Billion-Way Resiliency
for Extreme Scale Computing

Seminar at German Research School for Simulation Sciences, Aachen
October 6th, 2014 Kento Sato

Lawrence Livermore National Laboratory

Lug Lawrence Livermore
National Laboratory

LLNL-PRES-662034

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Failures on HPC systems

= Exponential growth in computational power
- Enables finer grained simulations with shorter period time

= Qverall failure rate increase accordingly because of the increasing

system size

= 191 failures out of 5-million node-hours

« A production application of Laser-plasma interaction code (pF3D)
* Hera, Atlas and Coastal clusters @LLNL

Estimated MTBF (w/o hardware reliability improvement per component in future)

1,000 nodes

10,000 nodes

100,000 nodes

1.2 days

HIUIEL (Measured)

2.9 hours
(Estimation)

17 minutes
(Estimation)

Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a

Scalable Multi-level Checkpointing System (SC 10)

* Will be difficult for applications to continuously run for a long
time without fault tolerance at extreme scale

Lawrence Livermore National Laboratory - Kento Sato

b
LLNL-PRES-662034 L

Conventional fault tolerance in MPI apps

MPI initialization

Checkpoint/Recovery (C/R)

« Long running MPI applications are required to write

checkpoints v
End " AApplication run
= MPI v Checkpqin’ging
« De-facto communication library enabling parallel Failure
computing v
- Standard MPI employs a fail-stop model Terminate processes

\ 4

When a failure occurs ...

« MPI terminates all processes

- The user locate, replace failed nodes with spare nodes :
R Replace failed node

+ Re-initialize MPI

« Restore the last checkpoint v
MPI re-initialization

Locate failed node

4

The fail-stop model of MPI is quite simple l

 All processes synchronize at each step to restart Restore
checkpoint

Lawrence Livermore National Laboratory - Kento Sato LLNL.pREs.eezoe;'Z@

Requirement of fast and transparent

recovery

MPI initialization

= Failure rate will increase in future
extreme scale systems

<«

\ 4

End AApplication.run |
» Applications will use more time for \l'CheCkl?Ointing
re Cove ry Ff“me

— Whenever a failure occurs, users manually locate and | (rerminate processes
replace the failed nodes with spare nodes via machinefile

\ 4

— The manual recovery operations may introduce extra

Locate failed node
overhead and human errors

\ 4

e Resilience APIs for fast and transparent
recovery is becoming more critical for |
extreme scale computing MPI re-initialization

Replace failed node

A\ 4
Restore

checkpoint
I

Lawrence Livermore National Laboratory - Kento Sato ' LLNL.pREs.eezos‘Z@

Resilience APIls, Architecture and the

model

= Resilience APls

= Fault tolerant messaging
interface (FMI)

Resilience APIs:
Fault tolerant messaging interface (FMI)

=Sl =Tl

IS T Ty Vi iy i

Parallel file system

Lawrence Livermore National Laboratory - Kento Sato

H
LLNL-PRES-662034

Challenges for fast and transparent recovery
?
Scalable failure detection

- When recovering from a failure, all processes need MPl initialization
to be notified

<«

\ 4

iAppIication run

Survivable messaging interface Checknointing

- At extreme scale, even termination and Failurg
Initialization of processes will be expensive v
« Not terminating non-failed processes is important Terminate processes
:
= Transparent and dynamic node allocation Locate failed node
« Manually locating, and replacing failed nodes will '

introduce extra overhead and human errors Replace failed node

!

Fast checkpoint/restart MPI re-initialization

'

restore
checkpoint

, : | |!!
Lawrence Livermore National Laboratory - Kento Sato [INCPRES 662034

FMI: Fault Tolerant Messaging Interface [IPDPS2014]

FMI overview

FMI rank (virtual rank)

User’s view
FMTI’s view :

OIoIOIOIOIOIONG

e [T

Node 4

MPI-like interface

Fast checkpoint/restart

Dynamic node allocation

Scalable failure detection

= FMI is a survivable messaging interface providing MPI-like

interface

« Scalable failure detection => Overlay network

« Dynamic node allocation => FMI ranks are virtualized
« Fast checkpoint/restart => Diskless checkpoint/restart

Lawrence Livermore National Laboratory - Kento Sato

U=
LLNL-PRES-662034

How FMI applications work ?

FMI example code

int main (int *argc, char *argv[]) {
FMI_Init(&argc, &argv);
FMI_Comm_rank(FMI_COMM_WORLD, &rank);
/* Application’s initialization */
while ((n = FMI_Loop(..)) < numloop) {
/* Application’s program */

/* Application’s finalization */
FMI_Finalize();

FMI_Loop enables transparent recovery
and roll-back on a failure

— Periodically write a checkpoint
— Restore the last checkpoint on a failure

Processes are launched via fmirun
— fmirun spawns fmirun.task on each node
— fmirun.task calls fork/exec a user program

— fmirun broadcasts connection information
(endpoints) for FMI_init(...)

Launch FMI processes

machine_file

node@. fmi.gov
nodel. fmi.gov
node2. fmi.gov
node3. fmi.gov
node4. fmi.gov

\ 4

{ fmirun }4

__

E Node 0 i Node 1 i Node 2 : Node 3 Node 4
v v v v

L fmirun.task } L fmirun.task] E fmirun.task] { fmirun.task }

Spare

wie | |8

Lawrence Livermc

User perspective: No failures

Node ONode 1Node 2Node 3

(0)((2)(3)(a)(5)(6)(7)

vVVVVVVVY

int main (int *argc, char *argv[]) { FMI_Init

FMI_Comm_rank

vVVVVVVVY

‘ @ = FMI_Loop(..)

n = FMI_Loop(..)

‘ 1 = FMI_LoopC(..)

ks VVVVVVV YV
‘ 2 = FMI_LoopC(..)

VVYVVYVVVY

} \ 3 = FMI_Loop(..)

VVYVYVYVYVYVY

4 = FMI_Loop(..)

vVVVVVVVY

FMI_Finalize

User perspective when no failures happens

YV VV V V V VY
lterations: 4

Checkpoint frequency: Every 2 iterations
FMI_Loop returns incremented iteration id

Lawrence Livermore National Laboratory - Kento Sato e

User perspective : Failure

int main (int *argc, char *argv[]) { FMI_Init V.V ¥V VR

FMI_Init(&argc, &argv); FMI_Comn_rank
FMI_Comm_rank(FMI_COMM_WORLD, &rank); VVVVYVVVY

‘ @ = FMI_Loop(..)

while ((n = FMI_Loop(..)) < 4) {

VVYVVYVVYVY

\ 1 = FMI_Loop(.)

} VVVVVV VYV
| 2 = FMI_Loop(..)

FMI_Finalize();

} \ 3 = FMI_Loop(..)

vV
**VVVVVV

‘ 2 = FMI_Loop(..)

* Transparently migrate FMI rank O

& 1 to a spare node -l Y Y YV VYV VY

* Restart form the last checkpoint

‘ 4 = FMI_Loop(..)

— 2t checkpoint at iteration 2

* With FMI, applications still use the FMI_Finalize
same series of ranks even after VY v Yy v v v v
failures

Lawrence Livermore National Laboratory - Kento Sato R

FMI_Loop

int FMI
ckpt

len

_Loop(void **ckpt, size_t *sizes,
. Array of pointers to variables containing data that needs to be checkpointed
sizes:

Array of sizes of each checkpointed variables
Length of arrays, ckpt and sizes

returns iteration 1id

int len)

= FMI constructs in-memory RAID-5 across compute nodes

= Checkpoint group size
e.g.) group_size =4

FMI checkpointing

Encoding group

Encoding group

P5-0

— —_— nizw P
Pl Pny4 | Parity 5 (e
- <::> ‘I”hv S “!’s@g)
o
l EP;!-EO P5' 1 ‘ z!!!m P—P;:(; P"FS:O 1
= %% - & o
Node 1 Node 2 Node 5 Node 6 Node 7

1

FMI: Fault Tolerant Messaging Interface
FMI rank (virtual rank)

OISIOIOIOIOO O ——

User’s view

FMT’s view

Fast checkpoint/restart

Dynamic node allocation

Scalable failure detection

= FMI is an MPI-like survivable messaging interface
« Scalable failure detection => Overlay network for failure detection

« Dynamic node allocation => FMI ranks are virtualized
« Fast checkpoint/restart => Diskless checkpoint/restart

Lawrence Livermore National Laboratory - Kento Sato LLNL-PRES.6620%%

FMI’s view &

Node ONode 1Node 2Node 3Node 4

b2y

By

2o D[P @9

FMI_Init
FMI_Comm_rank

@@ W e

@ = FMI_Loop(..) } H ””””””” -
1 = FMI_Loop(..) YVVVVVVY V -
VVVVYVYVY VYV o
2 = FMI_Loop(..) } — Skip
VVVVVVVYV
3 = FMI_Loop(..)
*)k vVvVvVvVvVVvyywvyy
2 = FMI_Loop(m)>
3 = FMI_Loop(..) VVVVVVVY
4 = FMI_Loop(..) VYVVYVVVY
. vV V V V VvV VVY
FMI_Finalize
vV VvV V VvV VVYVY

User’s view

User’s view

FMI_Init

OIBIOOBIOIOD

vVVVVVVVY

FMI_Comm_rank

o-

FMI_Loop(..)

-

vVVVVVVVY

FMI_Loop(..)

FMI_Loop(..)

VVVVVVVY

FMI_Loop(..)

FMI_Loop(m)>

vV
**VVVVVV

FMI_Loop(..)

FMI_Loop(..)

vVVVVVVVY

Finalize

Lawrence Livermore National Laboratory - Kento Sato

vVVVVVVYVY

13
LLNL-PRES-662034

FMI’s view

FMI_Init
FMI_Comm_rank

Node ONode 1Node 2Node 3Node 4

@@ W (e

Transparent & Dynamic
node allocation

@ = FMI_Loop(..) | — ®

1 = FMI_Loop(..) VVYVVVVY V n
VVvVVYVYVYYVYYVY

2 = FMI_Loop(..) | — Skip *
VVVVVV VYV

3 = FMI_Loop(..) ; "
X % VIR 25 28 25 28 2 ?

2 = FMI_Loop(..)) o
3 = FMI_Loop(..) VYVVVVVY
4 = FMI_LoopC(..) VYVVVVVY
.) vV VV V VvV VYVY

FMI_Finalize

vV VV V VvV VYVYY

Scalable failure detection &
notification

Fast checkpoint/restart

Lawrence Livermore National Laboratory - Kento Sato

14
LLNL-PRES-662034

Transparent and dynamic node allocation

machine_file

. PVl — nodel:fmi:gov
fmirun —T | node2.fmi.gov
nhode3.fmi.gov
node4.fmi.gov

__

Node 1 ! Node 2 | Node 3 ' Node 4
v v v Y

ler'un task W [fmirun.task } fmirun. task fmirun.task

n o w0 G

= |If fmirun.task receives an unsuccessful exit signal from a child process
fmirun.task kills any other running child processes in the node, and exits with EXIT_FAILURE

= When fmirun receives the EXIT_FAILURE from the fmirun.task,
- fmirun attempts to find spare nodes to replace the failed nodes in the machine_file
- fmirun spawns new processes on the spare nodes

= fmirun boradcasts connection information (endpoint) of new processes, P8 and P9

Lawrence Livermore National Laboratory - Kento Sato R

Transparent and dynamic node allocation
(cont’d)

= |In FMI, FMI_COMM_WORLD manages process mapping between
FMI ranks and processes
« Once receiving endpoints, the mapping table is updated (=> bootstrapping)
— Applications can still use the same ranks
- Then, increment a “epoch” number to be able to discard staled messages

— After recovery, processes may receive old data which is sent before a failure
happens

FMI_COMM_WORLD | O 1123|4567

User’s view

FMI

FMTI’s view

endpoint (epoch=0)

epoch=1 (P8 P9

Ps) (ps

Node 1 Node 2 Node 3 Node 4

Lawrence Livermore National Laboratory - Kento Sato T—

Scalable failure detection

= FMI processes check if other processes are alive or not each other using overlay network

= Log-ring overlay network
Each FMI rank connects to 25-hop neighbors (k= 0,1...)
« e.g.) FMI rank O connects to FMI rank 1, 2, 4 and 8

= Log-ring overlay is scalable for both construction and detection

o

< 5 < % o
3 = %% 5

& Ny & KN
7) (g) 8 2) (&) ©°
Construction: O(1) Construction: O(log N) Construction: O(N)

Global detection: O(N) - Global detection: O(log N) - Global detection: O(1)

Cawrence civermore Nationarcaporarory—="Rento Sato LLNL-PRES-662034 &

Scalable failure detection (cont’d)

= Log-ring overlay network using ibverbs (constructed in FMI_init(...))

- Connection-based communication: if a process is terminated, the peer peer !
processes receive the disconnection event

= FMI global failure notification

« When FMI processes receive disconnection events, the processes explicitly
disconnect all of ibverbs connections

Example of global failure notification

A 5
" Yo
™ o
< N
o N/
& Y
> 9

Y e
™ D
< i~
o v
& Ny
> 9

A 15
a \Ce
™ (e
< N
o <
6 NS
>
o 9
— Overlay connection

O Not Notified

—— Timeout disconnection

O Notified by timeout disconnection

— Explicit disconnection

O Notified by explicit disconnection

In-memory XOR checkpoint/restart

algorithm

= XOR checkpoint/restart algorithm
1. Write checkpoint using memcpy
2. Divides into chunks, and allocate memory for party data

3. Send parity data to one neighbor, receive parity data from the
other neighbor, and compute XOR

Continue 3. until first parity come back
5. (For restart) gather all restored data

s/3 Parity (=) Chunk 1 () Chunk 2 Chunk 3
[Chunk 3 Parity Chunk 1 Chunk 2
S - Chunk 2 Chunk 3 Parity Chunk 1
Chunk 1 Chunk 2 Chunk 3 Parity
Rank O Rank 1 Rank 2 Rank 3
Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable
Lawrence Lj Multilevel Checkpointing System,” in Proceedings of the 2010 ACM/IEEE International Conference for High [IL.

Performance Computing, Networking, Storage and Analysis (SC 10).

In-memory XOR checkpoint/restart model

= |In-memory XOR checkpoint/restart time depends on only
XOR group size

s : ckpt size, n: group size, mem_bw : memory bandwidth, net_bw: network bandwidth

|
Checkpoint@ meﬂibw C) : +7fe/t<7;w_ g D meni bw
Restart @ e :L_bw C) - +; e/tisz_ 2 D meni_bw C) nets_bw

s/3 Parity Chunk 1 Chunk 2 Chunk 3
[Chunk 3 Parity Chunk 1 Chunk 2
S Chunk 2 Chunk 3 Parity Chunk 1
Chunk 1 Chunk 2 Chunk 3 Parity
Rank O Rank 1 Rank 2 Rank 3

Lawrence Livermore National Laboratory - Kento Sato T—

Process state manage

= FMI manages three states to make sure all processes to synchronously
« H1: Bootstrap for endpoint, process mapping update, and epoch
« H2: Construct overlay for scalable failure detection
« H3: Do computation and checkpoint

= Whenever failures happens, all processes transitions to H1 to restart

<= Failed transition .
Notified transition fmi run ‘ -Fm-l' run ‘
<= Successful transition u
H1! | FMI_Loop || FMI_Init J
Bootstrapping 1 l
state (H1)
H2 ' FMI_Loop | | FMI_Init |
Overlay
state (H2)
FMI_Loop |
C/R and compute H3 % *
state (H3) user program in FMI_Loop |

s (- | {30 | {o -

Evaluations

Initialization
« FMI_Init time

Detection

= Checkpoint/restart

= Benchmark run

= Simulations for extreme
scale

Lawrence Livermore National Laboratory - KentoSato nieres sl

Experimental environment
= Sierra cluster @LLNL

TABLE 4.1: Sierra Cluster Specification

Nodes 1,856 compute nodes (1,944 nodes in total)
CPU 2.8 GHz Intel Xeon EP X5660 x 2 (12 cores in total)
Memory 24GB (Peak CPU memory bandwidth: 32 GB/s)
Interconnect | QLogic InfiniBand QDR

+ MPI: MVAPICH2 (1.2)
— Runs on top of SLURM
— srun instead of mpirun for launching MPI processes

Lawrence Livermore National Laboratory - Kento Sato R,

Elapsed time (Seconds)

MPI_Init vs. FMI_Init time

4.2 Bootstrapping
4 B Log-ring overlay
- ¢ SLURM (MVAPICH2) *
3
2.5 ¢
2 * ®
1.5 *
1
0.5
0 = [Ly — 1

48 96 192 384 768
of Processes

Future FMI may reach the same
Initialization time as MPI one

Bootstrapping time is also short
Current FMI do only minimal
mitialization to start an application

Log-ring construction time 1s small
the overlay construction time is

O(log(n))

1536

MPI Initialization: MVAPICH2 MPI_Init(...) launched by srun

Lawrence Livermore National Laboratory - Kento Sato

24
LLNL-PRES-662034 LLL

FMI failure detection time

= \We measured the time for all processes to be notified of a failure
- Injected a failure by killing a process

= Once a process receive a disconnection event, the notification
exponentially propagate

- Time complexity: O (log(N)) to propagate

0.4
0.35

MR /EX licit disconnection
: Exponentially

. propagate notification

Timeout disconnection
about 200 ms <:

©
o &
o W

time (Seconds)
o
o
1

Global failure notification

48 96 192 384 768 1536

of Processes (12 procs/node)
Lawrence Livermore National Laboratory - Kento Sato T

FMI Checkpoint/Restart throughput

= Checkpoint size: 6GB/node

= The checkpoint/restart time of FMI is scalable
« FMI directly write checkpoint to memory via memcpy

- As in the model, the checkpointing and restart times are constant regardless of the total
number of processes

350
=&~ Checkpoint (XOR encoding) — 2 4 OGB/sec per node
Restart (XOR decoding) .

w
@)
(@)

N DO
oS Ot
o O

1.3 GB/sec per node

—
ot
-

Fast checkpoint/restart
FMI writes and reads

—
@)
@)

C/R Throughput (GB/seconds)

50 : : checkpoints to/from
total size: total size: memory via memecpy
o {BF 384GB 768GB .
0 500 1000 1500

of Processes (12 pI‘OCS/node) LLNL-PRES-SGZO%SLLL

Application runtime with failures

 Benchmark: Poisson’s equation solver using Jacobi iteration method

— Stencil application benchmark
MPI_Isend, MPI_Irecv, MPI_Wait and MPI_Alireduce within a single iteration
« For MPI, we use the SCR library for checkpointing

— Since MPI is not survivable messaging interface, we write checkpoint memory

on tmpfs

« Checkpoint interval is optimized by Vaidya’s model for FMI| and MPI

2500

DO
o)
)
o

1500

1000

Performance (GFlops)

500

-4~MPI
=-FMI
MPI + C
-=FMI + C
FMI + C/R

| MTBF: 1 minute |

500 1000 1500
of Processes (12 processes/node)

. P2P communication performance
Bandwidth (8MB)

3.227 GB/s
3.211 GB/s

1-byte Latency

MPI 3.555 usec
FMI 3.573 usec

FMI directly writes
checkpoints via memcpy, and
can exploit the bandwidth

Even with the high failure rate,
FMI incurs only a 28% overhead

27
LLNL-PRES-662034 LLL

Simulations for extreme scale

= FMI applications can continue to run as long as all failures are
recoverable. To investigate how long an application can

= run continuously with or without FMI, we simulated an

application running at extreme scale.

= Types of failures
L1 failure: Recoverable by FMI
« L2 failure: Unrecoverable by FMI

= We scale out failure rates, evaluate

1. How long applications can
continuously run;

2. efficiency at extreme scale

Failure analysis on Coastal cluster

MTBF Failure rate

L1 failure | 130 hours 2.13°6

L2 failure | 650 hours 4277

Source: A. Moody, G. Bronevetsky, K. Mohror, and B. R. de
Supinski, “Design, Modeling, and Evaluation of a Scalable
Multi-level Checkpointing System,” in Proceedings of the
2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC 10).

Lawrence Livermore National Laboratory - Kento Sato

28
LLNL-PRES-662034 uL-

Probability to run for 24 hours

= With FMI, application continuously run for longer time

” 1 c L/ FMD 80% of probability to run for
= 0.9 QB! oastal (w 24 hours on environment
208 &) N Coastal (w/o FMI) with current failure rate
0.7 --
§ 0.6 L ATTS FMI execution: 80%
S ’ non-FMI execution: 25%
= 0.5
S 04
£ 0.3 : T
E 0.2 ”) \ Even with FMI, most of
o 0.1 " I ~executions cannot run for 24H
Ay 0]

O &5 10 15 20 25 30 35 40 45 50 —

Scale factor (Current failure rate = Future FMI will support

async. multi-level checkpoint/restart |

Lawrence Livermore National Laboratory - Kento Sato T

Single node failure is common

 Most of failures comes from one node, or can recover from XOR
checkpoint
— e.g. 1) TSUBAME2.0: 92% failures
— e.g. 2) LLNL clusters: 85% failures

Rest of failures still require a checkpoint on a reliable PFS

J 0
8% —— 15%
LOCAL/XOR/PARTNER checkpoint
PFS checkpoint

> . 35%
\/ _/

Failure analysis on TSUBAMEZ2.0 Failure analysis on LLNL clusters

Lawrence Livermore National Laboratory - Kento Sato T W

Asynchronous multi-level checkpointing
(MLC) [SC12]

9 S LS| BT N N1 | B

PFS
checkpoint

Level-2

Source: K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski, and S. Matsuoka, “Design and Modeling of a Non-
Blocking Checkpointing System,” in Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Salt Lake City, Utah: IEEE Computer Society Press, 2012

= Asynchronous MLC is a technique for achieving high Failure analysis on Coastal cluster
reliability while reducing checkpointing overhead MTBF | Failure rate
= Asynchronous MLC Use storage levels hierarchically L1 failure | 130 hours 2.13
. éfl)liecheckpoint: Frequent for one node for a few node L2 failure | 650 hours 4.977
« PFS checkpoint: Less frequent and asynchronous for multi- 23‘;?5;‘?%Zé’fgynGMfié’ﬁﬁ;effgéiaﬁ}Efﬁi :fn: géaﬁb%i
node failure Multi-level Checkpointing System,” in Proceedings of the

2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and

= Our previous work model the asynchronous MLC Analysis (5C 10).

Lawrence Livermore National Laboratory - Kento Sato 31 e

Efficiency with FMI + Asynchronous MLC
= Checkpoint size: 1 and 10 GB/node

= We increase L1 and L1 & L2 failure rates

f High efficiency with current
L failure rate

FMI + Asynchronous MLC
achieve high efficiency even
with much higher failure rate

0.3 —L1 - 1 GB/node ‘\\\ o
02 —L1 - 10 GB/node ‘\\ If both L1 & L2 failure rate
‘ L1 & 2 - 1 GB/node O increase, and checkpoint size is
0.1 ---L1 & 2 - 10 GB/node - large, efficiency drops rapidly
0

0 5 10 15 20 25 30 35 40 45 50
Scale factor

Lawrence Livermore National Laboratory - Kento Sato T W

Uncoordinated C/R + MLC

Coordinated C/R

PO v | T PO _
I | % - ckpt | msq logging | Cket
P1)) 3 P1 \1/1 N\ y)
ckpt - ckpt =
P2 i % P 2 p2 y N/
B ckpt ckpt
P3 v | S| P3 v |

« Coordinated C/R

— All processes globally synchronize before taking
checkpoints and restart on a failure

— Restart overhead
 Uncoordinated C/R

— Create clusters, and log messages exchanged
between clusters

— Message logging overhead is incurred, but
rolling-back only a cluster can restart the
execution on a failure

= MLC + Uncoordinated C/R (Software-level)
approaches may be limited at extreme scale !

B Coordinated C/R ™ Uncoordinated C/R

Efficiency

2 10 50
Scale factor (xF, xL.2)

100

Lawrence Livermore National Laboratory - Kento Sato 4

LLNL-PRES-662034

Resilience APIls, Architecture and the
model

= Resilience APIs

 In near future, applications must
have capabilities of handling

Resilience APIs:
Fault tolerant messaging interface (FMI)

failures as usual events _Compute nodes
: P ==y ===/ /
= Fault tolerant messagmg Resilience architecture: /
interface (FMI) [IPDPS2014] - Burst buffers
4 y y y_

—— "gp— "gp— Sp— ——

= Resilience architecture and
mOdel [Parallel file system :',,"'

- Software level approaches are
not enough

= Architecture using Burst buffer
[CCGrid2014]

Lawrence Livermore National Laboratory - Kento Sato T W

Burst buffer storage architecture

= Burst buffer

« A new tier in storage hierarchies

« Absorb bursty I/0 requests from applications 4 Compute nodes

+ Fill performance gap between node-local
storage and PFSs in both latency and

bandwidth . -" —i_ =4 '
Resilience architecture: /
: - Burst buffers
= |f you write checkpoints to burst buffers, - E > -

~—— p— p— p— =

« Faster checkpoint/restart time than PFS

« More reliable than storing on compute nodes " Parallel file system |

™ ™ ™ ™ ™ p—

et D D — D— Dm—

Lawrence Livermore National Laboratory - Kento Sato T

Checkpoint/Restart (Software-Lv.)

= |dea of Checkpoint/Restart
« Checkpoint

— Periodically save snapshots of
an application state to PFS

— On a failure, restart the paiil .

execution from the latest _
CheCprint Checkpointing overhead

Paratletfile-system

* Improved Checkpoint/Restart (PES)
— Multi-level checkpointing [1]
— Asynchronous checkpointing [2]
— In-memory diskless checkpointing [3]

« We found that software-level approaches may be
limited in increasing resiliency at extreme scale

[1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing System (SC 10)

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
— blocking Checkpointing System", SC12

[3] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "FMI: Fault Tolerant Messaging

Interface for Fast and Transparent Recovery", IPDPS2014

Storage architectures

= \We consider architecture-level approaches

Compute nodes
= Burst buffer

« Anew tier in storage hierarchies
« Absorb bursty I/O requests from applications

« Fill performance gap between node-local storage
and PFSs in both latency and bandwidth Burst buffers

= |f you write checkpoints to burst buffers,
- Faster checkpoint/restart time than PFS
» More reliable than storing on compute nodes

Parallel file system

« However,...
accordingly
It's not clear if burst buffers improve overall system efficiency

— Because burst buffers also connect to networks, the burst buffers may still be
a bottleneck

[4] Doraimani, Shyamala and Iamnitchi, Adriana, “File Grouping for Scientific Data Management: Lessons from Experimenting with
Real Traces”, HPDC '08

Multi-level Checkpoint/Restart (MLC/R) [SC10, 12]

MLC MLC model
—I I I) 1> -G DD Duration
v : :‘ 1 : 18 1 1‘ 1‘ I+ Ck r
. ‘ N py(t+c,) Po(1)
DISkIes-S] failure QD—> 1,(t+¢,) H 10(n)
checkpoinlevel-1] . Y
t v i D5 Failure ®->1 1(t+c,) MI t.(r)
PFS Interval p(T) = e {PO(T) : No failure for T seconds
CheCpri n Level-2 ¢ 1 ¢-level checkpoint time W) = fl o t,(T) : Expected time when 2,(T)
: me M0 T A0 (T) : § - level failure for T'second
t ¢ @ c¢-level recovery time 1= T +1)- e {P, - 1- level Iallure 101 1 seconds
- + : i-level checkpoint time “7) T Tx. (-1 1(T) : Expected time when »;(T)

= MLC hierarchically use storage levels

« Diskless checkpoint: Frequent for one
node for a few node failure

« PFS checkpoint: Less frequent and
asynchronous for multi-node failure

Efficiency

= Qur evaluation showed system
efficiency drops to less than 10%
when MTBF is a few hours

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

MTBF
a few hours

days or a day

MTBF

10
Scale factor (xF XL2)

100

~ [1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing System (SC 10)

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-

blocking Checkpointing System", SC12

Storage designs

= Addition to the software-level approaches, we also

explore two architecture-level approaches

 Flat buffer system:
— Current storage system

 Burst buffer system:

— Separated buffer space

SR
Compute

node 1

-~

Compute Compute
node 2 node 3
ss2] (03]
- / - /

PFS (Parallel file system)

.

e B
Compute Compute
node 1 node 2

/

.

e N
Compute Compute
node 3 node 4

J

PFS (Parallel file system)

Lawrence Livermore National Laboratory - Kento Sato

39
LLNL-PRES-662034 LLL

Flat Buffer Systems

= Design concept _
- Each compute node hasits | —— &, =+ | ——

dedicated node-local e 1) | oS | Compute | | Compute
storage — idle) ——— idle
« Scalable with increasing UL MUy

number of compute nodes e

PFS (Parallel file system)

* This design has drawbacks:

1. Unreliable checkpoint storage
e.g.) If compute node 2 fails, a checkpoint on SSD 2 will be lost because SSD 2 is
physically attached to the failed compute node 2

2. Inefficient utilization of storage resources on uncoordinated checkpointing

e.g.) If compute node 1 & 3 are in a same cluster, and restart from a failure, the
bandwidth of SSD 2 & 4 will not be utilized

Lawrence Livermore National Laboratory - Kento Sato R

Burst Buffer Systems

Design concept

[| i
- A burst buffer is a storage space CoTﬁe} E ?»2-\ Y @ @
. . node node node
to bridge the gap in latency and noce

bandwidth between node-local

storage and the PFS <D 1] m D2
« Shared by a subset of compute
nodes

PFS (Parallel file system)

« Although additional nodes are required, several advantages

1. More Reliable because burst buffers are located on a smaller # of nodes

e.g.) Even if compute node 2 fails, a checkpoint of compute node 2 is accessible from
the other compute node 1

2. Efficient utilization of storage resources on uncoordinated checkpointing

e.g.) if compute node 1 and 3 are in a same cluster, and both restart from a failure,
the processes can utilize all SSD bandwidth unlike a flat buffer system

Lawrence Livermore National Laboratory - Kento Sato R,

Challenges for using burst buffers

Network bottleneck
= IBIO: InfinBand-based I/0 interface

Reliability
= Storage model

= Exploiting storage bandwidth of burst buffers
« Burst buffers are connected to networks, networks can be bottleneck

= Analyzing reliability of systems with burst buffers

« Adding burst buffer nodes increase total system size, and increase overall
failure rate

« System efficiency may decrease

Lawrence Livermore National Laboratory - Kento Sato T W

Burst buffer prototype
multi-mSATA High I/O BW & cost

3 ‘ l ‘{

mSATA X 8
(Read: 500MB/s, Write: 260MB/s) Adaptec RAID X 1
E——
e Read - Peak emie== Read - Local Read - NFS
e \Vrite - Peak e \Write - Local = @ o Write - NFS
4‘3 Node specification
35 CPU Intel Core 17-3770K CPU (3.50GHz x 4 cores)
Memory Cetus DDR3-1600 (16GB)
3 M/B GIGABYTE GA-Z77X-UD5H
2.5 SSD Crucial m4 msata 256GB CT256M4SSD3
(Peak read: 5S00MB/s, Peak write: 260MB/s)
2 SATA converter | KOUTECH IO-ASS110 mSATA to 2.5° SATA
1.5 R Device Converter with Metal Fram
1 ——rCCCSSESSczcrmmwss RAID Card Adaptec RAID 7805Q ASR-7805Q Single

0.5
0

Read/Write throughput (GB/s)

Interconnect :Mellanox FDR HCA (Model No.: MCX354A-FCBT)

0 2 4 6 8 10 12 14 16

Of PI‘OCGSSGS 43 LLNL-PRES-GGZO‘;:ZLLL

IBIO: InfiniBand-based 1/O interface

= Provide POSIX I/O-like interfaces

« open, read, write and close
- Client can open any files on any servers
— open(“hostname:/path/to/file”, mode)

= |BIO use ibverbs for communication between clients and servers
+ Exploit network bandwidth of infiniBand

IBIO
client

1 5 chunk

IBIO server thread IBIO server thread
2 4 3 Ty 2 4 3
fdl (Writer thread (Reader thread)
fdz B W]+ Writer thread) faz (__Reader thread) [1 |
fd3 B W+ Writer thread) fd3 (__Reader thread) [] |
fd4 | (Writer thread > fdd (Reader thread)
N~ N~
k Chunk buffers Writer threads Storage J k Storage Reader threads Chunk buffers J

IBIO write: four IBIO clients and one IBIO server IBIO read: four IBIO clients and one IBIO server

EUTYITIVITVY =IVOUTTITIVIIV TYTUNTVITUT =UNvT unvn, TTINVTITIV VU LLNL-FREDS-00ZU%4 S

I B I O Wri te / re a d Compute node Burst buffer node

A \
[\ [|

IBIO IBIO Write
Application Client Server threads
—> ad&’l
—RDMA N
IBIO server thread —?_c}f _______ —am |
2 4 3 <-
M2
fdl | (Writer thread) —
fd2 |+ Writer thread) T,
fd3 | (Writer thread) PR —,
fd4 | (Writer thread)
K Chunk buffers Writer threads m j «— |
IBIO write: four IBIO clients and one IBIO server $ I I
IBIO write
1. Application call IBIO client function with data to write
2. IBIO client divides the data into chunks, then send the address to IBIO server for RDMA
3. IBIO server issues RDMA read to the address, and reply ack
4. Continues until all chunks are sent, and return to application
5. Writer threads asynchronously write received data to storage
. IBIO read

Reads chunks by reader threads and send to clients in the same way as IBIO write by
using RDMA

Lawrence Livermore National Laboratory - Kento Sato R,

Challenges for using burst buffers

Compute
node 3 Network bottleneck
= IBIO: InfinBand-based I/O interface

Reliability
= Storage model

PFS (Parallel file system)

= Exploiting storage bandwidth of burst buffers
« Burst buffers are connected to networks, networks can be bottleneck

= Analyzing reliability of systems with burst buffers
- Adding burst buffer nodes increase total system size

- System efficiency may decrease due to Increased overall failure by added burst
buffers

Lawrence Livermore National Laboratory - Kento Sato T W

Modeling overview

« To find out the best checkpoint/restart strategy for systems with burst
buffers, we model checkpointing strategies

C/R strategy model

C;+ E; (Sync.)
0;= L;=C;+ E;
I (Async.)

< C/R date size / node >X <# of C/R nodes per SI-* >

Cl-orRI- =

< write perf. (w;) > or <read perf.(;) >

Recursive structured storage mode

+

1 2 mi
Hi | [Hp, | H;,
C t
H | — 1
w W w
1=0 1>0

Storage Model: Hy, {m,, m,, . .., my/

e -

B O OROrNOFOFOrOS Duration
D @ [1‘ 1 1‘ 1‘ t+¢ T
No Po(t+c;) Po()
failure ®_> | t(t+ey) H 1,(r)
.| plt+e) L P
D7 Failure ®-> 1‘ t(t+c,) M 1 - ()
I Interval 1’0(? = ‘T {P()(T) : No failure for T seconds
Cc : ¢ -level checkpoint time t"ET)) - S 1,(T) : Expected time when Po(T)
i = Sl-e . .
T : ¢ -level recovery time Y 1/\7 E {PJ(T) : 1 - level failure for T seconds
L A 1 -level checkpoint time (1) = A-(1—eAT) t;(T) : Expected time when pi(T)

=

Efficiency

Fraction of time an
application spends only
in useful computation

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-

blocking Checkpointing System", SC12

Multi-level Asynchronous C/R Model [SC12]

= Optimize checkpoint intervals and compute checkpoint/
restart “ Efficiency” using Markov model

« Vertex: Compute state OR Checkpointing state OR Recovery state

« Edge: Completion of each state

L i=1 0 i=1..N

R

F

Efficiency

..N i=1..N i=1..N
@@ ©) Durati
£®£®f£® £®£®£®£® te, * Input: Each level of
po(t+c‘<) o (1) 0
‘[O.E@f £®£® o | (g nven| @=L — L.: Checkpoint Latency
- | pi(t+c) . i) _ ot i
Failure @ l‘[(Z+Ck) @ 1 ll(rk) }031 . CR:hetCkftolnt Overhead
— - estart time
I Interval po(T) = e {PU(T) : No failure for T'seconds 4 . i
Ce :cilevel checkpoint time foi;; i 2(17 - t,(T) : Expected time whePo () - E . FaI|UI’e rate
T e-level recovery time " . : 1A, (NT +1) - =X {p,-(T) : 1 - level failure for T seconds ° Output “_Efﬁcjency”
At i-level checkpoint time ") = T (1—e2T) t(T) : Expected time whe? @
Efficiency

spends only in computation in

Fraction of time an application
optimal checkpoint interval

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-

blocking Checkpointing System", SC12

Modeling of C/R Strategies

Synchronous checkpointing (Diskless C/R) Asynchronous checkpointing (PFS)
O ; Checkpoint overhead O ; Checkpoint overhead
,‘ln N
Checkpoint Encoding Init
C, E, — — I, >
Checkpoint C; | Encoding E,;
f | J
L Checkpoint latency L - Checkpoint latency
= L, |: Checkpoint Latency * | O; : Checkpoint overhead
- Time to complete a checkpoint (C,) and — The increased execution time of an
encoding (E) application
Li= Gt b C;+ E; (Sync.)
0;=
. : I Async.
« C;& R; : Checkpoint/Restart time (Async)

< C/R data size / node > x <# of C/R nodes per Sl-* 3

Vv

CI or R1 —

|

< write perf. (w;) > or <read perf. (r;) >

Lawrence Live

Recursive Structured Storage Model

Generalization of storage
architectures with "context-free
grammar”

« Atier 1 hierarchical entity (), has a storage
?S-)shared by (m;) upper hierarchical entities

H.,)
- H._, is a compute node

« Hylm, m,, ..., my}

- e.g.)H,4 2}

— H,has an S,shared by 2 H,
— H,has an S, shared by 4 H,
— H,is a compute node

H,

Lawrence Livermore National Laboratory - Kento Sato

H.

1

- ~
Hi'] Hi'l Hi']
Compute
I e
- ad b b /
i=0 i>0
Storage Model: Hy, {m,, m,, . .., my/

compute| |compute| compute| |compute| compute| |compute
node 1 node 2 node 3 node 4 node 5 node 6

~ ~ -~

compute
node 7

compute
node 8

H, H, H, H, H,| H, |H, H

S, 5,

S,
50
LLNL-PRES-662034 uL-

Recursive Structured Storage Model

(cont’d)

= The number of nodes accessing to S;

K HNk=j+1 Iy (i <N)
<# of C/R nodes per S;,> = —— <#of S;>=
K : C/R cluster size
. eg) K - 4 compute| |compute| |compute| |compute| compute| |compute| |compute| |compute
node 1 node 2 node 3 node 4 node 5 node 6 node 7 node 8
— # of C/R nodes per 2 O T [e b
* 4/2 = 2 nodes S, S,
- v v v v v v v v
« 4/1 =4 nodes Sg
Lawrence Livermore National Laboratory - Kento Sato e N

Evaluation

= |IBIO performance

= Simulation

Lawrence Livermore National Laboratory - Kento Sato

52

= Set chunk size to 64MB
for both IBIO and NFS to
maximize the throughputs

mSATA X 8
(Read: 500MB/s, Adaptec RAID X 1

Write: 260MB/s)

Read - Peak —*—Read - Local —#—Read - IBIO Road - NFS | Node specification

. . . T CPU Intel Core 17-3770K CPU (3.50GHz x 4 cores)
Write - Peak —#%— Write - Local ={lll=Write - IBIO % =-Write - NFS Meomory Cetus DDR3-1600 (16GB)
4.5 M/B GIGABYTE GA-Z77X-UD5H
> SSD Crucial m4 msata 256GB CT256M4SSD3
i(;; 4 (Peak read: 500MB/s, Peak write: 260MB/s)
@n) SATA converter | KOUTECH IO-ASS110 mSATA to 2.5° SATA
Q 3.5 N Device Converter with Metal Fram
4:-; 3 RAID Card Adaptec RAID 7805Q ASR-7805Q Single
o]
fb 925 Interconnect :Mellanox FDR HCA (Model No.: MCX354A-FCBT)
: N
= 2)
i IBIO achieve the same remote
E 1.5 read/write performance as the
< 1 local read/write performance
< £ o
205 by using RDMA
A\ /
0 2 4 6 8 10 12 14 16
Of PI'OCQSSGS LLNL-PRES-662053?1uL-

Experimental setup

1 Compute I
node : :
1l 1§y 2 1088
: J & Aggregate
Read: 500 MB/s | — : - " Read: 544 GB/s
Write: 260 MB/s « Sy [Sy S, Aggregate
eearal—— . Write: 283 GB/s
S Read: 10 GB/s
2 Write: 10 GB/s
Flat buffer system: H, {1, 1088/
e - - Checkpoint size:
|
32 Compute - - 5 GB/node
node L 32] 1088 Logging cluster
— . | -
size:
Read: 16 GB/s . .
Write: 8.32 GB/s S ‘ | S, 16 nodes
The system sizes are based e v * Guermouche, A., Ropars, T., Snir, M.
e i S
(el ORS) 2 Large Scale Send- Deterministic MPI

Applications

Burst buffer system: H, {32, 34}

Lawrence Livermore National Laboratory - Kento Sato LLNL-PRES.6620%

Experimental setup

———————————————————————————————

. Estimated failure rates are |
. based on failure analysis on

the Coastal cluster at LLNL

Y
Node

1

-~/

Y
Node

2

S

S

— Level 1
1N('c)’;es (XOR checkpoint requiie6d)
y = S 2.14 x 10™°,

Level 2

(PFS checkpoint required)

\4.28x 107

(88.5TFLOPS) [1]

[1] A. Moody, G. Bronevetsky, K.
Mohror, and B. R. de Supinski,
“Design, Modeling, and Evaluation of
a Scalable Multi-level Checkpointing
System (SC 10)

: Node Node
1 e 37

S

Level 1

(XOR checkpoint required)

=\ 2.63x 104

Sy

\\\\\ Level 2
. (PFS checkpoint required)

Burst buffer system: H, {32, 34/

\ 1.33x10°8

Lawrence Livermore National Laboratory - Kento Sato

55
LLNL-PRES-662034

Efficiency with Increasing Failure Rates

and Checkpoint Costs

* Assuming there is no message logging overhead

Efficiency

Flat Buffer-Coordinated Flat Buffer-Uncoordinated

M Burst Buffer-Coordinated B Burst Buffer-Uncoordinated

1 JR— —
B)

02 — MTBF =days

1 2 10 50
Scale factor (xF, xL.2)

100

In days or a day of MTBF,

there is no big efficiency

differences
V.

In a few hours of MTBEF, with
burst buffers, systems can
still achieve high efficiency)

uncoordinated, systems can

Even 1in a hour of MTBE, with
still achieve 70% efficiency J

\

= Partial restart accelerate recovery
time from burst buffers and PFS

checkpoint

Lawrence Livermore National Laboratory - Kento Sato

56 5

LLNL-PRES-662034

Allowable Message Logging overhead

Message logging overhead allowed in uncoordinated checkpointing to
achieve a higher efficiency than coordinated checkpointing

Flat buffer Burst buffer
scale factor | Allowable message || scale factor | Allowable message
logging overhead logging overhead

1 0.0232% I 1 0.00435%

2 0.09299 Coordinated 2 0.0175%

10 2.45% [10 0.468%

50 ST57 ! = I20% i
100 ~ 100 Uncoordinated) 00 99, “

= Logging overhead must be relatively small, less than a few percent in days
or a day of MTBF

« In afew hours or a hour, very high message logging overheads are tolerated

= Uncoordinated checkpointing can be more effective on future systems

Lawrence Livermore National Laboratory - Kento Sato T

Effect of Improving Storage Performance

B Burst Buffer-Coordinated

Flat Buffer-Coordinated

Flat Buffer-Uncoordinated
B Burst Buffer-Uncoordinated

Efficiency

Efficiency

1

L1 performance improvement

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

11

Scale factor (Li1/)

20

L2 performance improvement

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

[

Scale factor (L2/)

0

20

poo To see which storage impact to efficiency,

we increase performance of level-1 and
level-2 storage while keeping MTBF a hour

o

Improvement of level-1 storage\

performance does not impact
efficiency for both flat buffer
and burst buffer systems

v

Increasing the performance of
the PFS does impact system
efficiency

L2 C/R overhead is a major cause of

degrading efficiency, so reducing level-2
failure rate and improving level-2 C/R is

critical on future systems

58
LLNL-PRES-662034

Ratio of Compute nodes to Burst Buffer nodes

Another thing to consider when building a burst buffer system
is the ratio of compute nodes to burst buffer nodes

B 1 compute nodes ¥ 2 compute nodes B 1 compute nodes B 2 compute nodes
4 compute nodes 8 compute nodes B 4 compute nodes 8 compute nodes
16 Compute nodes 32 compute nodes 16 Compute nOdeS 32 Compute nodeS

Coordinated

I

Scale factor (xF, xL2)

Uncoordinated

50 1 2 10 50
Scale factor (xF, xL.2)

= The ratio is not important matter when MTBF is from a day to days

= When MTBF is a few hours, a larger number of burst buffer nodes decreases efficiency

= Adding additional burst buffer nodes increases the failure rate which degrades system efficiency more than
the efficiency gained by the increased bandwidth

Lawrence Livermore National Laboratory - Kento Sato o

LLNL-PRES-662034

Towards resilient extreme scale computing

1. Burst buffers
. Burst buffers are beneficial for C/R at extreme scale

2. Uncoordinated C/R

« When MTBEF is days or a day, uncoordinated C/R may not be effective
. If MTBF is a few hours or less, will be effective

3. Level-2 failure, and Level-2 performance

. Reducing Level-2 failure and increasing Level-2 performance are critical to
improve overall system efficiency

4. Fewer number of burst buffers
. Adding additional burst buffer nodes increases the failure rate

. May degrades system efficiency more than the efficiency gained by the
increased bandwidth

. We need to be careful a trade-off between I/O performance and reliability
of burst buffers

Lawrence Livermore National Laboratory - Kento Sato R

Conclusion

Lawrence Livermore National Laboratory - Kento Sato

Fault tolerance is critical at extreme scale
- Both C/R strategy and storage design are important

We developed IBIO to maximize remote access to burst
buffers, and modeled C/R strategy and storage design

We listed up key factors to build resilient systems based
on our evaluations

We expect our findings can benefit system designers to
create efficient and cost-effective systems

LLLLLLLLLLLLLLLL

NEEDS FOR REDUCTION IN CHECKPOINT
TIME

. On TSUBAME2.5
Checkpoint/Restart Memory capacity :about 100TB
—Store the data of memory in the disZ s throughp“tl: <l 20EEH
—High I/O cost Checkpoint time : about 80min

Reduce MTBF(Mean Time Between Failure) by expansion
in scale of HPC systems

« MTBF is over 30min by trial calculation On a exascale computer [31]
-

If MTBF < Checkpoint time
Application may not be able to run !

l

Needs for reduction in checkpoint time ! 7

There are methods of reduction in checkpoint cost,
Incremental checkpoint etc., but we compress checkpoint

%1 : Peter Kogge, Editor & Study Lead (2008)
ExaScale Computing Study: Technology Challenges in Achieving ExaScale Systems

LOSSLESS AND LOSSY COMPRESSION

Features of lossless Features of lossy
* Decompress a data without a loss * High compression rate
» Low compression rate without bias * introduce an error

« Scientific data has a randomness

About introducing an error

 Possibility of getting equal quality result with introducing an error

* Don’t apply lossy compression to a data that must not have an
error(pointer etc.)

gzip 2.19MB ipeg2000 0.153MB

(citation of images :)

PROPOSAL APPROACH:
LOSSY COMPRESSION WITH WAVELET

We apply wavelet transformation, quantization and encoding to a
target data, then compress a data that is stored in proposal output

format with gzip

U/ U/ U/

Wavelet transformation Quantization EFE(_)ding
é_j:[[_j]:? LT I
bitmap correspondence table 2
gzip
B low frequency band 1
R [
[[] applied quantization compressed data
[] applied encoding

PROPOSAL APPROACH:
LOSSY COMPRESSION WITH WAVELET

Wavelet transformation

Divide original data into
two subbands

\ 4

B use average

[use difference
(most of these
is close to zero)

Quantization

Round the red values into
n kind of values

\ 4

[J nkind of values
(n=20~27)

Encoding

Store the float, double
value to char value

4

[] Data size reduces to
1/4 or 1/8 at this point

EVALUATION ENVIRONMENT

We apply our approach to climate
simulation NICAM[M.Satoh, 2008]

* Target physical quantity are pressure,
temperature and velocity.
« 3Darray, double precision, 1156*82*2
* The data is uniform in initial state
—apply the method after 720 step from initial state?

v

We evaluate compression time and rate
and error, while changing the number of

division (2° ~27)
Machine spec
CPU Intel Core i7-3930K 6 cores 3.20GHz
Memory size 16GB

(citation of image : HPCS2014 2Bk KR IaL—avIEB VT, ECETHREBENDLEN?)

EVALUATION OF COMPRESSION TIME

An assumption about compression time

* 1/0O throughput...20GB/s

» Checkpoint size that each process has...about 1.5MB
—Total checkpoint size...about (1.5 x # of parallelism)MB

180

Actual survey

- Compression time H”"

» Compression rate £ coraent
Calculation from . B
assumption oo

* 1/0O time & t

256 512 7 153

o

Total checkpoint size(xcompression rate
I/O Throughput

N—"

1024 1280
the number of paralellism

2048

EVALUATION OF COMPRESSION TIME

An assumption about compression time

* 1/0O throughput...20GB/s

» Checkpoint size that each process has...about 1.5MB
—Total checkpoint size...about (1.5 x # of parallelism)MB

180

Problems of gzip

140

« Computational
complecity

* Needs for writing
files

i malloc
1 | A NO compression 1/0

=
N
o

compression 1/0
gzip
Letc.

[y
o
o

Ll write file for gzip

0
o

quantization and encoding

compression time[usec]

(o)}
o

S
o

T AR R RN

Write time can be cut if | - - = -
we apply gzip to the J/ = " the number of paalelism -

data internally

EVALUATION OF - ~
I/O time reduces by about

COMPRESSION TIME . e
70%, if compression time

An assumption about compression time IS negligible by increasing

- 1/O throughput...20GB/s \# of parallelism

» Checkpoint size that each process has...about 1.5MB
—Total checkpoint size...about (1.5 x # of parallelism)MB

180

[Reduction in checkpoint time
Each process compress 160

1.5MB data in spite of # ~
of parallelism 140

=
N
o

compression 1/0

« Compression time is
constant

* |/O time depends on
total checkpoint size

Our approach takes B EEEEREER

advantage When # Of 256 ;24 1280 1536 1792 2048
para"ellsm Increases the number of paralellism

gzip

etc.

100

Ll write file for gzip

0
o

v quantization and encoding

compression time[usec]

W wavelet

{2
o

i malloc

NO compression 1/0

N B
o o

o

COMPARISON TO WITHOUT OUR
APPROACH

Encoding

M
Wavelet Simple -

transformation quantization

In comparison with
only gzip, our / gzip‘
approach reduces - .

checkpoint size by

75% gzip‘

Encoding

Proposal
v guantization
- n=128 >

90

80 -

=
M only gzip

X

'E' 70 A

C 60 -

S 50 - wavelet+gzip

’g 40 " simple quantization(n=128) Simple quantization achieves

g 7 o better compression rate, but
20 - “proposal quantizationn=128) |1 Jarger error than proposal
10 1 quantization

0 .

compression approach

EVALUATION OF ERROR

Reduce an error with # of division(n) increasing

0.006

0.005 | -

o
o
o
=

relative error[%]

©
o
S
]

0.003 + -

X — X,
— i i
REi =

man {xj}—mmj {Xj}

* An error reduce by about 98% at n = 128 compared to n = 1
Our quantization reduce an error in comparison with simple one

* A degree of reduction of an error is different depending on arrays

0.008

0.007 | -

0.006 | -

i simple
guantization

relative error[%]

& proposal
quantization

o
o
S
w

0.002

0.001 11

An average error on pressure array

0.001
l_ e B_ B o
1 2 4 8 16 32 64 128

of division

0.004

0.005 1 -

K simple
quantization

i proposal
quantization

1 2 4 8 16 32 64 128
of division

An average error on temperature error

On all variables, maximum error is within 5% J

Summary

= Resilience APls
. Resilient APIs in MPI is critical for fast and transparent recovery in HPC applications

= Resilient Architecture
. Burst buffers Burst buffers are beneficial for C/R at extreme scale
Uncoordinated C/R
— When MTBEF is days or a day, uncoordinated C/R may not be effective
— If MTBF is a few hours or less, will be effective
Level-2 failure, and Level-2 performance

= Reducing Level-2 failure and increasing Level-2 performance are critical to improve overall
system efficiency

Fewer number of burst buffers
— Adding additional burst buffer nodes increases the failure rate
— May degrades system efficiency more than the efficiency gained by the increased bandwidth
— We need to be careful a trade-off between I/O performance and reliability of burst buffers

g Lossy data compression
Preliminary, but promising

Lawrence Livermore National Laboratory R,

Q&A

Speaker

Kento Sato
Lawrence Livermore National Laboratory
kento@lInl.gov

External collaborators

Satoshi Matsuoka, Tokyo Tech
Naoya Maruyama, RIKEN AICS

IB{LFRAR
® RIKEN

RIK=N

TOKYO TECH

Lawrence Livermore National Laboratory R,

B Lawrence Livermore
National Laboratory

