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Failures	
  on	
  HPC	
  systems	
  
•  System	
  resiliency	
  is	
  cri<cal	
  for	
  future	
  

extreme-­‐scale	
  compu<ng	
  
•  MTBF	
  of	
  supercomputers	
  

–  LLNL	
  (Hera,	
  Atlas	
  &	
  Coastal):	
  1.2	
  days[1]	
  
–  Blue	
  Waters:	
  8-­‐12	
  hours[2]	
  
–  Titan:	
  8-­‐12	
  hours	
  (<=	
  a	
  few	
  failures/day[2])	
  

•  MTBF	
  is	
  shrinking	
  
–  MTBF	
  is	
  projected	
  to	
  shrink	
  to	
  a	
  few	
  hours	
  

2	
  

•  Checkpoint/Restart	
  is	
  a	
  popular	
  way	
  for	
  fault	
  tolerance	
  
•  Simple	
  checkpoint/restart	
  may	
  not	
  work	
  at	
  extreme	
  scale	
  

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

0 256 512 768 1024 1280 1536 

PF
S 

ch
ec

kp
oi

nt
 ti

m
e 

(h
ou

rs
) 

# of nodes 

TSUBAME2.0 checkpoint time trend 

[1] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing System,” in Proceedings of the 2010 ACM/IEEE 
International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC ’10. Washington, DC, USA: IEEE Computer Society, Nov. 2010, pp. 1–11. [Online]. 
Available: http://dx.doi.org/10.1109/SC.2010.18  
[2] Yves Robert, “Fault_Tolerance Techniques for Computing at Scale”, Keynote Talk, CCGrid2014 
[3] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-blocking Checkpointing 
System", SC12 



LLNL-­‐PRES-­‐664262	
  

Tokyo Tech. 
Billion-Way Resilience Project (2011-2015)	


•  PI: Satoshi Matsuoka 
•  Current collaborations:  

–  ANL (Franck Cappello, FTI), LLNL (Bronis de Spinksi, SCR), ETH Zurich 
(Torsten Hoefler), RIKEN (Naoya Maruyama), U-Tokyo (Hideyuki Jitsumoto) … 

•  Objective: Scalable fault tolerance techniques for extreme scale 
system 

–  API & Software: Encoding/Redundancy technique, Compression, Support for 
Many-core architecture 

–  Architecture:  Scalable Storage design, and Resilient network/interconnects 
–  Analysis: Failure analysis, and Failure prediction 
–  Modeling:　Optimal checkpoint interval, Encoding/Redundancy, and I/O model 

3 
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•  a	
  

Tokyo Tech. 
Billion-Way Resilience Project (2011-2015)	


API & software 
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High Performance Computing Applications 

•  Encoding/Redundancy technique  
•  Checkpoint compression  
•  Asynchronous I/O APIs for checkpointing 
•  Support for Many-core architecture 
•  Resource manager & Scheduler for resilience 

•  Resilient storage design 
•  Resilient network design 

•  Failure monitoring & analysis 

•  Models of 
checkpinting / I/O 
for optimal interval 
& performance 
prediction 
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松岡	
  聡,	
  佐藤	
  賢斗,	
  遠藤敏夫	
  "エクサスケールスパコンに向けた耐故障性の評価	
  -­‐-­‐-­‐	
  TSUBAME2.0を例にして	
  -­‐-­‐-­‐",	
  IPSJ	
  SIG	
  Technical	
  Reports	
  2013-­‐HPC-­‐141,	
  Okinawa,	
  Sep,	
  2013.	
  

•  Failures	
  seasonal	
  
–  Largely	
  due	
  to	
  boot	
  failures	
  in	
  peak-­‐shie	
  

opera<ons	
  during	
  summer	
  to	
  limit	
  power,	
  
despite	
  SW	
  retries	
  

–  Future	
  SCs	
  in	
  Clouds	
  need	
  to	
  cope	
  with	
  this	
  

•  GPU	
  vs.	
  CPUs	
  
–  19	
  CPU+memory	
  fail-­‐stop	
  failures,	
  25	
  

replacements,	
  MTBF	
  118	
  years,	
  2.2218	
  FLOP/error	
  
–  53	
  GPU+memory	
  ECC	
  fail-­‐stop	
  failures,	
  57	
  

replacements,	
  MTBF	
  75	
  years,	
  1.6119	
  FLOP/error	
  
–  GPU	
  error	
  rate	
  x7	
  beier	
  /	
  flop	
  vs.	
  CPU,	
  

propor<onal	
  to	
  performance	
  difference	
  per	
  chip	
  

•  Failures	
  are	
  Largely	
  Independent	
  
–  Most	
  of	
  failures	
  are	
  a	
  single	
  node	
  
–  Low	
  #	
  of	
  InfiniBand	
  and	
  storage	
  failures	
  

Failure history of TSUBAME2.0/2.5 

We’re	
  are	
  Disclosing	
  	
  
the	
  failure	
  history	
  in	
  public	
  

Findings 

API 

Architecture 

Modeling 

Analysis 
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[SC11,  EuroPar12  &  Cluster12  (Leonardo  Bautista-­‐‑Gomez  et  al.)]	


6	
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•  Diskless	
  checkpoint:	
  
–  Create	
  redundant	
  data	
  across	
  local	
  

storages	
  on	
  compute	
  nodes	
  using	
  a	
  
encoding	
  technique	
  such	
  as	
  Reed-­‐
solomon,	
  XOR	
  

•  Scalable	
  by	
  using	
  distributed	
  disks	
  
–  Can	
  restore	
  lost	
  checkpoints	
  on	
  a	
  failure	
  

caused	
  by	
  small	
  #	
  of	
  nodes	
  like	
  RAID-­‐5	
  

Diskless	
  checkpoin<ng	
  

ckpt	
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ckpt	
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Parity	
  2	
  

ckpt	
  B1	
  

ckpt	
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Parity	
  3	
  

ckpt	
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ckpt	
  C1	
  

Diskless	
  checkpoint	
  run<me	
  library	
  using	
  Reed-­‐Solomon	
  encoding	
  	
  

Ø 	
  FTI	
  implements	
  a	
  scalable	
  Reed-­‐
Solomon	
  encoding	
  algorithm	
  by	
  
u<lizing	
  local	
  storages	
  such	
  as	
  SSD	
  
	
  
Ø 	
  FTI	
  analyzes	
  the	
  topology	
  of	
  the	
  
system	
  and	
  create	
  encoding	
  
clusters	
  that	
  increase	
  the	
  
resilience	
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•  Objective: Minimize checkpoint overhead to PFS"
o  Minimize CPU usage, memory and network bandwidth"

•  Proposed method: Implementation and modeling 
Non-blocking checkpointing"
o  Asynchronously write checkpoints to PFS through Staging nodes using 

RDMA"
o  Determine the optimal checkpoint interval on the asynchronous 

checkpoint scheme"

7	
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[SC12,  Kento  Sato  et  al.]	


8% 

Failure analysis on TSUBAME2.0 

8-­‐12%	
  of	
  failures	
  s<ll	
  	
  
requires	
  PFS	
  checkpoint	
  

Async.	
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   Async.	
  checkpoin<ng	
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90%  of  efficiency  in  most  cases	


•  Experiment: !
o  Benchmark: CPU-bound micro benchmark"
o  Method"

•  Non-blocking: proposed method on two level checkpointing"
o  L1: XOR checkpoint, L2: Proposed non-blocking checkpoint"

•  Blocking: Existing two level checkpointing "
o  L1: XOR checkpoint, L2: Blocking checkpoint"

•  Results: "
o  Asynchronous RDMA checkpoint: About 1 % of overhead  with the proposed checkpointing"
o  Optimal checkpoint interval:  Achieved high efficiency even with increasing failure rates "

Efficiency = ideal _ time
expected _ time

[SC12,  Kento  Sato  et  al.]	
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•  MPI	
  	
  
–  De-­‐facto	
  communica<on	
  library	
  enabling	
  parallel	
  compu<ng	
  
–  Standard	
  MPI	
  employs	
  a	
  fail-­‐stop	
  model	
  

•  When	
  a	
  failure	
  occurs	
  …	
  
–  MPI	
  terminates	
  all	
  processes	
  	
  
–  The	
  user	
  locate,	
  replace	
  failed	
  nodes	
  with	
  spare	
  nodes	
  
–  Re-­‐ini<alize	
  MPI	
  
–  Restore	
  the	
  last	
  checkpoint	
  

•  Applica<ons	
  will	
  use	
  more	
  <me	
  for	
  recovery	
  	
  
–  Users	
  manually	
  locate	
  and	
  replace	
  the	
  failed	
  nodes	
  with	
  spare	
  nodes	
  via	
  

machinefile	
  
–  The	
  manual	
  recovery	
  opera<ons	
  may	
  introduce	
  extra	
  overhead	
  and	
  

human	
  errors	
  

⇒	
  APIs	
  for	
  transparent,	
  but	
  fast	
  recovery	
  are	
  
cri<cal	
   9	
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[IPDSP2014,  Kento  Sato  et  al.]	


Requirement of fast and transparent recovery 
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•  FMI	
  is	
  a	
  survivable	
  messaging	
  interface	
  providing	
  MPI-­‐like	
  interface	
–  Scalable	
  failure	
  detec<on	
  ⇒	
  Overlay	
  network	
  
–  Dynamic	
  node	
  alloca<on	
  	
  ⇒	
  FMI	
  ranks	
  are	
  virtualized	
  
–  Fast	
  in-­‐memory	
  checkpoint/restart	
  	
  	
  	
  	
  ⇒	
  Diskless	
  checkpoint/restart	
   10	
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API 

Architecture 

Modeling 

Analysis 

FMI for Fast and transparent recovery 



LLNL-­‐PRES-­‐664262	
   11	
  

int main (int *argc, char *argv[]) {	
  FMI_Init(&argc, &argv);	
  FMI_Comm_rank(FMI_COMM_WORLD, &rank);	
  /* Application’s initialization */	
  while ((               ) < numloop) {	
    /* Application’s program */	
  }	
  /* Application’s finalization */	
  FMI_Finalize();	
}	

FMI	
  example	
  code	
  

n = FMI_Loop(…) 	
  

•  FMI_Loop	
  enables	
  transparent	
  recovery	
  and	
  
roll-­‐back	
  on	
  a	
  failure	
  

–  Periodically	
  write	
  a	
  checkpoint	
  
–  Restore	
  the	
  last	
  checkpoint	
  on	
  a	
  failure	
  

[IPDSP2014,  Kento  Sato  et  al.]	
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Figure 4.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [76].

4.6.1 FMI Performance

Table 4.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 4.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

P2P communication performance 

Even with the high failure rate,  
FMI incurs only a 28% overhead 

MTBF: 1 minute 

 FMI directly writes 
checkpoints via memcpy, and 

can exploit the bandwidth 

API 

Architecture 

Modeling 

Analysis 

Example code & Evaluation 
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Fig. 2 (a) Left: Flat buffer system (b) Right: Burst buffer system

ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.
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ging overhead. In addition, if we apply uncoordinated check-
pointing to MPI applications, indirect global synchronization can
occur. For example, process(a2) in cluster(A) wants to send a
message to process(b1) in cluster(B), which is writing its check-
point at that time. Process(a2) waits for process(b1) because pro-
cess(b1) is doing I/O and can not receive or reply to any mes-
sages, which keeps process (a1) waiting to checkpoint with pro-
cess (a2) in Figure 1. If such a dependency propagates across all
processes, it results in indirect global synchronization. Many MPI
applications exchange messages between processes in a shorter
period of time than is required for checkpoints, so we assume
uncoordinated checkpointing time is same as coordinated check-
pointing one in the model in Section 4.

2.4 Target Checkpoint/Restart Strategies
As discussed previously, multilevel and asynchronous ap-

proaches are more efficient than single and synchronous check-
point/restart respectively. However, there is a trade-off between
coordinated and uncoordinated checkpointing given an applica-
tion and the configuration. In this work, we compare the ef-
ficiency of multilevel asynchronous coordinated and uncoordi-
nated checkpoint/restart. However, because we have already
found that these approaches may be limited in increasing applica-
tion efficiencies at extreme scale [29], we also consider storage
architecture approaches.

3. Storage designs
Our goal is to achieve a more reliable system with more effi-

cient application executions. Thus, we consider not only a soft-
ware approach via checkpoint/restart techniques, but also con-
sider different storage architectures. In this section, we introduce
an mSATA-based SSD burst buffer system (Burst buffer system),
and explore the advantages by comparing to a representative cur-
rent storage system (Flat buffer system).

3.1 Current Flat Buffer System
In a flat buffer system (Figure 2 (a)), each compute node has

its dedicated node-local storage, such as an SSD, so this design
is scalable with increasing number of compute nodes. Several
supercomputers employ this flat buffer system [13], [22], [24].
However this design has drawbacks: unreliable checkpoint stor-
age and inefficient utilization of storage resources. Storing check-
points in node-local storage is not reliable because an applica-
tion can not restart its execution if a checkpoint is lost due to a
failed compute node. For example, if compute node 1 in Figure
2 (a) fails, a checkpoint on SSD 1 will be lost because SSD 1
is connected to the failed compute node 1. Storage devices can
be underutilized with uncoordinated checkpointing and message

logging. While the system can limit the number of processes to
restart, i.e., perform a partial restart, in a flat buffer system, lo-
cal storage is not utilized by processes which are not involved in
the partial restart. For example, if compute node 1 and 3 are in a
same cluster, and restart from a failure, the bandwidth of SSD 2
and 4 will not be utilized. Compute node 1 can write its check-
points on the SSD of compute node 2 as well as its own SSD in
order to utilize both of the SSDs on restart, but as argued earlier
distributing checkpoints across multiple compute nodes is not a
reliable solution.

Thus, future storage architectures require not only efficient but
reliable storage designs for resilient extreme scale computing.

3.2 Burst Buffer System
To solve the problems in a flat buffer system, we consider a

burst buffer system [21]. A burst buffer is a storage space to
bridge the gap in latency and bandwidth between node-local stor-
age and the PFS, and is shared by a subset of compute nodes.
Although additional nodes are required, a burst buffer can offer
a system many advantages including higher reliability and effi-
ciency over a flat buffer system. A burst buffer system is more
reliable for checkpointing because burst buffers are located on
a smaller number of dedicated I/O nodes, so the probability of
lost checkpoints is decreased. In addition, even if a large number
of compute nodes fail concurrently, an application can still ac-
cess the checkpoints from the burst buffer. A burst buffer system
provides more efficient utilization of storage resources for partial
restart of uncoordinated checkpointing because processes involv-
ing restart can exploit higher storage bandwidth. For example, if
compute node 1 and 3 are in the same cluster, and both restart
from a failure, the processes can utilize all SSD bandwidth unlike
a flat buffer system. This capability accelerates the partial restart
of uncoordinated checkpoint/restart.

Table 1 Node specification
CPU Intel Core i7-3770K CPU (3.50GHz x 4 cores)

Memory Cetus DDR3-1600 (16GB)
M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256GB CT256M4SSD3

(Peak read: 500MB/s, Peak write: 260MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single

To explore the bandwidth we can achieve with only commod-
ity devices, we developed an mSATA-based SSD test system. The
detailed specification is shown in Table 1. The theoretical peak
of sequential read and write throughput of the mSATA-based SSD
is 500 MB/sec and 260 MB/sec, respectively. We aggregate the
eight SSDs into a RAID card, and connect two the RAID cards
via PCE-express(x8) 3.0. The theoretical peak performance of
this configuration is 8 GB/sec for read and 4.16 GB/sec for write
in total. Our preliminary results showed that actual read band-
width is 7.7 GB/sec (96% of peak) and write bandwidth is 3.8
GB/sec (91% of peak) [32] . By adding two more RAID cards,
and connecting via high-speed interconnects, we expect to be able
to build a burst buffer machine using only commodity devices
with 16 GB/sec of read, and 8.32 GB/sec of write throughput.
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Figure 6: The basic structure of the non-blocking checkpointing model

constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT )
During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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constructed on a top of an existing one, we include the
assumptions made in the existing model [4]. We highlight
the important assumptions here.

We assume that failures are independent across compo-
nents and occur following a Poisson distribution. Thus, a
failure within a job does not increase the probability of suc-
cessive failures. In reality, some failures can be correlated.
For example, failure of a PSU can take out multiple nodes.
The XOR encoding can actually handle failures category 2
and even higher. In fact, using topology-aware techniques,
the probability of those failures affecting processes in the
same XOR set is very low. In such cases you don’t need to
restart from the PFS. SCR also exclude problematic nodes
from restarted runs. Thus, the assumption implies that the
average failure rates do not change and dynamic checkpoint
interval adjustment is not required during application exe-
cution.

We also assume that the costs to write and read check-
points are constant throughout the job execution. In reality,
I/O performance can fluctuate because of contention for
shared PFS resources. However, staging nodes serve as a
buffer between the compute nodes and the PFS. Thus, our
system mitigates the performance variability of the PFS.

If a failure occurs during non-blocking checkpointing,
we assume that checkpoints cached on failed nodes have
not been written to the PFS. Thus, we need to recover the
lost checkpoint data from redundant stores on the compute
nodes, if possible, and if not, locate an older checkpoint to
restart the application. This could be an older checkpoint
cached on compute nodes, assuming multiple checkpoints
are cached, or a checkpoint on the PFS.

B. Basic model structure

As employed in the existing model [4], we use a
Markov model to describe run time states of an application.
We construct the model by combining the basic structures
shown in Figure 6. The basic structure has computation
(white circle) and recovery (blue circle) states labeled by a
checkpoint level. The computation states represent periods
of application computation followed by a checkpoint at the
labeled level. The recovery state represents the period of

restoring from a checkpoint at the labeled level.
If no failures occur during a compute state, the application

transitions to the next right compute state. We denote the
checkpoint interval between checkpoints as t, the cost of a
level c checkpoint as cc, and rate of failure requiring level k
checkpoint as λk. The probability of transitioning to the next
right compute state and the expected time before transition
are p0(t + cc) and t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure
rates, i.e., λ =

∑L
i=1 λi where L represents the highest

checkpoint level. If a failure occurs on during a compute
state, the application transitions to the most recent recovery
state which can handle the failure. If the failure requires level
i checkpoint or less to recover and the most recent recover
state is at level k where i ≤ k, the application transitions to
the level k recovery state. The expected probability of and
run time before the transition from the compute state c to
the recovery state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
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During recovery, if no failures occur, the application

transitions to the compute state that directly follows the
compute state that took the checkpoint that was used for
recovery. If cost of recovery from a level k checkpoint is rk,
the expected probability of the transition and the expected
run time are given by p0(rk) and t0(rk). If a failure requiring
i level checkpoint occurs while recovering, and i < k, we
assume the current recovery state can retry the recovery.
However, if i ≥ k, we assume the application must transition
to a higher-level recovery state. The expected probabilities
and times of failure during recovery are pi(rk) and ti(rk).
We also assume that the highest level recovery state (level
L) that uses checkpoints on the PFS, can be restarted in the
event of any failure i ≤ L.

C. Non-blocking checkpoint model
We describe our model of non-blocking checkpointing by

combining the basic structures from Figure 6. We show
a two level example in Figure 7. If no failures occur
during execution, the application simply transitions across
the compute states in sequence (Figure 7(a)). In this ex-
ample, level 1 (L1) checkpoints (e.g., XOR checkpoints)
are taken as blocking checkpoints, and level 2 (L2) check-
points (e.g., PFS checkpoints) are taken as non-blocking
checkpoints. With blocking checkpointing, the checkpoint
becomes available at the completion of the corresponding
compute state. Thus, if an L1 failure occurs, the application
transitions to the most recent L1 recovery state (Figure
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Table 3 Simulation configuration

level 1 level 2
ri 16 GB/sec 10 GB/sec
wi 8.32 GB/sec 10 GB/sec

Flat buffer Burst buffer
H2 {v1, v2} H2 {1, 1088} H2 {32, 34}
{F1, F2} {2.13 × 10−6, 4.27 × 10−7} {2.13 × 10−6, 7.61 × 10−8}

Checkpoint size per node (D) 5GB
Encoding rate node (e1) 400MB/sec
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Fig. 3 Efficiency of multi-level coordinated and uncoordinated check-
point/restart on a flat buffer system and a burst buffer system

compute nodes.
Failure rates(F) are based on failure analysis using pF3D [8].

The failure analysis shows that average failure rates of a single
compute node requiring LOCAL is 1.96×10−10, XOR is 1.77×10−9,
PFS is 3.93 × 10−10. In a flat buffer system, each failure rate
is calculated by multiplying the each failure rate by the num-
ber of compute nodes, i.e., 1088 nodes. This leads to failure
rates of Failure rate of a single Coastal nodes is We use fail-
ure analysis in 2.14 × 10−7 for LOCAL, 1.92 × 10−6 for XOR,
and 4.27 × 10−7 for PFS. Actually, if a level-i failure rate is
lower than a level-i+ 1 one, the optimal level i checkpoint counts
is zero because level i can be recovery level i + 1 checkpoint,
which is written more frequently than level i. If a compute nodes
failure occurs, a flat buffer system lose checkpoint data on the
failed compute node, so XOR is required to restore the lost check-
point data. Thus, we use 2 level checkpoint/restart where level
1 is XOR, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14 × 10−7 + 1.92 × 10−6, 4.27 × 10−7}.

In a burst buffer system, 34 burst buffer nodes are used, so fail-
ure rate of entire burst buffer nodes is calculated as 6.67 × 10−8,
failure rate requiring PFS as 1.33 × 10−8. Even on a com-
pute nodes failure, a burst buffer nodes can keep checkpoint
data, so LOCAL checkpoint is enough to tolerate a compute node
failure. Thus, we use 2 level checkpoint/restart where level 1
is LOCAL, and level 2 is PFS, and each level of failure rate is
{F1, F2} = {2.14×10−7 +1.92×10−6, 6.28×10−8 +1.33×10−8}
for burst buffer system.

5.2 Results
At extreme systems will be larger, overall failure rates and

checkpoint size are expected to increase. To explore the effects,
we increase failure rates and level 2 checkpoint costs by factors
of 1, 2, 10, 50 and 100, and compare efficiency between multi-
level coordinated and uncoordinated checkpoint/restart on a flat
buffer system and a burst buffer system. We do not change level
1 checkpoint cost, since the performance of flat and burst buffer
is expected to scale with system size.

As Figure 3 shows the efficiency under different failure rates
and checkpoint costs. When we computes the efficiency, we op-
timize level-1 and 2 checkpoint frequency (v1 and v2), and inter-
val between checkpoints (T ) using our multi-level asynchronous
checkpoint/restart model, which yields the maximal efficiency.
The burst buffer system always achieves higher efficiency than
the flat buffer system. The efficiency gap becomes more apparent
with higher failure rates and higher checkpoint cost because the
burst buffer system integrate checkpoints into the fewer number
of burst buffer nodes than compute nodes, which decrease proba-
bility of losing checkpoints, and restarting from a slower PFS.

Table 4 Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message scale factor Allowable message

logging overhead logging overhead
1 0.0232% 1 0.00435%
2 0.0929% 2 0.0175%

10 2.45% 10 0.468%
50 84.5% 50 42.0%
100 ≈ 100% 100 99.9%

The efficiency in Figure 3 does not include message logging
overhead, so validity of uncoordinated checkpoint/restart depends
on degree of message logging overhead. Table 4 shows allowable
message logging overhead. To achieve higher efficiency than co-
ordinated checkpoint/restart, the logging overhead must be below
a few percent in a current and a 10 times scaled system. In sys-
tems whose failure rates and checkpoint costs is 50 times higher
than a current system, uncoordinated checkpoint/restart is neces-
sary even with high logging overhead. By using uncoordinated
checkpoint/restart, we can leverage a burst buffer, and achieve
70% of efficiency even on two order of magnitude larger scale
systems because partial restart of uncoordinated checkpoint can
exploit bandwidth of both burst buffers and a PFS, and accelerate
restart time.

Building a reliable data center or supercomputer, and maxi-
mizing system efficiency are significant given fixed amount of
cost. To explore which tiers of storage can impact system ef-
ficiency improvement, we increase performance of each tier of
storage failure by factors of 1, 2, 10 and 20. Figure 4 shows
efficiency in increasing scale factor of performance of level-1
checkpoint/restart in 100 times scaled systems in Figure 3. As
shown, improvement of flat buffer and burst buffer performance
does not impact the system efficiency. But, as in Figure 5, in-
creasing PFS performance improve the system efficiency, and we
can achieve over 80% efficiency with both coordinated and unco-
ordinated checkpoint/restart on the burst buffer system. The both
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Figure 5: output format

(Step (5) in Fig.4). By using the spike detection, we can
remarkably reduce errors with comparable compression rate
to the simple quantization.

C. Encoding
After the quantization, the high-frequency band regions

to which the quantization is applied consist of only n kinds
of floating point values, and these values are stored in the
array, average[i] (i = 1 . . . n), which is created in the
quantization. To reduce the sizes of the values in the high-
frequency band regions, we replace the floating-point values
with indexes of the average array, and store them to char
variables. The value, n, does not become large number to
obtain satisfying errors, 1 byte of the data type is enough to
store each index. Because we store the array of the indexes
with the average array, this operation is lossless.

D. Output Format
Fig.5 shows output format when we write the compressed

checkpoint to a file system. As described in Section III-B,
our proposed lossy compression apply only the part of
values in high-frequency band regions. To memorize which
values are transformed and encoded, we use bitmap for the
decompression. To decode the encoded values, we also store
the average array, and append to bitmap. Finally, we apply
gzip to the formatted output.

IV. EVALUATION

A. Experimental Conditions and Environment

We apply our approach with lossy compression to target
checkpoint data of a real climate application, NIACAM
[14]. The lossy compression has been widely used in order
to output data for visualization of simulations, however,
it has been hardly used for checkpointing, in fear of that
production of errors in floating point arrays may invalidate
the results of simulations. Thus in addition to evaluation
of compression time, I/O time and compression rate, we
evaluate the effects of lossy compression on simulated
results; we include evaluation of relative errors introduced
by the lossy compression, by comparing the result data and
original data.

We use intermediate checkpointing images during the
runs of NICAM, since we found the initial data in the
arrays in NICAM is too flat to evaluate the effects of
lossy compression in a fair fashion. We use the checkpoint
image after 720 time steps if not otherwise specified. In our
experiments, the targets of compression data are arrays of
pressure, temperature and wind velocity (X, Y, Z) in NICAM
checkpointing images. These arrays are 3D double-precision
floating point arrays, each of which has size of 1156×82×2.
Among of those, this section mainly describes results for the
temperature array because we see the similar results in the
other arrays.

We use a PC cluster as the experimental platform. Each
node has a specification shown in Table I, and nodes share an
NFS file system, which is used to store checkpoint images.

We let csorig be checkpoint size without compression and
cscomp be checkpoint size with compression. The compres-

Table I: System specification

Node
CPU Intel Core i7-3930K 6 cores 3.20GHz

Memory DDR3 16GB
Network card Broadcom bnx2

Shared file system
File system Network File System (NFS) v3 1.5TB

RAID Dell PERC H700 (RAID6)
Disk Western Digital WD (model:WD2002FAEX)
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Figure 6: Comparing compression rates of gzip, simple
method, and proposed method

sion rate(cr) is expressed with the following formula:

cr =
cscomp

csorig
× 100 (5)

We let X = {xi} be an original array and X̃ = {x̃i} be an
array obtained by compressing X and then uncompressing
the result. The relative error (rei) is expressed with the
following formula:

rei =
|xi − x̃i|

maxj{xj}−minj{xj}
(6)

We evaluate the average error avgi {xi} and the maximum
error maxi xi later.

In the experiments, we use several numbers of divisions,
division number, in the quantization phase (n in Fig.4), from
20 to 27. The parameter d is set to be 64 for our proposed
quantization in Fig.4.

B. Lossless V.S. Lossy Compression

Fig.6 shows compression rates of gzip, simple method,
and proposed method. For the two lossy compression meth-
ods, we set the division number as 128.

The results show that gzip is apparently insufficient for ar-
rays of floating point values; the compression rate is 86.78%.
On the other hand, with our lossy compression, we can
remarkably reduce checkpoint size in real applications. From
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Figure 7: Compression rates under different division number,
n, and quantization methods
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Figure 8: Relative errors under different division number, n,
and quantization methods

the experimental results, we can see that the effectiveness
of lossless compression is limited in read applications, such
as CFD applications, since checkpoint data is floating point
values. Thus, lossy compression is essential for improving
compression rate in real applications.

C. Lossy Compression with Simple and Proposed Quantiza-
tion

Fig.8 and Fig.7 show compression rates and relative errors
(average), respectively, under different division numbers, n,
and quantization methods. These two graphs illustrates a
trade-off between compression rates and errors; when we
use larger n, relative errors become smaller (better), while
compression rates get larger (worse), though the increase is
rather gradual. As shown in the figures, our proposed method
can reduce more errors while achieving the comparable
compression rate to the simple method.

Haar	
  wavlet-­‐based	
  lossy	
  compression	
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Energy	
  op<miza<on	
  for	
  C/R	
  using	
  DVFS	
  

•  ioDrive	
  relies	
  on	
  CPU	
  cores	
  for	
  
–  Grooming:	
  a	
  garbage	
  collector	
  that	
  pre-­‐erases	
  

unused	
  blocks	
  in	
  background	
  to	
  accelerate	
  future	
  
write	
  opera<on	
  

–  Wear	
  leveling:	
  a	
  balanced	
  write	
  technique	
  to	
  extend	
  
the	
  life<me	
  of	
  a	
  device	
  

•  When	
  decreasing	
  CPU	
  
	
  frequency,	
  I/O	
  throughput	
  	
  
of	
  ioDrive	
  is	
  degraded	
  
	
  like	
  CPU	
  

	
  

3x	
  improvement	
  	
  
in	
  J/MB	
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Failure	
  Analysis	
  of	
  HPC	
  Systems	
  and	
  Fail-­‐in-­‐Place	
  Strategy	
  

16 

Can we do fail-in-place in HPC networks? 
 

LANL	
  Cluster	
  2	
  (97–05)	
  
•  Unknown	
  

configura<on	
  
Deimos	
  (07–12)	
  
•  728	
  nodes	
  
•  108	
  IB	
  switches	
  
•  ≈1,600	
  links	
  
TSUBAME2.0/2.5	
  (10–?)	
  
•  1,555	
  nodes	
  (1,408	
  

compute	
  nodes)	
  
•  ≈500	
  IB	
  switches	
  
•  ≈7,000	
  links	
  
Soeware	
  more	
  reliable	
  
High	
  MTTR	
  
≈1%	
  annual	
  failure	
  rate	
  
Repair/maintenance	
  
is	
  expensive!	
  

Fail-in-Place Strategy 
•  Replace only critical 

failures, and disable 
non-critical failed 
components 

•  Common in storage 
systems 

•  Applied when 
maintenance costs 
exceed maintenance 
benefits 

•  Example: 
IBM’s Flipstone 
(uses RAID arrays; 
software disables failed 
HDD and migrates 
data) 

[SC14,  Jens  Domke  et  al.]	
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Simula<ng	
  Network	
  Failures	
  and	
  Throughput	
  Degrada<on	
  
Rou<ng	
  is	
  elementary	
  component	
  to	
  enable	
  
fail-­‐in-­‐place	
  networks	
  
Tool-­‐chain	
  for	
  checking	
  fault	
  tolerance	
  of	
  
topology	
  and	
  rou<ng	
  algorithm	
  
•  Generate	
  faulty	
  topology	
  based	
  on	
  

ar<ficial/real	
  network	
  topology	
  
•  Apply	
  topology-­‐[aware	
  |	
  agnos<c]	
  

rou<ng	
  &	
  check	
  connec<vity	
  
•  Flit-­‐level	
  simula<on	
  of	
  InfiniBand	
  

hardware	
  with	
  uniform	
  random	
  injec<on	
  
or	
  N-­‐to-­‐N	
  exchange	
  traffic	
  

Jens Domke 17 

Simulated throughput degradation as a 
metric for network/routing reliability 
•  For each % of switch/link failures do 

multiple runs (diff. seeds) 
•  Calculate 

throughput 
•  Linear 

regression 
 
Slope 
(and R2) 
 
 

   Intercept 

[SC14,  Jens  Domke  et  al.]	


API 

Architecture 

Modeling 

Analysis 

Wed  
2:00PM-2:30PM 



LLNL-­‐PRES-­‐664262	
  

Implica<ons	
  for	
  a	
  real	
  HPC	
  System	
  and	
  Conclusions	
  

Fail-in-Place Network Design is possible! 
(but we have to improve the routing) 

Changing from Up*/Down* (default) to 
DFSSSP routing on TSUBAME2.5 
improves the throughput by 2.1x for the 
fault- free network and increases 
TSUBAME’s fail-in-place characteristics. 

All investigated routing algorithms show 
limitations 
•  Fat-tree, UpDown, DOR, Torus2QoS 
•  MinHop, SSSP, DFSSSP, LASH 
Topology-aware routings 
•  High throughput decrease possible 

with small failure percentage 
•  Fail to route highly damaged netw. 
•  Routes not always DL-free (DOR) 
Topology-agnostic routing algorithms 
•  Ignore deadlocks (MinHop, SSSP) 
•  Deadlock-avoidance via VLs can be 

impossible for large scale netw. 

Degradation in 
8 years running 
fail-in-place 

[SC14,  Jens  Domke  et  al.]	
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