
Exploration of Lossy
Compression for Application-

level Checkpoint/Restart�

Naoto Sasaki1, Kento Sato3,
Toshio Endo1,2, Satoshi Matsuoka1,2

1 Tokyo institute of technology

2 Global Scientific Information and Computing Center
3 Lawrence Livermore National Laboratory

LLNL-PRES-670952�

Needs for Fault Tolerance�

The scale of HPC systems are exponentially growing
•  exa-scale supercomputers in about 2020
•  The failure rate increases as systems size grows

Checkpoint/Restart technique is widely used as fault tolerant
function

•  But this technique has problems�

�

Applications’ users want to continue its
computation even on a failure

LLNL-PRES-670952�

Needs for Reduction in Checkpoint Time�
Checkpoint/Restart
→Data of memory is stored in the disk

→High I/O cost

MTBF(Mean Time Between Failure) is reduced by
expansion in the scale of HPC systems

•  MTBF is projected to shrink to over 30min in 2020 [�1]

�

On TSUBAME2.5
Memory capacity1about 116TB

I/O throughput1about 8GB/s
↓

Checkpoint time1about 4 hours�

Applications’ users need to reduce checkpoint time

If MTBF < Checkpoint time
an application may not be able to run0
���������������↓
Needs for reduction in checkpoint time !�

�1 : Peter Kogge, Editor & Study Lead (2008)
ExaScale Computing Study: Technology Challenges in Achieving ExaScale Systems
�

LLNL-PRES-670952�

To Reduce Checkpoint Time�

There are techniques to reduce checkpoint size
•  Compression
•  Incremental checkpointing

•  This stores only differences with the last checkpoint

Compression can be combined with incremental
checkpointing

•  In addition, the effect of incremental checkpointing may be
limited in scientific applications

We focus on compression for checkpoint image data

�

LLNL-PRES-670952�

Lossless and Lossy Compression�

�
�

Features of lossless
•  �o data loss
•  Low compression rate without bias

•  Scientific data has a randomness�

Features of lossy
•  High compression rate
•  Error��are introduced

0
10
20
30
40
50
60
70
80
90

100

Co
m

pr
es

si
on

 ra
te

 [%
]

original gzip

If we apply lossless
compression to floating point
arrays, the compression rate

is limited�

We focus on lossy compression�

LLNL-PRES-670952�

gzip, bzip2, etc.� jpeg, mp4, etc.�

Discussion on Errors Introduced by Lossy Methods�
Errors may be acceptable if we examine processes for developing
real scientific applications

•  Scientific model and sensors also introduce errors
•  �e need to investigate whether the errors are acceptable

Don’t apply lossy compression to data that must not have an error
(e.g. pointer)
We apply lossy compression to checkpoint data

•  The calculation continues with data including errors

�
�

(citation of images : http://svs.gsfc.nasa.gov/vis/a000000/a002400/a002478/)�
jpeg2000 0.153MB

original 14.7MB�

gzip 2.19MB�

1/7� 1/100�

LLNL-PRES-670952�

Outline of Our Study�
Purpose

•  To reduce checkpoint time, lossy compression is applied to
checkpoint data then checkpoint size is reduced

Proposed Approach
1.  We apply wavelet transformation, quantization and encoding to

a target data, then store the data in a recoverable format
2.  We apply gzip to the recoverable format data

Contribution
•  We apply our approach to real climate application, NICAM, then

overall checkpoint time included compression time is reduced by
81% with 1.2% relative error on average in particular situation

�
�

LLNL-PRES-670952�

Assumption for Our Approach�
We assume application�level checkpoint

•  We utilize that difference between neighbor
values

•  Target data are an arrays of physical quantities
•  We target 1,2 or 3D mesh data represented

by floating point arrays

There are data to which must not be applied our
approach because errors are introduced

•  Data structure including pointers (e.g. tree)

�
�

Users specify a range of data to
which are applied our approach

LLNL-PRES-670952�

Motivation of Wavelet Transformation�

�
�

Lossless compression is effective in data that have redundancy
•  Scientific data has a randomness�
•  We need to make redundancy in the scientific data

To make much redundancy and make errors small…

•  The target data should have dense and small values
The scientific data does not spatially changed much

LLNL-PRES-670952�

We focus on wavelet transformation�

To make good use of this feature…�

About Wavelet Transformation�
Wavelet transformation is a technique of frequency analysis

�

�

Multiple resolution analysis is effective in compression
•  JPEG2000 uses this technique
•  It is known that this technique is effective in smooth data

•  This “smooth” means the difference between neighbor values
is small

�Wavelet transformation itself is NOT compression method,
but we use �t for preprocessing

citation of images�1http://www.thepolygoners.com/tutorials/dwavelet/DWTTut.html�

We suspect that compression that uses
wavelet transformation is efficient in

applications that uses physical quantities
(e.g. pressure, temperature)�

LLNL-PRES-670952�

Proposal Approach1
Lossy Compression Based On Wavelet�

�
�
�

Original checkpoint data (Floating point array)

Low-frequency band
array High-frequency band array

High-frequency band array

High-frequency band array

bitmap array

bitmap� array
average Low and high-frequency band arrays

average

1. Wavelet transformation

2. Quantization

3. Encoding

4. Formatting

5. Applying gzip

Compressed data

LLNL-PRES-670952�

Wavelet Transformation�

�
�
�

Original checkpoint data (Floating point array)

Low-frequency band
array High-frequency band array

High-frequency band array

High-frequency band array

bitmap array

bitmap� array
average Low and high-frequency band arrays

average

1. Wavelet transformation

2. Quantization

3. Encoding

4. Formatting

5. Applying gzip

Compressed data

LLNL-PRES-670952�

difference�

We use average of two neighbor values and difference
between two neighbor values
�

�
�
�

In high-frequency band, most of values are close to zero
→We expect that an introduced error is small even if the precision
of values in high-frequency band region is dropped�

1D Wavelet Transformation in Our Approach�

va
lu

e�
va

lu
e�

index�

Original 1D array�

Transformed array�

Wavelet
transformation

average�

LLNL-PRES-670952�

Low-frequency� High-frequency�

In multi-dimensional
array, we apply 1D
wavelet transformation
to each dimension

In case of 2D array

•  # of low…1
•  # of high…3

In case of 3D array
•  # of low…1
•  # of high…7

�
�
�

1D wavelet

Low-
frequency

High-
frequency�

1D wavelet�

1 low-frequency
band�

3 high-frequency
band�

Fig : an example of wavelet transformation for
 a 2D array�

Multi-dimensional Wavelet Transformation�

LLNL-PRES-670952�

Quantization�

�
�
�

Original checkpoint data (Floating point array)

Low-frequency band
array High-frequency band array

High-frequency band array

High-frequency band array

bitmap array

bitmap� array
average Low and high-frequency band arrays

average

1. Wavelet transformation

2. Quantization

3. Encoding

4. Formatting

5. Applying gzip

Compressed data

LLNL-PRES-670952�

1.  Divide high-frequency band values into n partitions
•  This n is called the number of division

2.  Replace all values of each partition with an average of
the corresponding partition

�
�
�

n = 4

Simple Quantization�
va

lu
e�

index�

va
lu

e�

index�

Calculate an average�

Focus on
high-frequency band�

Replace�

Introduce
an error�

Introduce
an error�

LLNL-PRES-670952�

Calculate an average�

Introduce
an error�

Problems of Simple Quantization�

�
�
�

-3

-2
.5

-2

-1

.5

-1

-0
.5

 0
0.

5 1
1.

5 2
2.

5 3
3.

5 4 -3

-2
.5

-2

-1

.5

-1

-0
.5

 0
0.

5 1
1.

5 2
2.

5 3
3.

5 4

n = 4

-3

-2
.5

-2

-1

.5

-1

-0
.5

 0
0.

5 1
1.

5 2
2.

5 3
3.

5 4

Values in high-frequency band Values in high-frequency band Values in high-frequency band

Fr
eq

ue
nc

y

Distribution of high-frequency band

average [0] average [1] average [2] average [3]

n = 4

Make
histogram�

LLNL-PRES-670952�

Simple quantization introduces large errors

High-frequency band�

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

To reduce Errors �
Target data is expected to be smooth

•  Most of values in high-frequency band are close to zero
•  These make a “spike” in the distribution

To reduce an error, we apply the quantization to the
“spike” parts only

•  An impact on compression rate is low because the spike parts
consist of most of values in high-frequency band

�
�
�

Apply quantization to this
“spike” part only�

No
quantization�

No
quantization�

LLNL-PRES-670952�

Proposed Quantization �

�
�
�

-3

-2
.5

-2

-1

.5

-1

-0
.5

 0
0.

5 1
1.

5 2
2.

5 3
3.

5 4 -3

-2
.5

-2

-1

.5

-1

-0
.5

 0
0.

5 1
1.

5 2
2.

5 3
3.

5 4

Values in high-frequency band Values in high-frequency band Values in high-frequency band

d = 10

Ntotal

d

-3

-2
.5

-2

-1

.5

-1

-0
.5

 0
0.

5 1
1.

5 2
2.

5 3
3.

5 4

n = 4

average [1] average [2]

average [3]average [0]

This method is improved version of simple one

High-frequency band�

Make
histogram� Red elements belong

to “spike” parts

LLNL-PRES-670952�

0 1 1 1 1 1 1 0
bitmap�

Difference in quantization methods �

Simple quantization
•  Replace all values in high-frequency band

→Introduce large errors
→High compression rate because of less type of values

Proposed quantization
•  Replace parts of values in high-frequency band

→Introduce small errors
→Low compression rate by lack of regularity

�

�

LLNL-PRES-670952�

Encoding�

�
�
�

Original checkpoint data (Floating point array)

Low-frequency band
array High-frequency band array

High-frequency band array

High-frequency band array

bitmap array

bitmap� array
average Low and high-frequency band arrays

average

1. Wavelet transformation

2. Quantization

3. Encoding

4. Formatting

5. Applying gzip

Compressed data

LLNL-PRES-670952�

Encoding�

�
�
�

In quantization step, all or part of high-frequency band are
replaced with n kinds of values

•  n kinds of double values are replaced with corresponding char values
•  In case of double, data size becomes 1/8
•  In case of float, data size becomes 1/4

In recovery, an average array is required

+�

(char)�
[2] average [0] [1] [3]

ave[1]�ave[0]� ave[3]�ave[2]�

LLNL-PRES-670952�

3� 0� 1� 2� 2� 1�

We apply encoding to
quantized parts only �

Formatting�

�
�
�

Original checkpoint data (Floating point array)

Low-frequency band
array High-frequency band array

High-frequency band array

High-frequency band array

bitmap array

bitmap� array
average Low and high-frequency band arrays

average

1. Wavelet transformation

2. Quantization

3. Encoding

4. Formatting

5. Applying gzip

Compressed data

LLNL-PRES-670952�

Recoverable Format�

�
�
�

Required data in restart
•  Bitmap

•  Average array

•  Char and double data to which is applied our approach

We apply gzip to this formatted data

ave[1]�ave[0]� ave[3]�ave[2]�

+� +�

LLNL-PRES-670952�

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

3� 0� 1� 2� 2� 1�
(char)�

3 0 1 2 2 1

(char)�

Computational Complexity�
Our compression algorithm contains only single loop that
processes all or part of arrays

�
�
�

An algorithm of our approach has computational
complexity O(s) with checkpoint size s �

Original checkpoint data (Floating point array)

Low-frequency band
array High-frequency band array

High-frequency band array

High-frequency band array

bitmap array

bitmap� array
average

Low and high-frequency band arrays

average

1. Wavelet transformation

2. Quantization

3. Encoding

4. Formatting

LLNL-PRES-670952�

To estimate a impact of our approach, we evaluate…
•  Compression time
•  Compression rate
•  The degree of errors

Evaluation Environment�

Our approach is applied to real climate
simulation, NICAM[M.Satoh, 2008]

•  Target physical quantities are pressure, temperature
and velocity.

•  double precision, 3Darray, 1156*82*2
•  The data is too smooth in initial state
��→apply our approach after 720 steps from initial state

�
�
�

(citation of image : HPCS2014 ����)*+-/),.' �$�&#(%
��"�	!2)�

CPU� Intel Core i7-3930K 6 cores 3.20GHz�
Memory size� 16GB�

Machine spec�

LLNL-PRES-670952�

Compression rate

Relative error�

�
�
�

REi =
xi − !xi

max j x j{ }−min j x j{ }

CR =
CScompressed
CSoriginal

×100[%]
CScompressed

CSoriginal

!X = { !xi}

X = {xi}

1checkpoint size with compression�

1original checkpoint size�

1original data�

1data with our approach�

i

xi
!X = { !xi}
X = {xi}

max j x j{ }−min j x j{ }
xi − !xi

Metrics for Evaluation�

LLNL-PRES-670952�

0
10
20
30
40
50
60
70
80
90

100

Co
m

pr
es

si
on

 ra
te

 [%
]

original

gzip

Simple quantization
(n=128)
Proposed quantization
(n=128)

Evaluation of Compression Rate�

�
�
�

Compressed checkpoint data
with gzip

Compressed checkpoint data
with simple quantization

Compressed checkpoint data
with proposal quantization�

Apply our approach with simple quantization
(The number of division n is 128)�

Apply our approach with proposal quantization
(�he number of division n is 128)�

In comparison with only gzip, our
approach reduces checkpoint size by

about 75%�
Simple quantization achieves better
compression rate, but introduces a

larger error than proposal quantization�

Original checkpoint data
(Floating point array)

Apply gzip�

If we apply gzip to scientific checkpoint
data directly, the size is reduced by

about 13%�

LLNL-PRES-670952�

Evaluation of Errors�

�
�
�

An average error on pressure array� An average error on temperature array�
�

REi =
xi − !xi

max j x j{ }−min j x j{ }
Errors are reduced with # of division (n) increasing

•  Errors are reduced by about 98% at n = 128 compared with n = 1
Proposed quantization reduces an error compared with simple one

•  The degree of reduction �n errors is different depending on arrays�

On all variables, maximum errors are within 5% and average
errors are within 1.2%

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

1 2 4 8 16 32 64 128

Re
la

tiv
e

er
ro

r [
%

]�

Division number�

Simple quantization Proposed quantization"

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 4 8 16 32 64 128

Re
la

tiv
e

er
ro

r [
%

]�

Division number�

Simple quantization Proposed quantization

LLNL-PRES-670952�

Evaluation of Compression Time �
The figure shows breakdown of compression time

•  The current implementation writes temporary file checkpoint data
as files to apply gzip

�

�

0

5

10

15

20

25

30

Other
overheads

Wavelet
transformation

Quantization
and Encoding

Temporal file
wirte for gzip

gzip

co
m

pr
es

si
on

 ti
m

e
[m

se
c]
�

Breakdown of compression time�

I/O time for temporary file
is cut if we apply gzip to

the data internally �

LLNL-PRES-670952�

I/O time for temporary file
is cut if we apply gzip to

the data internally �

Estimation on Massively Parallel Case�
Assumptions for compression time

•  I/O throughput…20GB/s
•  Checkpoint size that each process has…about 1.5MB

→Total checkpoint size…about (1.5 × # of parallelism)MB

�
�
�

Actual survey
•  Compression time
•  Compression rate

Calculation from
assumption

•  I/O time
Total checkpoint size(×compression rate)

I/O Throughput�

in different division numbers and quantization methods. The
compression rates tend to increase as the division number (n)
increases; it is 11.06% with the simple quantization when
n = 1, and reaches 12.10% when n = 128. With the
proposed quantization, the compression rates are larger,
which is 14.43% when n = 1 and 16.75% when n = 128.
For other arrays than the temperature array, the measured
compression rates are 11% to 13% with simple quantization,
and 13% to 29% with proposal quantization.

Figure. 8 shows relative errors of the temperature array
in different division numbers and quantization methods. It is
natural that the relative errors are reduced with larger n; the
average relative error is 0.74% at n = 1 with simple quanti-
zation, and 0.025% at n = 128. With proposal quantization,
it is 0.49% at n = 1 and 0.0056% at n = 128. Also we
investigated all the floating point arrays in the application.
The average relative errors with simple quantization are in
the range of 0.0053% to 14.56%, and the maximum relative
errors are 0.048% to 56.84%, which would be intolerable.
With the proposed quantization, they are improved. They
are 0.0004% to 1.19% in average, and 0.0022% to 5.94%
at maximum. We compute the maximum relative errors as
maxi=0...m{rei}.

As a whole, while the proposed method keeps the com-
pressed size low, the method can significantly reduce the
errors as the division number increase. As described in
Section II-B, errors in floating point data that are tolerable
depending on characteristics of applications and application
users’ preference. Thus users will need to control the pa-
rameter n in order to fulfill their preferences. In future, we
will provide more intuitive capability, which can control the
errors by specifying a value, such as tolerable degree of
errors.

D. Compression Time

As described in Section II-A, one of our goals is to
reduce total checkpointing time including compression at
large scale. In order to estimate the total checkpointing time
of large scale systems based on the results from our in-house
cluster, we make the following assumptions. We consider
weak scalable cases, where each application process has
checkpoint data whose size is constant, 1.5MB. The size
is based on checkpoint size of a single array in NICAM.
Here the compression time does not depend on parallelism,
since compression of checkpoints of each process can be
done in a embarrassingly parallel fashion. We obtain the
compression time from the actual measurement. Also we
obtain the compression rate, 19%, in this case. For the I/O
time, we assume that checkpoint images of all processes
are stored into the shared parallel file system, whose I/O
throughput is 20GB/s. Thus, we can estimate the I/O time
as:

1.5[MB/processes] × 0.12× P / 20[GB/s]

0

20

40

60

80

100

120

140

160

180

200

256 512 768 1024 1280 1536 1792 2048

ov
er

al
l c

he
ck

po
in

t t
im

e
[m

se
c]
�

the number of paralellisms

Checkpoint time (w/ compression)
gzip
Temporal file wirte for gzip
Quantization and Encoding
Wavelet transformation
Other overheads
Checkpoint time (w/o compression)

Figure 9: Overall checkpint time in increasing parallelisms

where P denotes the number of parallelisms. Figure. 9 shows
the estimated checkpoint costs in increasing parallelisms.
For the compression time, we show the detailed breakdown
based on the actual measurement. The figure also shows the
estimated checkpoint costs without compression.

From the figure, we observe that our approach is superior
in the aspect of compression time with larger number of
processes, because compression costs get relatively smaller
compared to I/O time. The crosspoint is around 768 pro-
cesses in this case. With 2048 processes, our estimation in-
dicates that we can reduce checkpoint costs by 55%. Because
compression time is constant to increasing parallelism, the
slop of the total checkpoint time with our proposed method
is more flat than one without compression. In this trend, if
we scale out the system, the checkpoint costs can be reduced
by about 81 (= 1−0.19

1 × 100)%.
This evaluation is limited to smaller checkpoint sizes

(1.5MB/process) due to the available initial input data for
NICAM. However, our compression algorithm has compu-
tational time complexity, O(n), to checkpoint sizes. Thus,
the superiority demonstrated in Figure. 9 is kept with larger
checkpoint sizes.

As shown in Figure. 9, most of the compression time
is consumed by gzip. The current implementation writes
temporary checkpoint data as files, and apply gizp to these
files via the file system. This cost will be mostly eliminated
by compressing the temporary checkpoint data with zlib in
memory. Also, we are going to investigate other compression
methods that are more appropriate than gzip when combined
with our lossy compression. Although our current imple-
mentation includes extra overhead, the estimation verifies
that our lossy compression method remarkably reduces
checkpoint time at extreme scale.

LLNL-PRES-670952�

Estimation on Massively Parallel Case�

in different division numbers and quantization methods. The
compression rates tend to increase as the division number (n)
increases; it is 11.06% with the simple quantization when
n = 1, and reaches 12.10% when n = 128. With the
proposed quantization, the compression rates are larger,
which is 14.43% when n = 1 and 16.75% when n = 128.
For other arrays than the temperature array, the measured
compression rates are 11% to 13% with simple quantization,
and 13% to 29% with proposal quantization.

Figure. 8 shows relative errors of the temperature array
in different division numbers and quantization methods. It is
natural that the relative errors are reduced with larger n; the
average relative error is 0.74% at n = 1 with simple quanti-
zation, and 0.025% at n = 128. With proposal quantization,
it is 0.49% at n = 1 and 0.0056% at n = 128. Also we
investigated all the floating point arrays in the application.
The average relative errors with simple quantization are in
the range of 0.0053% to 14.56%, and the maximum relative
errors are 0.048% to 56.84%, which would be intolerable.
With the proposed quantization, they are improved. They
are 0.0004% to 1.19% in average, and 0.0022% to 5.94%
at maximum. We compute the maximum relative errors as
maxi=0...m{rei}.

As a whole, while the proposed method keeps the com-
pressed size low, the method can significantly reduce the
errors as the division number increase. As described in
Section II-B, errors in floating point data that are tolerable
depending on characteristics of applications and application
users’ preference. Thus users will need to control the pa-
rameter n in order to fulfill their preferences. In future, we
will provide more intuitive capability, which can control the
errors by specifying a value, such as tolerable degree of
errors.

D. Compression Time

As described in Section II-A, one of our goals is to
reduce total checkpointing time including compression at
large scale. In order to estimate the total checkpointing time
of large scale systems based on the results from our in-house
cluster, we make the following assumptions. We consider
weak scalable cases, where each application process has
checkpoint data whose size is constant, 1.5MB. The size
is based on checkpoint size of a single array in NICAM.
Here the compression time does not depend on parallelism,
since compression of checkpoints of each process can be
done in a embarrassingly parallel fashion. We obtain the
compression time from the actual measurement. Also we
obtain the compression rate, 19%, in this case. For the I/O
time, we assume that checkpoint images of all processes
are stored into the shared parallel file system, whose I/O
throughput is 20GB/s. Thus, we can estimate the I/O time
as:

1.5[MB/processes] × 0.12× P / 20[GB/s]

0

20

40

60

80

100

120

140

160

180

200

256 512 768 1024 1280 1536 1792 2048

ov
er

al
l c

he
ck

po
in

t t
im

e
[m

se
c]
�

the number of paralellisms

Checkpoint time (w/ compression)
gzip
Temporal file wirte for gzip
Quantization and Encoding
Wavelet transformation
Other overheads
Checkpoint time (w/o compression)

Figure 9: Overall checkpint time in increasing parallelisms

where P denotes the number of parallelisms. Figure. 9 shows
the estimated checkpoint costs in increasing parallelisms.
For the compression time, we show the detailed breakdown
based on the actual measurement. The figure also shows the
estimated checkpoint costs without compression.

From the figure, we observe that our approach is superior
in the aspect of compression time with larger number of
processes, because compression costs get relatively smaller
compared to I/O time. The crosspoint is around 768 pro-
cesses in this case. With 2048 processes, our estimation in-
dicates that we can reduce checkpoint costs by 55%. Because
compression time is constant to increasing parallelism, the
slop of the total checkpoint time with our proposed method
is more flat than one without compression. In this trend, if
we scale out the system, the checkpoint costs can be reduced
by about 81 (= 1−0.19

1 × 100)%.
This evaluation is limited to smaller checkpoint sizes

(1.5MB/process) due to the available initial input data for
NICAM. However, our compression algorithm has compu-
tational time complexity, O(n), to checkpoint sizes. Thus,
the superiority demonstrated in Figure. 9 is kept with larger
checkpoint sizes.

As shown in Figure. 9, most of the compression time
is consumed by gzip. The current implementation writes
temporary checkpoint data as files, and apply gizp to these
files via the file system. This cost will be mostly eliminated
by compressing the temporary checkpoint data with zlib in
memory. Also, we are going to investigate other compression
methods that are more appropriate than gzip when combined
with our lossy compression. Although our current imple-
mentation includes extra overhead, the estimation verifies
that our lossy compression method remarkably reduces
checkpoint time at extreme scale.

�
�
�

Each process compresses
1.5MB checkpoint data in
spite of # of parallelism

•  Compression time is
constant

I/O time depends on total
checkpoint size

Our approach takes
advantage when # of
parallelism increases

If compression time is
negligible by increasing #
of parallelism, I/O time
reduces by about 81%

Reduction in checkpoint time�

An assumption about compression time
•  I/O throughput…20GB/s
•  Checkpoint size that each process has…about 1.5MB

→Total checkpoint size…about (1.5 × # of parallelism)MB

LLNL-PRES-670952�

Evaluation Method for Error Transition�

�
�
�

We evaluate error transition as shown in bottom figure

LLNL-PRES-670952�

Time step�
t=0� Original

execution�

t=720� t=1220� t=2220�

Execution
with a lossy
checkpoint

Checkpoint
(Introduce errors)�

Evaluation
of errors �

Evaluation
of errors �

t=720� t=1220� t=2220�

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

72
0

77
0

82
0

87
0

92
0

97
0

10
20

10

70

11
20

11

70

12
20

12

70

13
20

13

70

14
20

14

70

15
20

15

70

16
20

16

70

17
20

17

70

18
20

18

70

19
20

19

70

20
20

20

70

21
20

21

70

22
20

R
el

at
iv

e
er

ro
r

[%
]�

Time steps (One step simulates 1200 seconds of climate changes)�

Simple quantization
Proposed quantization

Figure 10: The transition of the relative error with application time steps

E. Feasibility Study of Lossy Compression
In the previous sections, we have evaluated immediate

errors; we compare original values with decompressed val-
ues by the lossy compression. In real simulation runs,
application users run the simulations for long time after
restarts from failures, and the errors of the successive
results may diverge, or may converge. To investigate the
successive impacts, we evaluate the errors on each time step
by comparing with original values on each step.

First, we run NICAM for 720 time steps, and then make
checkpoint images with the lossy compression. After the
checkpointing, we decompress the checkpoint, and we re-
run for additional 1500 time steps, i.e., 2220 time steps in
total, in order to emulate a restart from a failure.

Figure. 10 shows the progress of the relative errors as the
time step proceeds. Because the application restarts at a step
720, the x-axis begins from 720, and ends with 2220 steps.
It shows the average relative errors of the temperature array.
We observe that the proposed quantization exhibits smaller
errors than the simple one. In the simple quantization, we
also see that the fluctuation of errors are larger, and from
around step 1570, the errors start to decrease. Meanwhile,
the errors by proposed quantization are milder, and increase
slowly throughout steps from 720 to 2220. We also observed
the similar tendency with the other arrays.

For both quantization methods, the errors randomly grow
up and down while slowly increasing, and the movements
resemble to 1D random walk. If we assume that the errors
grow according to an 1D random walk, the expected errors
after n steps becomes the order of

√
n, which explains the

slow grows of the errors. In practice, scientific models also
produce the same degree of errors. Thus, the slow grows of
the errors may be acceptable compared to inherent errors to
scientific simulations, such as input data errors, sensor errors

and model errors. However, we should investigate on many
real applications, and the invariants of the physical quantities
as future work. In addition, values of the target array can be
symmetric, or being obeying the principle of the conserva-
tion of energy. If we apply lossy compression to those arrays,
the lossy compression can break the consistency. Thus, lossy
compression may require users to do data adjustment for the
consistency after restart in such applications.

V. RELATED WORK

To restart from failures, applications usually write check-
points to reliable parallel file systems. However, writing
checkpoints to such shared file system incurs huge overhead
because parallel file systems are shared by all of com-
pute nodes, and cannot provide enough I/O bandwidth to
all the compute nodes. To solve the problem, multi-level
checkpointing has been proposed [5], [25]. With multi-
level checkpointing, applications can make use of storage
hierarchy where the applications write checkpoint to local
storage frequently, and to parallel file system less frequently.
By optimizing each level of checkpointing intervals using
checkpointing models, the application can significantly re-
duce the checkpointing overhead [25], [26]. However, failure
rate is projected to become higher at extreme scale. The
existing multi-level checkpointing may not be enough for
extreme scale systems.

For further improvement of checkpointing at ex-
treme scale, in-memory checkpointing is one of the ap-
proaches [27]–[29]. By directly writing checkpoints to
memory in stead of storage sub-systems with an RAID-
5 technique, checkpointing time can be improved by one
order of magnitude while keeping certain level of reliability.
Asynchronous checkpointing also reduce the I/O overhead
by overlapping with computations [2]. In addition, utilization

Evaluation of Error Transition�

�
�
�

Lossy compression is applied to checkpoint data
→�Applications use the data with errors

→�The errors may diverge even if initial errors are small
Lossy compression has been becoming feasible for checkpoint
image data in an N-body cosmology simulation [�]

x-axis begins
from 720�

LLNL-PRES-670952�

[� Xiang �i, SC, 2014, “Lossy compression for checkpointing: Fallible or feasible?”]�

Related Work�
Multi-level checkopointing [Bautista-Gomez, SC, 2011]

•  Applications write checkpoint to local storage frequently, and to
parallel file system less frequently

•  We can combine our approach with this technique

Incremental checkpointing [Naksinehaboon, CCGRID, 2008]

•  This stores only differences with the last checkpoint
•  We can combine our approach with this technique

MCREngine [Islam, SC, 2012]
•  This study aims to improve compression rate with lossless

compression
•  The scheme merges distributed checkpoint images per each variable,

and select effective compression methods for each variable

�
�
�

LLNL-PRES-670952�

Conclusion�
Contribution

•  We apply our approach to real climate application, NICAM,
then overall checkpoint time included compression time is
reduced by 81% with 1.2% relative error on average in
particular situation

•  We improve compression rate compared to lossless
compression with the same degree of inherent errors to
scientific simulations, such as sensor errors and model errors

Future work

•  Improvement of the compression algorithm
•  Reduce compression rate and errors

•  Investigation of the feasibility in other applications
•  Combination with other efforts

�
�
�

LLNL-PRES-670952�

