figure 4 do not include message log-

ging overhead. We consider this factor in Table 4 which shows the
message logging overhead allowed in uncoordinated checkpoint-
ing to achieve a higher efficiency than coordinated checkpoint-
ing. As in Figure 4, we increase both the failure rates and level
2 checkpointing cost by the scale factor shown on each row. We
find that the logging overhead must be relatively small, less than a
few percent, for scale factors up to 10. However, at scale factors
of 50 and 100, very high message logging overheads are toler-
ated. This shows that uncoordinated checkpointing can be more
efficient on future systems even with high logging overheads.

6.3 Effect of Improving Storage Performance
When building a reliable data center or supercomputer, signif-

icant efforts are made to maximize system performance given a
fixed budget. It can be challenging to decide which system re-
sources will most affect overall system performance. To explore
how the performance of different tiers of the storage hierarchy
impact system efficiency, we increase performance of each tier
of storage by factors of 1, 2, 10, and 20. Figures 5 and 6 show
efficiency with increasing performance of level 1 and 2 check-
point/restart, using failures rates at 100 × current rates. We see
that improvement of level 1 checkpoint/restart does not impact
efficiency for either flat buffer or burst buffer systems. However,
as shown in Figure 6, increasing the performance of the PFS does

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%
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Fig. 7 Coordinated: Efficiency in different ratios of compute nodes to
a single burst buffer nodes with coordinated checkpoint/restart

impact system efficiency. We can achieve over 80% efficiency
with both coordinated and uncoordinated checkpoint/restart on
the burst buffer system with improved PFS performance of 10 and
20 ×. These results tell us that level 2 checkpoint/restart overhead
is a major cause of degrading efficiency, and its performance af-
fects the system efficiency much more than that of level 1. We
also find that improvement of system reliability for failures re-
quiring level 2 checkpoint is important.

6.4 Optimal Ratio of Compute Nodes to Burst Buffer Nodes
Another thing to consider when building a burst buffer system

is the ratio of compute nodes to burst buffer nodes. A large num-
ber of burst buffer nodes can increase the total bandwidth, but
the large node counts increase the failure rate of the system and
add to system cost. To explore the effect of the ratio of com-
pute node and burst buffer node counts, we evaluate efficiency
under different failure rates and level 2 checkpoint costs while
keeping I/O throughput of a single burst buffer node constant.
Figures 7 and 8 show the results with coordinated and uncoordi-
nated checkpoint/restart. We see that the ratio is not significant
up to scale factors of 10 ×. However, at a scale factor of 50 ×, a
larger number of burst buffer nodes decreases efficiency. Adding
additional burst buffer nodes increases the failure rate which de-

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

1" 2" 10" 50"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

1""compute"nodes" 2"compute"nodes"
4"compute"nodes" 8"compute"nodes"
16"compute"nodes" 32"compute"nodes"

Fig. 8 Uncoordinated: Efficiency in different ratios of compute nodes
to a single burst buffer nodes with uncoordinated check-
point/restart

grades system efficiency more than the efficiency gained by the
increased bandwidth. Thus, increasing the number of compute
nodes sharing a burst buffer node is optimal as long as the burst
buffer throughput can scale to the number of sharing compute
nodes.

7. Related Work
Fast checkpoint/restart is important for an application running

for days and weeks at extreme scale to achieve efficient execu-
tion in the presence of failures. Multilevel checkpoint/restart
[3], [23] is an approach for increasing application efficiency.
Multilevel checkpoint libraries utilize multiple tiers of storage,
such as node-local storage and the PFS. Uncoordinated check-
point/restart [5], [11], [28] works effectively when coupled with
multilevel checkpoint/restart. The approach can limit the number
of processes that need to be restarted, i.e., only a partial restart
instead of the whole job, which can decrease restart time from
shared file system resources, such as a PFS or burst buffer. These
techniques can be improved further when coupled with incre-
mental checkpointing [2], [6], [26], and checkpoint compression
[15], [16]. However, such combined approaches are limited in
their ability to improve application efficiency at extreme scale be-
cause checkpoint/restart time depends on underlying I/O storage
performance.

Another approach is to accelerate I/O performance itself by al-
tering the storage architecture. Adding a new tier of storage is
one solution. Rajachandrasekar et al. [27] presented a staging
server which drains checkpoints on compute nodes using RDMA
(Remote Direct Memory Access), and asynchronously transfers
them to the PFS via FUSE (Filesystem in Userspace). Hasan et
al. [1] achieved high I/O throughput by using additional nodes.
As we observed, optimizing performance requires determination
of the proper number of burst buffers for a given number of com-
pute nodes. However, a comprehensive study on the problem has
not yet been done. To deal with bursty I/O requests, Liu et al. [21]
proposed a storage system design that integrates SSD buffers on
I/O nodes. The system achieved high aggregate I/O bandwidth.
However, to the best our knowledge, our work is the first focus-
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Ratio of Compute nodes to Burst Buffer nodes  

!  The ratio is not important matter when MTBF is from a day to days 

!  When MTBF is a few hours, a larger number of burst buffer nodes decreases efficiency  
� Adding additional burst buffer nodes increases the failure rate which degrades system efficiency more than 
the efficiency gained by the increased bandwidth 
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impact system efficiency. We can achieve over 80% efficiency
with both coordinated and uncoordinated checkpoint/restart on
the burst buffer system with improved PFS performance of 10 and
20 ×. These results tell us that level 2 checkpoint/restart overhead
is a major cause of degrading efficiency, and its performance af-
fects the system efficiency much more than that of level 1. We
also find that improvement of system reliability for failures re-
quiring level 2 checkpoint is important.

6.4 Optimal Ratio of Compute Nodes to Burst Buffer Nodes
Another thing to consider when building a burst buffer system

is the ratio of compute nodes to burst buffer nodes. A large num-
ber of burst buffer nodes can increase the total bandwidth, but
the large node counts increase the failure rate of the system and
add to system cost. To explore the effect of the ratio of com-
pute node and burst buffer node counts, we evaluate efficiency
under different failure rates and level 2 checkpoint costs while
keeping I/O throughput of a single burst buffer node constant.
Figures 7 and 8 show the results with coordinated and uncoordi-
nated checkpoint/restart. We see that the ratio is not significant
up to scale factors of 10 ×. However, at a scale factor of 50 ×, a
larger number of burst buffer nodes decreases efficiency. Adding
additional burst buffer nodes increases the failure rate which de-
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Fig. 8 Uncoordinated: Efficiency in different ratios of compute nodes
to a single burst buffer nodes with uncoordinated check-
point/restart

grades system efficiency more than the efficiency gained by the
increased bandwidth. Thus, increasing the number of compute
nodes sharing a burst buffer node is optimal as long as the burst
buffer throughput can scale to the number of sharing compute
nodes.

7. Related Work
Fast checkpoint/restart is important for an application running

for days and weeks at extreme scale to achieve efficient execu-
tion in the presence of failures. Multilevel checkpoint/restart
[3], [23] is an approach for increasing application efficiency.
Multilevel checkpoint libraries utilize multiple tiers of storage,
such as node-local storage and the PFS. Uncoordinated check-
point/restart [5], [11], [28] works effectively when coupled with
multilevel checkpoint/restart. The approach can limit the number
of processes that need to be restarted, i.e., only a partial restart
instead of the whole job, which can decrease restart time from
shared file system resources, such as a PFS or burst buffer. These
techniques can be improved further when coupled with incre-
mental checkpointing [2], [6], [26], and checkpoint compression
[15], [16]. However, such combined approaches are limited in
their ability to improve application efficiency at extreme scale be-
cause checkpoint/restart time depends on underlying I/O storage
performance.

Another approach is to accelerate I/O performance itself by al-
tering the storage architecture. Adding a new tier of storage is
one solution. Rajachandrasekar et al. [27] presented a staging
server which drains checkpoints on compute nodes using RDMA
(Remote Direct Memory Access), and asynchronously transfers
them to the PFS via FUSE (Filesystem in Userspace). Hasan et
al. [1] achieved high I/O throughput by using additional nodes.
As we observed, optimizing performance requires determination
of the proper number of burst buffers for a given number of com-
pute nodes. However, a comprehensive study on the problem has
not yet been done. To deal with bursty I/O requests, Liu et al. [21]
proposed a storage system design that integrates SSD buffers on
I/O nodes. The system achieved high aggregate I/O bandwidth.
However, to the best our knowledge, our work is the first focus-
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impact system efficiency. We can achieve over 80% efficiency
with both coordinated and uncoordinated checkpoint/restart on
the burst buffer system with improved PFS performance of 10 and
20 ×. These results tell us that level 2 checkpoint/restart overhead
is a major cause of degrading efficiency, and its performance af-
fects the system efficiency much more than that of level 1. We
also find that improvement of system reliability for failures re-
quiring level 2 checkpoint is important.

6.4 Optimal Ratio of Compute Nodes to Burst Buffer Nodes
Another thing to consider when building a burst buffer system

is the ratio of compute nodes to burst buffer nodes. A large num-
ber of burst buffer nodes can increase the total bandwidth, but
the large node counts increase the failure rate of the system and
add to system cost. To explore the effect of the ratio of com-
pute node and burst buffer node counts, we evaluate efficiency
under different failure rates and level 2 checkpoint costs while
keeping I/O throughput of a single burst buffer node constant.
Figures 7 and 8 show the results with coordinated and uncoordi-
nated checkpoint/restart. We see that the ratio is not significant
up to scale factors of 10 ×. However, at a scale factor of 50 ×, a
larger number of burst buffer nodes decreases efficiency. Adding
additional burst buffer nodes increases the failure rate which de-
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Fig. 8 Uncoordinated: Efficiency in different ratios of compute nodes
to a single burst buffer nodes with uncoordinated check-
point/restart

grades system efficiency more than the efficiency gained by the
increased bandwidth. Thus, increasing the number of compute
nodes sharing a burst buffer node is optimal as long as the burst
buffer throughput can scale to the number of sharing compute
nodes.

7. Related Work
Fast checkpoint/restart is important for an application running

for days and weeks at extreme scale to achieve efficient execu-
tion in the presence of failures. Multilevel checkpoint/restart
[3], [23] is an approach for increasing application efficiency.
Multilevel checkpoint libraries utilize multiple tiers of storage,
such as node-local storage and the PFS. Uncoordinated check-
point/restart [5], [11], [28] works effectively when coupled with
multilevel checkpoint/restart. The approach can limit the number
of processes that need to be restarted, i.e., only a partial restart
instead of the whole job, which can decrease restart time from
shared file system resources, such as a PFS or burst buffer. These
techniques can be improved further when coupled with incre-
mental checkpointing [2], [6], [26], and checkpoint compression
[15], [16]. However, such combined approaches are limited in
their ability to improve application efficiency at extreme scale be-
cause checkpoint/restart time depends on underlying I/O storage
performance.

Another approach is to accelerate I/O performance itself by al-
tering the storage architecture. Adding a new tier of storage is
one solution. Rajachandrasekar et al. [27] presented a staging
server which drains checkpoints on compute nodes using RDMA
(Remote Direct Memory Access), and asynchronously transfers
them to the PFS via FUSE (Filesystem in Userspace). Hasan et
al. [1] achieved high I/O throughput by using additional nodes.
As we observed, optimizing performance requires determination
of the proper number of burst buffers for a given number of com-
pute nodes. However, a comprehensive study on the problem has
not yet been done. To deal with bursty I/O requests, Liu et al. [21]
proposed a storage system design that integrates SSD buffers on
I/O nodes. The system achieved high aggregate I/O bandwidth.
However, to the best our knowledge, our work is the first focus-

c⃝ 2013 Information Processing Society of Japan 7

Coordinated Uncoordinated 

Another thing to consider when building a burst buffer system 
is the ratio of compute nodes to burst buffer nodes  
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Towards resilient extreme scale computing 
1.  Burst buffers  

•  Burst buffers are beneficial for C/R at extreme scale 

2.  Uncoordinated C/R 
•  When MTBF is days or a day, uncoordinated C/R may not be effective 
•  If MTBF is a few hours or less, will be effective 

3.  Level-2 failure, and Level-2 performance 
•  Reducing Level-2 failure and increasing Level-2 performance are critical to 

improve overall system efficiency 

4.  Fewer number of burst buffers 
•  Adding additional burst buffer nodes increases the failure rate 
•  May degrades system efficiency more than the efficiency gained by the 

increased bandwidth 
•  We need to be careful a trade-off between I/O performance and reliability 

of burst buffers 
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Conclusion 
!  Fault tolerance is critical at extreme scale 

•  Both C/R strategy and storage design are important 

!  We developed IBIO to maximize remote access to burst 
buffers, and modeled C/R strategy and storage design 

!  We listed up key factors to build resilient systems based 
on our evaluations 

!  We expect our findings can benefit system designers to 
create efficient and cost-effective systems 



NEEDS FOR REDUCTION IN CHECKPOINT 
TIME�
Checkpoint/Restart 
→Store the data of memory in the disk 

→High I/O cost 

Reduce MTBF(Mean Time Between Failure) by expansion 
in scale of HPC systems 

•  MTBF is over 30min by trial calculation On a exascale computer [�1] 

�


 

On TSUBAME2.5 
Memory capacity,about 100TB 
I/O throughput,about 20GB/s 

↓ 
Checkpoint time,about 80min�

There are methods of reduction in checkpoint cost, 
incremental checkpoint etc., but we compress checkpoint 

If MTBF < Checkpoint time 
Application may not be able to run+ 
���������������↓ 
Needs for reduction in checkpoint time !�

�1 : Peter Kogge, Editor & Study Lead (2008) 
ExaScale Computing Study: Technology Challenges in Achieving ExaScale Systems 
�



LOSSLESS AND LOSSY COMPRESSION�

About introducing an error 
•  Possibility of getting equal quality result with introducing an error 
•  Don’t apply lossy compression to a data that must not have an 

error(pointer etc.) 

�
�
�

(citation of images : http://svs.gsfc.nasa.gov/vis/a000000/a002400/a002478/)�

original 14.7MB�

Features of lossless 
•  Decompress a data without a loss 
•  Low compression rate without bias 

•  Scientific data has a randomness�

Features of lossy 
•  High compression rate 
•  introduce an error 

jpeg2000 0.153MB gzip 2.19MB�

1/7� 1/100�



PROPOSAL APPROACH, 
LOSSY COMPRESSION WITH WAVELET�
We apply wavelet transformation, quantization and encoding to a 
target data, then compress a data that is stored in proposal output 
format with gzip�

�
�
�

bitmap� correspondence table�

low frequency band�
high frequency band�
applied quantization �
applied encoding�

Wavelet transformation� Quantization� Encoding�

compressed data�

gzip�
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PROPOSAL APPROACH, 
LOSSY COMPRESSION WITH WAVELET�

Wavelet transformation Quantization Encoding 

Divide original data into  
two subbands�

Round the red values into  
n kind of values�

use average�
use difference 
(most of these  
is close to zero)�

n kind of values  
(n = 20 ~ 27) �

Store the float, double  
value to char value�

Data size reduces to  
1/4 or 1/8 at this point�



We evaluate compression time and rate 
and error, while changing the number of 
division (           ) 

EVALUATION ENVIRONMENT�
We apply our approach to climate 
simulation NICAM[M.Satoh, 2008] 

• Target physical quantity are pressure, 
temperature and velocity. 

•  3Darray, double precision, 1156*82*2 
• The data is uniform in initial state 
��→apply the method after 720 step from initial state? 

�
�
�

(citation of image : HPCS2014 ����$%&(*$')"����!�# 
����	�-)�

CPU� Intel Core i7-3930K 6 cores 3.20GHz�
Memory size� 16GB�

Machine spec�
20 ~ 27
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EVALUATION OF COMPRESSION TIME �
An assumption about compression time 

•  I/O throughput…20GB/s 
•  Checkpoint size that each process has…about 1.5MB 

→Total checkpoint  size…about (1.5 × # of parallelism)MB 

�
�
�

Actual survey 
•  Compression time 
•  Compression rate 

 

Calculation from 
assumption 

•  I/O time 
Total checkpoint size(×compression rate) 

I/O Throughput�
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Problems of gzip 
•  Computational 

complecity 
•  Needs for writing 

files 
�

Write time can be cut if 
we apply gzip to the 

data internally �

EVALUATION OF COMPRESSION TIME �
An assumption about compression time 

•  I/O throughput…20GB/s 
•  Checkpoint size that each process has…about 1.5MB 

→Total checkpoint  size…about (1.5 × # of parallelism)MB 
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Each process compress 
1.5MB data in spite of # 
of parallelism 

•  Compression time is 
constant 

•  I/O time depends on 
total checkpoint size 

 
Our approach takes 
advantage when # of 
parallelism increases 

I/O time reduces by about 
70%, if compression time 
is negligible by increasing 
# of parallelism 

Reduction in checkpoint time�

EVALUATION OF 
COMPRESSION TIME �
An assumption about compression time 

•  I/O throughput…20GB/s 
•  Checkpoint size that each process has…about 1.5MB 

→Total checkpoint  size…about (1.5 × # of parallelism)MB 
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COMPARISON TO WITHOUT OUR 
APPROACH  �

�
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�

Wavelet 
transformation�

Simple 
quantization�

Encoding�

Proposal  
quantization�

Encoding�

n=128   �

In comparison with 
only gzip, our 

approach reduces 
checkpoint size by 

75%�

n=128   �

gzip� gzip�

gzip�

gzip�

Simple quantization achieves 
better compression rate, but 

larger error than proposal 
quantization�



EVALUATION OF ERROR�

�
�
�

An average error on pressure array� An average error on temperature error�
�

REi =
xi − !xi

max j x j{ }−min j x j{ }
Reduce an error with # of division(n) increasing 

•  An error reduce by about 98% at n = 128 compared to n = 1 
Our quantization reduce an error in comparison with simple one 

•  A degree of reduction of an error is different depending on arrays�

On all variables, maximum error is within 5%�
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Summary 

!  Resilience APIs 
•  Resilient APIs in MPI is critical for fast and transparent recovery in HPC applications 

!  Resilient Architecture 
•  Burst buffers Burst buffers are beneficial for C/R at extreme scale  
•  Uncoordinated C/R  

—  When MTBF is days or a day, uncoordinated C/R may not be effective  
—  If MTBF is a few hours or less, will be effective  

•  Level-2 failure, and Level-2 performance  
—  Reducing Level-2 failure and increasing Level-2 performance are critical to improve overall 

system efficiency  
•  Fewer number of burst buffers  

—  Adding additional burst buffer nodes increases the failure rate  
—  May degrades system efficiency more than the efficiency gained by the increased bandwidth  
—  We need to be careful a trade-off between I/O performance and reliability of burst buffers 

!  Lossy data compression 
•  Preliminary, but promising 
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