
LLNL-PRES-664262
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Extreme-Scale Resilience
 for Billion-Way of Parallelism

SC14 Workshop: ATIP Workshop on Japanese Research Toward Next-Generation Extreme Computing

Kento Sato
Lawrence Livermore National Laboratory

11/17/2014

LLNL-­‐PRES-­‐664262	

Failures	
 on	
 HPC	
 systems	

•  System	
 resiliency	
 is	
 cri<cal	
 for	
 future	

extreme-­‐scale	
 compu<ng	

•  MTBF	
 of	
 supercomputers	

–  LLNL	
 (Hera,	
 Atlas	
 &	
 Coastal):	
 1.2	
 days[1]	

–  Blue	
 Waters:	
 8-­‐12	
 hours[2]	

–  Titan:	
 8-­‐12	
 hours	
 (<=	
 a	
 few	
 failures/day[2])	

•  MTBF	
 is	
 shrinking	

–  MTBF	
 is	
 projected	
 to	
 shrink	
 to	
 a	
 few	
 hours	

2	

•  Checkpoint/Restart	
 is	
 a	
 popular	
 way	
 for	
 fault	
 tolerance	

•  Simple	
 checkpoint/restart	
 may	
 not	
 work	
 at	
 extreme	
 scale	

0
0.5

1
1.5

2
2.5

3
3.5

0 256 512 768 1024 1280 1536

PF
S

ch
ec

kp
oi

nt
 ti

m
e

(h
ou

rs
)

of nodes

TSUBAME2.0 checkpoint time trend

[1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing System,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC ’10. Washington, DC, USA: IEEE Computer Society, Nov. 2010, pp. 1–11. [Online].
Available: http://dx.doi.org/10.1109/SC.2010.18
[2] Yves Robert, “Fault_Tolerance Techniques for Computing at Scale”, Keynote Talk, CCGrid2014
[3] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-blocking Checkpointing
System", SC12

LLNL-­‐PRES-­‐664262	

Tokyo Tech.
Billion-Way Resilience Project (2011-2015)	

•  PI: Satoshi Matsuoka
•  Current collaborations:

–  ANL (Franck Cappello, FTI), LLNL (Bronis de Spinksi, SCR), ETH Zurich
(Torsten Hoefler), RIKEN (Naoya Maruyama), U-Tokyo (Hideyuki Jitsumoto) …

•  Objective: Scalable fault tolerance techniques for extreme scale
system

–  API & Software: Encoding/Redundancy technique, Compression, Support for
Many-core architecture

–  Architecture: Scalable Storage design, and Resilient network/interconnects
–  Analysis: Failure analysis, and Failure prediction
–  Modeling:　Optimal checkpoint interval, Encoding/Redundancy, and I/O model

3

LLNL-­‐PRES-­‐664262	

•  a	

Tokyo Tech.
Billion-Way Resilience Project (2011-2015)	

API & software

Architecture

Model

Analysis

Top-­‐
down	

Bo*om-­‐
up	

#	
 of	
 fron<ers:nfron%er，　 #	
 of	
 all	
 ver<ces:nall,	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 parameter	
 :	
 α,	
 β	

OpenNVM	
 like	
 Key-­‐value	
 store	

Interface	

NVM	
 (Fusion-­‐io	
 flash	
 device)	

KVS	
 	
 on	
 NVM	
 supporFng	
 range-­‐queries	

In-­‐memory	
 B
+Tree	

In
tr
od

uc
ti
on

P
ro
bl
em

D
om

ai
n

In
m
os
t
liv
in
g
or
ga
ni
sm

s
ge
ne
ti
c
in
st
ru
ct
io
ns

us
ed

in
th
ei
r
de
ve
lo
pm

en
t
ar
e
st
or
ed

in
th
e
lo
ng

po
ly
m
er
ic

m
ol
ec
ul
e
ca
lle
d
D
N
A
.

D
N
A
co
ns
is
ts

of
tw
o
lo
ng

po
ly
m
er
s
of

si
m
pl
e
un

it
s

ca
lle
d
nu

cl
eo
ti
de
s.

T
he

fo
ur

ba
se
s
fo
un

d
in

D
N
A
ar
e
ad
en
in
e
(a
bb
re
vi
at
ed

A
),
cy
to
si
ne

(C
),
gu
an
in
e
(G

)
an
d
th
ym

in
e
(T

).

A
le
ks
an

dr
D
ro
zd

,
N
ao

ya
M
ar
uy

am
a,

S
at
os
hi

M
at
su
ok

a
(T

IT
E
C
H
)

A
M
ul
ti

G
P
U

R
ea

d
A
lig

nm
en

t
A
lg
or
it
hm

w
it
h
M
od

el
-b
as
ed

P
er
fo
rm

an
ce

O
pt
im

iz
at
io
n

N
ov

em
b
er

1,
20

11
5
/
54

>>	

High Performance Computing Applications

•  Encoding/Redundancy technique
•  Checkpoint compression
•  Asynchronous I/O APIs for checkpointing
•  Support for Many-core architecture
•  Resource manager & Scheduler for resilience

•  Resilient storage design
•  Resilient network design

•  Failure monitoring & analysis

•  Models of
checkpinting / I/O
for optimal interval
& performance
prediction

LLNL-­‐PRES-­‐664262	
 5	

	

松岡	
 聡,	
 佐藤	
 賢斗,	
 遠藤敏夫	
 "エクサスケールスパコンに向けた耐故障性の評価	
 -­‐-­‐-­‐	
 TSUBAME2.0を例にして	
 -­‐-­‐-­‐",	
 IPSJ	
 SIG	
 Technical	
 Reports	
 2013-­‐HPC-­‐141,	
 Okinawa,	
 Sep,	
 2013.	

•  Failures	
 seasonal	

–  Largely	
 due	
 to	
 boot	
 failures	
 in	
 peak-­‐shie	

opera<ons	
 during	
 summer	
 to	
 limit	
 power,	

despite	
 SW	
 retries	

–  Future	
 SCs	
 in	
 Clouds	
 need	
 to	
 cope	
 with	
 this	

•  GPU	
 vs.	
 CPUs	

–  19	
 CPU+memory	
 fail-­‐stop	
 failures,	
 25	

replacements,	
 MTBF	
 118	
 years,	
 2.2218	
 FLOP/error	

–  53	
 GPU+memory	
 ECC	
 fail-­‐stop	
 failures,	
 57	

replacements,	
 MTBF	
 75	
 years,	
 1.6119	
 FLOP/error	

–  GPU	
 error	
 rate	
 x7	
 beier	
 /	
 flop	
 vs.	
 CPU,	

propor<onal	
 to	
 performance	
 difference	
 per	
 chip	

•  Failures	
 are	
 Largely	
 Independent	

–  Most	
 of	
 failures	
 are	
 a	
 single	
 node	

–  Low	
 #	
 of	
 InfiniBand	
 and	
 storage	
 failures	

Failure history of TSUBAME2.0/2.5

We’re	
 are	
 Disclosing	
 	

the	
 failure	
 history	
 in	
 public	

Findings

API

Architecture

Modeling

Analysis

LLNL-­‐PRES-­‐664262	
 6	

[SC11, EuroPar12 & Cluster12 (Leonardo Bautista-­‐‑Gomez et al.)]	

6	

ckpt	
 A3	

ckpt	
 A2	

ckpt	
 A1	

Parity	
 1	

Parity	
 4	

ckpt	
 D3	

ckpt	
 D2	

ckpt	
 D1	

Node	
 1	
 Node	
 2	
 Node	
 3	
 Node	
 4	

•  Diskless	
 checkpoint:	

–  Create	
 redundant	
 data	
 across	
 local	

storages	
 on	
 compute	
 nodes	
 using	
 a	

encoding	
 technique	
 such	
 as	
 Reed-­‐
solomon,	
 XOR	

•  Scalable	
 by	
 using	
 distributed	
 disks	

–  Can	
 restore	
 lost	
 checkpoints	
 on	
 a	
 failure	

caused	
 by	
 small	
 #	
 of	
 nodes	
 like	
 RAID-­‐5	

Diskless	
 checkpoin<ng	

ckpt	
 B3	

ckpt	
 B2	

Parity	
 2	

ckpt	
 B1	

ckpt	
 C3	

Parity	
 3	

ckpt	
 C2	

ckpt	
 C1	

Diskless	
 checkpoint	
 run<me	
 library	
 using	
 Reed-­‐Solomon	
 encoding	
 	

Ø 	
 FTI	
 implements	
 a	
 scalable	
 Reed-­‐
Solomon	
 encoding	
 algorithm	
 by	

u<lizing	
 local	
 storages	
 such	
 as	
 SSD	

	

Ø 	
 FTI	
 analyzes	
 the	
 topology	
 of	
 the	

system	
 and	
 create	
 encoding	

clusters	
 that	
 increase	
 the	

resilience	

API

Architecture

Modeling

Analysis

LLNL-­‐PRES-­‐664262	

•  Objective: Minimize checkpoint overhead to PFS"
o  Minimize CPU usage, memory and network bandwidth"

•  Proposed method: Implementation and modeling
Non-blocking checkpointing"
o  Asynchronously write checkpoints to PFS through Staging nodes using

RDMA"
o  Determine the optimal checkpoint interval on the asynchronous

checkpoint scheme"

7	

CN 1	
 Local	

storage	

CN 2	
 Local	

storage	

CN N	
 Local	

storage	

Transfer	

client	

TN 1	
 Transfer	

server	

TN 2	

TN M	

RD
M
A	

Re
ad
	

Compute	
 nodes	
 (CN)	
 Transfer	
 nodes	
 (TN)	

PFS	

Transfer	

client	

Transfer	

client	

Transfer	

server	

Transfer	

server	

Fl
us
h	

PFS	

PFS	

x Computation state followed by
level-x checkpoint

x Recovery state from level-x
checkpoint

Transition to a recovery state
by level-2 failure

Transition to a computation
state by level-2 recovery

1 2

1

1 1 1

1 1

2

1 1 1

1 1
L2-0

1

1 2

1

1 1 1

1 1

2

1

2 1 1 1

1 1

L2-1 L2-2

Incomplete
segment 1

Complete
segment 2

Incomplete
segment 2

Complete
segment 3

[SC12, Kento Sato et al.]	

8%

Failure analysis on TSUBAME2.0

8-­‐12%	
 of	
 failures	
 s<ll	
 	

requires	
 PFS	
 checkpoint	

Async.	
 checkpoin<ng	
 system	
 	
 Async.	
 checkpoin<ng	
 model	

API

Architecture

Modeling

Analysis

LLNL-­‐PRES-­‐664262	

750$

755$

760$

765$

770$

775$

0$ 500$ 1000$ 1500$ 2000$ 2500$ 3000$

IO
R$
Ru

n'
m
e$
(s
ec
on

ds
)�

#ofprocesses�

SCRw/oL2$checkpoint$ SCR$w/$Non9blocking$$9$4$C$nodes:$1Tnode$
SCR$w/$Non9blocking$9$8Cnodes:1T$node$ SCR$w/$Non9blocking$9$16Cnodes:1T$node$
SCR$w/$RDMA$Async$flush$9$32Cnodes:1T$node$

Approximately less than 1%
of impact on the runtime	

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

Failure"rate"x1"" Failure"rate"x2" Failure"rate"x10"

Effi
ci
en

cy
(

L2"cost"x1"/"Non=blocking"

L2"cost"x1"/"Blocking"

L2"cost"x2"/"Non=blocking"

L2"cost"x2"/"Blocking"

L2"cost"x10"/"Non=blocking"

L2"cost"x10"/"Blocking"

90% of efficiency in most cases	

•  Experiment: !
o  Benchmark: CPU-bound micro benchmark"
o  Method"

•  Non-blocking: proposed method on two level checkpointing"
o  L1: XOR checkpoint, L2: Proposed non-blocking checkpoint"

•  Blocking: Existing two level checkpointing "
o  L1: XOR checkpoint, L2: Blocking checkpoint"

•  Results: "
o  Asynchronous RDMA checkpoint: About 1 % of overhead with the proposed checkpointing"
o  Optimal checkpoint interval: Achieved high efficiency even with increasing failure rates "

Efficiency = ideal _ time
expected _ time

[SC12, Kento Sato et al.]	

API

Architecture

Modeling

Analysis

LLNL-­‐PRES-­‐664262	

•  MPI	
 	

–  De-­‐facto	
 communica<on	
 library	
 enabling	
 parallel	
 compu<ng	

–  Standard	
 MPI	
 employs	
 a	
 fail-­‐stop	
 model	

•  When	
 a	
 failure	
 occurs	
 …	

–  MPI	
 terminates	
 all	
 processes	
 	

–  The	
 user	
 locate,	
 replace	
 failed	
 nodes	
 with	
 spare	
 nodes	

–  Re-­‐ini<alize	
 MPI	

–  Restore	
 the	
 last	
 checkpoint	

•  Applica<ons	
 will	
 use	
 more	
 <me	
 for	
 recovery	
 	

–  Users	
 manually	
 locate	
 and	
 replace	
 the	
 failed	
 nodes	
 with	
 spare	
 nodes	
 via	

machinefile	

–  The	
 manual	
 recovery	
 opera<ons	
 may	
 introduce	
 extra	
 overhead	
 and	

human	
 errors	

⇒	
 APIs	
 for	
 transparent,	
 but	
 fast	
 recovery	
 are	

cri<cal	
 9	

Replace	
 failed	
 node	

Restore	

checkpoint	

Locate	
 failed	
 node	

MPI	
 ini<aliza<on	

Terminate	
 processes	

Checkpoin<ng	

Applica<on	
 run	

MPI	
 re-­‐ini<aliza<on	

End	

Start	

Failure	

[IPDSP2014, Kento Sato et al.]	

Requirement of fast and transparent recovery

API

Architecture

Modeling

Analysis

LLNL-­‐PRES-­‐664262	

•  FMI	
 is	
 a	
 survivable	
 messaging	
 interface	
 providing	
 MPI-­‐like	
 interface	
–  Scalable	
 failure	
 detec<on	
 ⇒	
 Overlay	
 network	

–  Dynamic	
 node	
 alloca<on	
 	
 ⇒	
 FMI	
 ranks	
 are	
 virtualized	

–  Fast	
 in-­‐memory	
 checkpoint/restart	
 	
 	
 	
 	
 ⇒	
 Diskless	
 checkpoint/restart	
 10	

1 0 3 2 5 4 7 6
FMI rank (virtual rank)

FMI	
 overview	

Scalable failure detection

MPI-like interface
FMI

User’s view

P3 P2 P5 P4

Node 1 Node 2 Node 3

P9 P8

Node 4

P7 P6

Dynamic node allocation

Fast checkpoint/restart
P2-2
P2-1

Parity 2
P2-0

P3-2
P3-1

Parity 3
P3-0

P4-2
Parity 4

P4-1
P4-0

P5-2
Parity 5

P5-1
P5-0

Parity 6
P6-2
P6-1
P6-0

Parity 7
P7-2
P7-1
P7-0

P0-2
P0-1
P0-0

 Parity 0

P1-2
P1-1
P1-0

Parity 1

0
7 1

6 2
3

4 5

FMI’s view

Node 0

P1 P0

P0-2
P0-1
P0-0

Parity 0

P1-2
P1-1
P1-0

Parity 1

P0-2
P0-1
P0-0

 Parity 0

P1-2
P1-1
P1-0

Parity 1

[IPDSP2014, Kento Sato et al.]	

API

Architecture

Modeling

Analysis

FMI for Fast and transparent recovery

LLNL-­‐PRES-­‐664262	
 11	

int main (int *argc, char *argv[]) {	
 FMI_Init(&argc, &argv);	
 FMI_Comm_rank(FMI_COMM_WORLD, &rank);	
 /* Application’s initialization */	
 while (() < numloop) {	
 /* Application’s program */	
 }	
 /* Application’s finalization */	
 FMI_Finalize();	
}	

FMI	
 example	
 code	

n = FMI_Loop(…) 	

•  FMI_Loop	
 enables	
 transparent	
 recovery	
 and	

roll-­‐back	
 on	
 a	
 failure	

–  Periodically	
 write	
 a	
 checkpoint	

–  Restore	
 the	
 last	
 checkpoint	
 on	
 a	
 failure	

[IPDSP2014, Kento Sato et al.]	

0

500

1000

1500

2000

2500

0 500 1000 1500

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

of Processes (12 processes/node)

MPI
FMI
MPI + C
FMI + C
FMI + C/R

Chapter 4: FMI: Fault Tolerant Messaging Interface 57

0

50

100

150

200

250

300

350

0 500 1000 1500

C
/R

 T
hr

ou
gh

pu
t (

G
B

/s
ec

on
ds

)

of Processes

Checkpoint (XOR encoding)
Restart (XOR decoding)

Figure 4.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [76].

4.6.1 FMI Performance

Table 4.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 4.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

P2P communication performance

Even with the high failure rate,
FMI incurs only a 28% overhead

MTBF: 1 minute

 FMI directly writes
checkpoints via memcpy, and

can exploit the bandwidth

API

Architecture

Modeling

Analysis

Example code & Evaluation

LLNL-­‐PRES-­‐664262	

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

IPSJ SIG Technical Report

SSD#2# SSD#3# SSD#4#SSD#1# SSD#1# SSD#2# SSD#3# SSD#4#

Compute#
node#1#

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

Compute#
node#1##

Compute#
node#2#

Compute#
node#3#

Compute#
node#4#

PFS#(Parallel#file#system)# PFS#(Parallel#file#system)#

A single node

Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.

c⃝ 2013 Information Processing Society of Japan 3

Interconnect :Mellanox FDR HCA (Model No.: MCX354A-FCBT)
12	

TSUBAME3.0	
 EBD	
 Prototype	
 mSATA	
 High	
 I/O	
 BW,	
 low	
 power	
 &	
 cost	

mSATA ☓ 8
(Read: 500MB/s,
Write: 260MB/s)

Adaptec RAID
☓ 1

mSATA mSATA mSATA mSATA mSATA mSATA mSATA mSATA

EBD I/O

[CCGrid2014, Kento Sato et al.]	

•  Provide	
 POSIX-­‐like	
 I/O	
 interfaces	

–  open,	
 read,	
 write	
 and	
 close	

–  Client	
 can	
 open	
 any	
 files	
 on	
 any	
 servers	

•  IBIO	
 use	
 ibverbs	
 for	
 communica<on	
 between	
 clients	
 and	
 servers	

–  Exploit	
 network	
 bandwidth	
 of	
 infiniBand	
 	

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16

Re
ad

/W
ri

te
 th

ro
ug

hp
ut

 (G
B/

se
c)

of Processes

Read - Peak Read - Local Read - IBIO Read - NFS
Write - Peak Write - Local Write - IBIO Write - NFS

open(“hostname:/path/to/file”, mode)	

API

Architecture

Modeling

Analysis

LLNL-­‐PRES-­‐664262	

Resilience	
 modeling	
 overview	

13	

To	
 find	
 out	
 the	
 best	
 checkpoint/restart	
 strategy	
 for	
 systems	
 with	
 burst	
 buffers,	
 we	
 model	
 checkpoin<ng	
 strategies	

	

Hi
Compute	

node	

Si

i = 0	
 i > 0	

1 2 mi
Hi-1 Hi-1 Hi-1

Storage	
 Model: HN {m1, m2, . . . , mN }

Recursive	
 structured	
 storage	
 model	
 C/R	
 strategy	
 model	

Li = Ci + Ei	
 Oi =	

Ci + Ei (Sync.) 	

Ii (Async.)	

Ci or Ri =	

<	
 C/R	
 date	
 size	
 /	
 node	
 >☓	
 <#	
 of	
 C/R	
 nodes	
 per	
 Si

*	
 >	
 	

<	
 write	
 perf.	
 (
 wi)	
 	
 >	
 	
 	
 or	
 	
 	
 <read	
 perf.	
 (
 ri)	
 >	
 	

+	

1

1

1 1

2

1 11 1

1

1 1

2

1

2

1 1

11 2

1 1

1 1 1

1 1

1 1 21

k
p0 (t + ck)
t0 (t + ck)

k pi (t + ck)
ti (t + ck)i

k

k i

p0 (rk)

pi (rk)

p0 (rk)
t0 (rk)

ti (rk)

Duration
t + ck rk

No
failure

Failure

λi : i -level checkpoint time

: c -level checkpoint time
rc : c -level recovery time

cc
t : Interval

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

k 1

k

Successful
 Level-k
recovery

Successful
Computation

Level k
Failures during

recovery

! Level < k
Failures during

recovery

Level k
Failures during
computation or
checkpointing

!

Level < k
Failures during
computation or
checkpointing

1
Successful

Computation

Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T) = e−λT

t0(T) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T) =
λi

λ
(1 − e−λT)

ti(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure

6

p0 (T)
t0 (T)

: No failure for T seconds
: Expected time when p0 (T)

pi (T)

ti (T)
: i - level failure for T seconds
: Expected time when pi (T)

MLC	
 model

[CCGrid2014, Kento Sato et al.]	

IPSJ SIG Technical Report

Table 3 Simulation configuration

level 1 level 2
ri 16 GB/sec 10 GB/sec
wi 8.32 GB/sec 10 GB/sec

Flat buffer Burst buffer
H2 {v1, v2} H2 {1, 1088} H2 {32, 34}
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 7.61 × 10−8}

Checkpoint size per node (D) 5GB
Encoding rate node (e1) 400MB/sec

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

1" 2" 10" 50" 100"

Effi
ci
en

cy
(

Scale(factor((xF, xL2)(

Flat"Buffer6Coordinated" Flat"Buffer6Uncoordinated"
Burst"Buffer6Coordinated" Burst"Buffer6Uncoordinated"

Fig. 3 Efficiency of multi-level coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

compute nodes.
Failure rates(F) are based on failure analysis using pF3D [8].

The failure analysis shows that average failure rates of a single
compute node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9,
PFS is 3.93 × 10−10. In a flat buffer system, each failure rate
is calculated by multiplying the each failure rate by the num-
ber of compute nodes, i.e., 1088 nodes. This leads to failure
rates of Failure rate of a single Coastal nodes is We use fail-
ure analysis in 2.14 × 10−7 for LOCAL, 1.92 × 10−6 for XOR,
and 4.27 × 10−7 for PFS. Actually, if a level-i failure rate is
lower than a level-i+ 1 one, the optimal level i checkpoint counts
is zero because level i can be recovery level i + 1 checkpoint,
which is written more frequently than level i. If a compute nodes
failure occurs, a flat buffer system lose checkpoint data on the
failed compute node, so XOR is required to restore the lost check-
point data. Thus, we use 2 level checkpoint/restart where level
1 is XOR, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, 34 burst buffer nodes are used, so fail-
ure rate of entire burst buffer nodes is calculated as 6.67 × 10−8,
failure rate requiring PFS as 1.33 × 10−8. Even on a com-
pute nodes failure, a burst buffer nodes can keep checkpoint
data, so LOCAL checkpoint is enough to tolerate a compute node
failure. Thus, we use 2 level checkpoint/restart where level 1
is LOCAL, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14×10−7 +1.92×10−6, 6.28×10−8 +1.33×10−8}
for burst buffer system.

5.2 Results
At extreme systems will be larger, overall failure rates and

checkpoint size are expected to increase. To explore the effects,
we increase failure rates and level 2 checkpoint costs by factors
of 1, 2, 10, 50 and 100, and compare efficiency between multi-
level coordinated and uncoordinated checkpoint/restart on a flat
buffer system and a burst buffer system. We do not change level
1 checkpoint cost, since the performance of flat and burst buffer
is expected to scale with system size.

As Figure 3 shows the efficiency under different failure rates
and checkpoint costs. When we computes the efficiency, we op-
timize level-1 and 2 checkpoint frequency (v1 and v2), and inter-
val between checkpoints (T) using our multi-level asynchronous
checkpoint/restart model, which yields the maximal efficiency.
The burst buffer system always achieves higher efficiency than
the flat buffer system. The efficiency gap becomes more apparent
with higher failure rates and higher checkpoint cost because the
burst buffer system integrate checkpoints into the fewer number
of burst buffer nodes than compute nodes, which decrease proba-
bility of losing checkpoints, and restarting from a slower PFS.

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

The efficiency in Figure 3 does not include message logging
overhead, so validity of uncoordinated checkpoint/restart depends
on degree of message logging overhead. Table 4 shows allowable
message logging overhead. To achieve higher efficiency than co-
ordinated checkpoint/restart, the logging overhead must be below
a few percent in a current and a 10 times scaled system. In sys-
tems whose failure rates and checkpoint costs is 50 times higher
than a current system, uncoordinated checkpoint/restart is neces-
sary even with high logging overhead. By using uncoordinated
checkpoint/restart, we can leverage a burst buffer, and achieve
70% of efficiency even on two order of magnitude larger scale
systems because partial restart of uncoordinated checkpoint can
exploit bandwidth of both burst buffers and a PFS, and accelerate
restart time.

Building a reliable data center or supercomputer, and maxi-
mizing system efficiency are significant given fixed amount of
cost. To explore which tiers of storage can impact system ef-
ficiency improvement, we increase performance of each tier of
storage failure by factors of 1, 2, 10 and 20. Figure 4 shows
efficiency in increasing scale factor of performance of level-1
checkpoint/restart in 100 times scaled systems in Figure 3. As
shown, improvement of flat buffer and burst buffer performance
does not impact the system efficiency. But, as in Figure 5, in-
creasing PFS performance improve the system efficiency, and we
can achieve over 80% efficiency with both coordinated and unco-
ordinated checkpoint/restart on the burst buffer system. The both

c⃝ 2013 Information Processing Society of Japan 5

MTBF = days a day 2, 3H 1H

API

Architecture

Modeling

Analysis

LLNL-­‐PRES-­‐664262	

•  Evalua<on	
 on	
 a	
 real	
 applica<on:	
 NICAM	

–  compression	
 rate:	
 10%-­‐15%	

–  Errors:	
 a	
 few	
 percent	
 of	
 errors	

•  More	
 inves<ga<on	
 is	
 needed	
 to	
 deal	
 with	

the	
 errors	

	

14	

[SubmiUed to IPDPS2015, Naoto Sasaki et al.]	

API

Architecture

Modeling

Analysis

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

n = 4

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Values in high-frequency band Values in high-frequency band Values in high-frequency band

F
re

qu
en

cy

Distribution of high-frequency band

(1) (2)

average [0] average [1] average [2] average [3]

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Values in high-frequency band Values in high-frequency band Values in high-frequency band

(4) (5)

(3) d = 10

Ntotal

d
!3# !2.5# !2# !1.5# !1# !0.5# 0# 0.5# 1# 1.5# 2# 2.5# 3# 3.5# 4#

n = 4

n = 4

average [0]

average [1] average [2]

average [3]

Simple quantization

Proposed quantization

Figure 4: Simple quantization

 array average

average [0] average [n−1]…… double	 char	char	 char	double	 double	

Low and high-frequency band
(double and char)

0 1 1 0 0 1 0 1 1 0 1 1 �……

bitmap�

Figure 5: output format

(Step (5) in Fig.4). By using the spike detection, we can
remarkably reduce errors with comparable compression rate
to the simple quantization.

C. Encoding
After the quantization, the high-frequency band regions

to which the quantization is applied consist of only n kinds
of floating point values, and these values are stored in the
array, average[i] (i = 1 . . . n), which is created in the
quantization. To reduce the sizes of the values in the high-
frequency band regions, we replace the floating-point values
with indexes of the average array, and store them to char
variables. The value, n, does not become large number to
obtain satisfying errors, 1 byte of the data type is enough to
store each index. Because we store the array of the indexes
with the average array, this operation is lossless.

D. Output Format
Fig.5 shows output format when we write the compressed

checkpoint to a file system. As described in Section III-B,
our proposed lossy compression apply only the part of
values in high-frequency band regions. To memorize which
values are transformed and encoded, we use bitmap for the
decompression. To decode the encoded values, we also store
the average array, and append to bitmap. Finally, we apply
gzip to the formatted output.

IV. EVALUATION

A. Experimental Conditions and Environment

We apply our approach with lossy compression to target
checkpoint data of a real climate application, NIACAM
[14]. The lossy compression has been widely used in order
to output data for visualization of simulations, however,
it has been hardly used for checkpointing, in fear of that
production of errors in floating point arrays may invalidate
the results of simulations. Thus in addition to evaluation
of compression time, I/O time and compression rate, we
evaluate the effects of lossy compression on simulated
results; we include evaluation of relative errors introduced
by the lossy compression, by comparing the result data and
original data.

We use intermediate checkpointing images during the
runs of NICAM, since we found the initial data in the
arrays in NICAM is too flat to evaluate the effects of
lossy compression in a fair fashion. We use the checkpoint
image after 720 time steps if not otherwise specified. In our
experiments, the targets of compression data are arrays of
pressure, temperature and wind velocity (X, Y, Z) in NICAM
checkpointing images. These arrays are 3D double-precision
floating point arrays, each of which has size of 1156×82×2.
Among of those, this section mainly describes results for the
temperature array because we see the similar results in the
other arrays.

We use a PC cluster as the experimental platform. Each
node has a specification shown in Table I, and nodes share an
NFS file system, which is used to store checkpoint images.

We let csorig be checkpoint size without compression and
cscomp be checkpoint size with compression. The compres-

Table I: System specification

Node
CPU Intel Core i7-3930K 6 cores 3.20GHz

Memory DDR3 16GB
Network card Broadcom bnx2

Shared file system
File system Network File System (NFS) v3 1.5TB

RAID Dell PERC H700 (RAID6)
Disk Western Digital WD (model:WD2002FAEX)

0

10

20

30

40

50

60

70

80

90

100

C
om

pr
es

si
on

 r
at

e
[%

]

gzip

Simple quantization (n=128)

Proposed quantization (n=128)

Figure 6: Comparing compression rates of gzip, simple
method, and proposed method

sion rate(cr) is expressed with the following formula:

cr =
cscomp

csorig
× 100 (5)

We let X = {xi} be an original array and X̃ = {x̃i} be an
array obtained by compressing X and then uncompressing
the result. The relative error (rei) is expressed with the
following formula:

rei =
|xi − x̃i|

maxj{xj}−minj{xj}
(6)

We evaluate the average error avgi {xi} and the maximum
error maxi xi later.

In the experiments, we use several numbers of divisions,
division number, in the quantization phase (n in Fig.4), from
20 to 27. The parameter d is set to be 64 for our proposed
quantization in Fig.4.

B. Lossless V.S. Lossy Compression

Fig.6 shows compression rates of gzip, simple method,
and proposed method. For the two lossy compression meth-
ods, we set the division number as 128.

The results show that gzip is apparently insufficient for ar-
rays of floating point values; the compression rate is 86.78%.
On the other hand, with our lossy compression, we can
remarkably reduce checkpoint size in real applications. From

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32 64 128

C
om

pr
es

si
on

 r
at

e
[%

]�

Division number�

Simple quantization Proposed quantization

Figure 7: Compression rates under different division number,
n, and quantization methods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 8 16 32 64 128

R
el

at
iv

e
er

ro
r

[%
]�

Division number�

Simple quantization Proposed quantization

Figure 8: Relative errors under different division number, n,
and quantization methods

the experimental results, we can see that the effectiveness
of lossless compression is limited in read applications, such
as CFD applications, since checkpoint data is floating point
values. Thus, lossy compression is essential for improving
compression rate in real applications.

C. Lossy Compression with Simple and Proposed Quantiza-
tion

Fig.8 and Fig.7 show compression rates and relative errors
(average), respectively, under different division numbers, n,
and quantization methods. These two graphs illustrates a
trade-off between compression rates and errors; when we
use larger n, relative errors become smaller (better), while
compression rates get larger (worse), though the increase is
rather gradual. As shown in the figures, our proposed method
can reduce more errors while achieving the comparable
compression rate to the simple method.

Haar	
 wavlet-­‐based	
 lossy	
 compression	

LLNL-­‐PRES-­‐664262	
 15	

0
100
200
300
400
500
600

NPB SP (Class C) HDD SSD ioDrive HDD SSD ioDrive

Read Write

Po
w

er
 co

ns
um

pt
io

n
(W

)

[FTXS2013, Takafumi Saito et al.]	

Compute	
 Checkpoint	

TA TC

N. Vaiday’s
checkpointing

model Restart	

TR

failure
	

failure
	

failure
	

J = TA ⋅WA +TC ⋅WC +TR ⋅WR

Energy-­‐Away	
 C/R	
 Model	

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

ioDrive ioDrive

Read (Restart) Write (Checkpoint)

En
er

gy
 co

ns
um

pt
io

n

to
 w

ri
te

/re
ad

 1
M

B(
J/

M
B)

performance powersave ondemand profile lookup

API

Architecture

Modeling

Analysis

Power consumption
“NPB SP” = “ioDrive write”

Energy	
 op<miza<on	
 for	
 C/R	
 using	
 DVFS	

•  ioDrive	
 relies	
 on	
 CPU	
 cores	
 for	

–  Grooming:	
 a	
 garbage	
 collector	
 that	
 pre-­‐erases	

unused	
 blocks	
 in	
 background	
 to	
 accelerate	
 future	

write	
 opera<on	

–  Wear	
 leveling:	
 a	
 balanced	
 write	
 technique	
 to	
 extend	

the	
 life<me	
 of	
 a	
 device	

•  When	
 decreasing	
 CPU	

	
 frequency,	
 I/O	
 throughput	
 	

of	
 ioDrive	
 is	
 degraded	

	
 like	
 CPU	

	

3x	
 improvement	
 	

in	
 J/MB	

LLNL-­‐PRES-­‐664262	

Failure	
 Analysis	
 of	
 HPC	
 Systems	
 and	
 Fail-­‐in-­‐Place	
 Strategy	

16

Can we do fail-in-place in HPC networks?

LANL	
 Cluster	
 2	
 (97–05)	

•  Unknown	

configura<on	

Deimos	
 (07–12)	

•  728	
 nodes	

•  108	
 IB	
 switches	

•  ≈1,600	
 links	

TSUBAME2.0/2.5	
 (10–?)	

•  1,555	
 nodes	
 (1,408	

compute	
 nodes)	

•  ≈500	
 IB	
 switches	

•  ≈7,000	
 links	

Soeware	
 more	
 reliable	

High	
 MTTR	

≈1%	
 annual	
 failure	
 rate	

Repair/maintenance	

is	
 expensive!	

Fail-in-Place Strategy
•  Replace only critical

failures, and disable
non-critical failed
components

•  Common in storage
systems

•  Applied when
maintenance costs
exceed maintenance
benefits

•  Example:
IBM’s Flipstone
(uses RAID arrays;
software disables failed
HDD and migrates
data)

[SC14, Jens Domke et al.]	

API

Architecture

Modeling

Analysis

Wed
2:00PM-2:30PM

LLNL-­‐PRES-­‐664262	

Simula<ng	
 Network	
 Failures	
 and	
 Throughput	
 Degrada<on	

Rou<ng	
 is	
 elementary	
 component	
 to	
 enable	

fail-­‐in-­‐place	
 networks	

Tool-­‐chain	
 for	
 checking	
 fault	
 tolerance	
 of	

topology	
 and	
 rou<ng	
 algorithm	

•  Generate	
 faulty	
 topology	
 based	
 on	

ar<ficial/real	
 network	
 topology	

•  Apply	
 topology-­‐[aware	
 |	
 agnos<c]	

rou<ng	
 &	
 check	
 connec<vity	

•  Flit-­‐level	
 simula<on	
 of	
 InfiniBand	

hardware	
 with	
 uniform	
 random	
 injec<on	

or	
 N-­‐to-­‐N	
 exchange	
 traffic	

Jens Domke 17

Simulated throughput degradation as a
metric for network/routing reliability
•  For each % of switch/link failures do

multiple runs (diff. seeds)
•  Calculate

throughput
•  Linear

regression

Slope
(and R2)

 Intercept

[SC14, Jens Domke et al.]	

API

Architecture

Modeling

Analysis

Wed
2:00PM-2:30PM

LLNL-­‐PRES-­‐664262	

Implica<ons	
 for	
 a	
 real	
 HPC	
 System	
 and	
 Conclusions	

Fail-in-Place Network Design is possible!
(but we have to improve the routing)

Changing from Up*/Down* (default) to
DFSSSP routing on TSUBAME2.5
improves the throughput by 2.1x for the
fault- free network and increases
TSUBAME’s fail-in-place characteristics.

All investigated routing algorithms show
limitations
•  Fat-tree, UpDown, DOR, Torus2QoS
•  MinHop, SSSP, DFSSSP, LASH
Topology-aware routings
•  High throughput decrease possible

with small failure percentage
•  Fail to route highly damaged netw.
•  Routes not always DL-free (DOR)
Topology-agnostic routing algorithms
•  Ignore deadlocks (MinHop, SSSP)
•  Deadlock-avoidance via VLs can be

impossible for large scale netw.

Degradation in
8 years running
fail-in-place

[SC14, Jens Domke et al.]	

API

Architecture

Modeling

Analysis

Wed
2:00PM-2:30PM

LLNL-­‐PRES-­‐664262	

•  a	

Tokyo Tech.
Billion-Way Resilience Project (2011-2015)	

NVM Energy Model
[FTXS2013]

FTI: Fault Tolerance Interface
[SC11, EuroPar12, Cluster12]

FMI: Fault Tolerant Messaging Interface
[IPDPS2014]

Fault-in-Place Network Architecture
[SC14]

NVCR: GPU C/R library
[HCW2011]

Async. C/R
[SC12]

Async. Model
[SC12]

IBIO: Infiniband I/O
[CCGrid2014]

Burst buffer architecture
[CCGrid 2014]

Storage Model
[CCGrid2014]

API
software

Architecture

Model

Analysis Failure Monitoring
[IPSJ Tech Report]

FP Compression
[Submitted to IPDPS2015]

API to resource manager
& scheduler

Failure Prediction

Failure Analysis
w/ Machine Learning

NVM Durability model

Standardization of
failure log

LLNL-­‐PRES-­‐664262	

Awards	

Graph500 ランキング 3位
大規模グラフ処理ベンチマークGraph500 の
TSUBAME 2.0 における挑戦
鈴村 豊太郎　　上野 晃司

SC'11テクニカル・ペーパー
Physis: ヘテロジニアススパコン向けステンシル
計算フレームワーク
丸山 直也　　野村 達男　　佐藤 賢斗　　松岡 聡

SC'11テクニカル・ペーパー（最高得点獲得）
FTI :ヘテロジニアススパコン向け耐障害インタフェース
～100TFlops超　東北地方太平洋沖地震シミュレーション ～
Leonardo Bautista-Gomez Dimitri Komatitch 丸山 直也 坪井 誠司
Franck Cappello 松岡 聡 中村 武

14

23

18

SC11 Technical Paper
Perfect Score Award
(Leonardo Batista Gomez, Seiji

Tsuboi, Dimitri Komatitsch, Frank
Cappello, Naoya Maruyama &

Satoshi Matsuoka)

NVM Energy Model
[FTXS2013]

FTI: Fault Tolerance Interface
[SC11, EuroPar12, Cluster12]

FMI: Fault Tolerant Messaging Interface
[IPDPS2014]

Fault-in-Place Network Architecture
[SC14]

NVCR: GPU C/R library
[HCW2011]

Async. C/R
[SC12]

Async. Model
[SC12]

API
software

Architecture

Model

Analysis Failure Monitoring
[IPSJ Tech Report]

FP Compression
[Submitted to IPDPS2015]

API to resource manager
& scheduler

Failure Prediction

Failure Analysis
w/ Machine Learning

NVM Durability model

Standardization of
failure log

IBIO: Infiniband I/O
[CCGrid2014]

Burst buffer architecture
[CCGrid 2014]

Storage Model
[CCGrid2014]

CCGrid2014 Best Paper
Award

(Kento Sato, Kathryn Mohror, Adam Moody,
Todd Gamblin, Bronis R. de Supinski, Naoya

Maruyama & Satoshi Matsuoka)

LLNL-­‐PRES-­‐664262	

SC14 Technical Paper	

NVM Energy Model
[FTXS2013]

FTI: Fault Tolerance Interface
[SC11, EuroPar12, Cluster12]

FMI: Fault Tolerant Messaging Interface
[IPDPS2014]

Fault-in-Place Network Architecture
[SC14]

NVCR: GPU C/R library
[HCW2011]

Async. C/R
[SC12]

Async. Model
[SC12]

API
software

Architecture

Model

Analysis Failure Monitoring
[IPSJ Tech Report]

FP Compression
[Submitted to IPDPS2015]

Failure Prediction

Failure Analysis
w/ Machine Learning

NVM Durability model

Standardization of
failure log

IBIO: Infiniband I/O
[CCGrid2014]

Burst buffer architecture
[CCGrid 2014]

Storage Model
[CCGrid2014]

API to resource manager
& scheduler

Fail-in-Place Network Design: Interaction between Topology,
Routing Algorithm and Failures

(Jens Domke, Torsten Hoefler, Satoshi Matsuoka)

Wednesday 2:00PM-2:30PM
Room	
 388-­‐89-­‐90	

LLNL-­‐PRES-­‐664262	

Selected Publications
SC14

J. Domke and T. Hoefler and S. Matsuoka, “Fail-in-Place Network Design: Interaction between Topology, Routing Algorithm
and Failures”, IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis
(SC14), New Orleans, LA, USA, 2014

CCGrid2014
Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "A
User-level InfiniBand-based File System and Checkpoint Strategy for Burst Buffers", In Proceedings of the 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid2014), Chicago, USA, May, 2014.

IPDPS2014
Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka,
"FMI: Fault Tolerant Messaging Interface for Fast and Transparent Recovery", In Proceedings of the International Conference
on Parallel and Distributed Processing Symposium 2014 (IPDPS2014), Phoenix, USA, May, 2014.

FTXS2013
Takafumi Saito, Kento Sato, Hitoshi Sato and Satoshi Matsuoka, "Energy-aware I/O Optimization for Checkpoint and Restart
on a NAND Flash Memory System", In the Workshop on Fault-Tolerance for HPC at Extreme Scale 2013 (FTXS2013) in
conjunction with the International Symposium on High Performance Parallel and Distributed Computing (HPDC13), New
York, USA, June, 2013.

IPDPS2013
Improving the computing efficiency of HPC systems using a combination of proactive and preventive checkpointing - Mohamed
Slim Bouguerra, Ana Gainaru, Leonardo Bautista-Gomez, Franck Cappello, Naoya Maruyama, Satoshi Matsuoka, IEEE
International Parallel & Distributed Processing Symposium 2013 (IPDPS'13), Boston, MA, USA. (Acceptance rate 21.0%)

SNA-MC13
SAMPSON Parallel Computation for Sensitivity Analysis of TEPCO's Fukushima Daiichi Nuclear Power Plant Accident -
Marco Pellegrini, Leonardo Bautista-Gomez, Naoya Maruyama, Masanori Naitoh, Satoshi Matsuoka, Franck Cappello, Joint
International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA-MC'13), Paris, France.

SC12
Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka,
"Design and Modeling of a Non-blocking Checkpointing System", In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis 2012 (SC12), Salt Lake, USA, Nov, 2012.

Cluster2012 Leonardo Bautista Gomez, Thomas Ropars, Naoya Maruyama, Franck Cappello, Satoshi Matsuoka. “Hierarchical Clustering
Strategies for Fault Tolerance in Large Scale HPC Systems”, In Proc. of IEEE Cluster 2012, IEEE Press, Sep. 2012.

EuroPar2012
L. Bautista Gomez, B. Nicolae, N. Maruyama, F. Cappello, S. Matsuoka. “Scalable Reed-Solomon-based Reliable Local Storage
for HPC Applications on IaaS Clouds”,　In Proc. of International European Conference on Parallel and Distributed Computing
(EuroPar 2012), Aug. 2012.

SC11
Leonardo Bautista, Naoya Maruyama, Dimitri Komatitsch, Tsuboi Seiji, Franck Cappello, Satoshi Matsuoka, Nakamura
Takeshi. ”FTI: High performance Fault Tolerance Interface for hybrid systems”. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC).Page 1-12.Nov. 2011.

IPDPSW2011
Nukada, A.; Takizawa, H.; Matsuoka, S., "NVCR: A Transparent Checkpoint-Restart Library for NVIDIA CUDA," Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on , vol., no., pp.104,113,
16-20 May 2011

Question ?	

Emerging Technologies Booth 	

Tuesday 5pm-6pm
Wednesday 5pm-6pm	

