Exploration of Lossy Compression for Application-level Checkpoint/Restart

Naoto Sasaki¹, Kento Sato³, Toshio Endo¹,², Satoshi Matsuoka¹,²

¹ Tokyo institute of technology
² Global Scientific Information and Computing Center
³ Lawrence Livermore National Laboratory
Needs for Fault Tolerance

The scale of HPC systems are exponentially growing

- exa-scale supercomputers in about 2020
- The failure rate increases as systems size grows

Applications’ users want to continue its computation even on a failure

Checkpoint/Restart technique is widely used as fault tolerant function

- But this technique has problems
Needs for Reduction in Checkpoint Time

Checkpoint/Restart

→ Data of memory is stored in the disk
→ High I/O cost

MTBF (Mean Time Between Failure) is reduced by expansion in the scale of HPC systems

• MTBF is projected to shrink to over 30min in 2020 [※1]

If MTBF < Checkpoint time
an application may not be able to run!

↓
Needs for reduction in checkpoint time!

Applications’ users need to reduce checkpoint time

※1: Peter Kogge, Editor & Study Lead (2008)
ExaScale Computing Study: Technology Challenges in Achieving ExaScale Systems
To Reduce Checkpoint Time

There are techniques to reduce checkpoint size

- Compression
- Incremental checkpointing
 - This stores only differences with the last checkpoint

Compression can be combined with incremental checkpointing

- In addition, the effect of incremental checkpointing may be limited in scientific applications

We focus on compression for checkpoint image data
Lossless and Lossy Compression

Features of lossless
- No data loss
- Low compression rate without bias
 - Scientific data has a randomness

Features of lossy
- High compression rate
- Errors are introduced

If we apply lossless compression to floating point arrays, the compression rate is limited

We focus on lossy compression
Discussion on Errors Introduced by Lossy Methods

Errors may be acceptable if we examine processes for developing real scientific applications

- Scientific model and sensors also introduce errors
- We need to investigate whether the errors are acceptable

Don’t apply lossy compression to data that must not have an error (e.g. pointer)

We apply lossy compression to checkpoint data

- The calculation continues with data including errors

(citation of images: http://svs.gsfc.nasa.gov/vis/a000000/a002400/a002478/)
Outline of Our Study

Purpose

• To reduce checkpoint time, lossy compression is applied to checkpoint data then checkpoint size is reduced

Proposed Approach

1. We apply wavelet transformation, quantization and encoding to a target data, then store the data in a recoverable format
2. We apply gzip to the recoverable format data

Contribution

• We apply our approach to real climate application, NICAM, then overall checkpoint time included compression time is reduced by 81% with 1.2% relative error on average in particular situation
Assumption for Our Approach

We assume application-level checkpoint

- We utilize that difference between neighbor values
- Target data are an arrays of physical quantities
 - We target 1, 2 or 3D mesh data represented by floating point arrays

There are data to which must not be applied our approach because errors are introduced

- Data structure including pointers (e.g. tree)

Users specify a range of data to which are applied our approach
Motivation of Wavelet Transformation

Lossless compression is effective in data that have redundancy

- Scientific data has a randomness
- We need to make redundancy in the scientific data

To make much redundancy and make errors small...

- The target data should have dense and small values

The scientific data does not spatially changed much

To make good use of this feature...

We focus on wavelet transformation
About Wavelet Transformation

Wavelet transformation is a technique of frequency analysis

- We suspect that compression that uses wavelet transformation is efficient in applications that uses physical quantities (e.g. pressure, temperature)

Multiple resolution analysis is effective in compression

- JPEG2000 uses this technique
- It is known that this technique is effective in smooth data
 - This “smooth” means the difference between neighbor values is small

※Wavelet transformation itself is NOT compression method, but we use it for preprocessing
Proposal Approach:
Lossy Compression Based On Wavelet

Original checkpoint data (Floating point array)

1. Wavelet transformation
 - Low-frequency band array
 - High-frequency band array

2. Quantization
 - High-frequency band array
 - bitmap
 - average array

3. Encoding
 - High-frequency band array

4. Formatting
 - bitmap
 - average array
 - Low and high-frequency band arrays

5. Applying gzip
 - Compressed data
Wavelet Transformation

Original checkpoint data (Floating point array)

1. Wavelet transformation
 - Low-frequency band array
 - High-frequency band array

2. Quantization
 - High-frequency band array
 - bitmap
 - average array

3. Encoding
 - High-frequency band array

4. Formatting
 - bitmap
 - average array
 - Low and high-frequency band arrays

5. Applying gzip
 - Compressed data
1D Wavelet Transformation in Our Approach

We use average of two neighbor values and difference between two neighbor values

In high-frequency band, most of values are close to zero
→ We expect that an introduced error is small even if the precision of values in high-frequency band region is dropped
Multi-dimensional Wavelet Transformation

In multi-dimensional array, we apply 1D wavelet transformation to each dimension.

In case of 2D array
- # of low…1
- # of high…3

In case of 3D array
- # of low…1
- # of high…7

Fig: an example of wavelet transformation for a 2D array
Quantization

1. Wavelet transformation
 - Low-frequency band array
 - High-frequency band array

2. Quantization
 - High-frequency band array
 - bitmap
 - average array

3. Encoding
 - High-frequency band array

4. Formatting
 - bitmap
 - average array
 - Low and high-frequency band arrays

5. Applying gzip
 - Compressed data
Simple Quantization

1. Divide high-frequency band values into n partitions
 - This n is called the number of division

2. Replace all values of each partition with an average of the corresponding partition

Focus on high-frequency band

Introduce an error

Introduce an error

Replace
Problems of Simple Quantization

Simple quantization introduces large errors

Make histogram
To reduce Errors

Target data is expected to be smooth

- Most of values in high-frequency band are close to zero
- These make a “spike” in the distribution

To reduce an error, we apply the quantization to the “spike” parts only

- An impact on compression rate is low because the spike parts consist of most of values in high-frequency band
Proposed Quantization

This method is improved version of simple one

Values in high-frequency band

Values in high-frequency band

Values in high-frequency band

Make histogram

Red elements belong to “spike” parts

High-frequency band

n = 4

average [0]

average [1]

average [2]

average [3]

bitmap

This method is improved version of simple one
Difference in quantization methods

Simple quantization

• Replace all values in high-frequency band
 → Introduce large errors
 → High compression rate because of less type of values

Proposed quantization

• Replace parts of values in high-frequency band
 → Introduce small errors
 → Low compression rate by lack of regularity
Encoding

Original checkpoint data (Floating point array)

1. Wavelet transformation
 - Low-frequency band array
 - High-frequency band array

2. Quantization
 - High-frequency band array
 - Bitmap
 - Average array

3. Encoding
 - High-frequency band array

4. Formatting
 - Bitmap
 - Average array
 - Low and high-frequency band arrays

5. Applying gzip
 - Compressed data
Encoding

In quantization step, all or part of high-frequency band are replaced with n kinds of values

- n kinds of `double` values are replaced with corresponding `char` values
 - In case of `double`, data size becomes 1/8
 - In case of `float`, data size becomes 1/4

In recovery, an `average` array is required

We apply encoding to quantized parts only
Formatting

1. Wavelet transformation
 - Low-frequency band array
 - High-frequency band array

2. Quantization
 - High-frequency band array
 - Bitmap
 - Average array

3. Encoding
 - High-frequency band array

4. Formatting
 - Bitmap
 - Average array
 - Low and high-frequency band arrays

5. Applying gzip

Compressed data
Recoverable Format

Required data in restart

- Bitmap

- Average array

- Char and double data to which is applied our approach

We apply gzip to this formatted data
Computational Complexity

Our compression algorithm contains only single loop that processes all or part of arrays

An algorithm of our approach has computational complexity $O(s)$ with checkpoint size s
Evaluation Environment

To estimate a impact of our approach, we evaluate…

- Compression time
- Compression rate
- The degree of errors

Our approach is applied to real climate simulation, NICAM[M.Satoh, 2008]

- Target physical quantities are pressure, temperature and velocity.
 - double precision, 3Darray, 1156*82*2
- The data is too smooth in initial state
 → apply our approach after 720 steps from initial state

Machine spec

<table>
<thead>
<tr>
<th>CPU</th>
<th>Intel Core i7-3930K 6 cores 3.20GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory size</td>
<td>16GB</td>
</tr>
</tbody>
</table>

(citation of image : HPCS2014 全球大気シミュレーションにおいて、どこまで解像度が必要か？)
Metrics for Evaluation

Compression rate

\[CR = \frac{CS_{\text{compressed}}}{CS_{\text{original}}} \times 100[\%] \]

- \(CS_{\text{compressed}} \): checkpoint size with compression
- \(CS_{\text{original}} \): original checkpoint size

Relative error

\[RE_i = \frac{|x_i - \tilde{x}_i|}{\max_j \{x_j\} - \min_j \{x_j\}} \]

- \(X = \{x_i\} \): original data
- \(\tilde{X} = \{\tilde{x}_i\} \): data with our approach
Evaluation of Compression Rate

Apply our approach with **simple quantization** (The number of division \(n\) is 128)

<table>
<thead>
<tr>
<th>Compression rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Simple quantization achieves better compression rate, but introduces a larger error than proposal quantization.

If we apply **gzip** to scientific checkpoint data directly, the size is reduced by about 13%.

Our approach reduces checkpoint size by about 75%.

Original checkpoint data (Floating point array)

Apply **gzip**

Compressed checkpoint data with **gzip**

Compressed checkpoint data with **simple quantization**

Compressed checkpoint data with **proposal quantization**
Evaluation of Errors

Errors are reduced with # of division (n) increasing

- Errors are reduced by about 98% at $n = 128$ compared with $n = 1$

Proposed quantization reduces an error compared with simple one

- The degree of reduction in errors is different depending on arrays

An average error on pressure array

An average error on temperature array

On all variables, maximum errors are within 5% and average errors are within 1.2%
Evaluation of Compression Time

The figure shows breakdown of compression time

- The current implementation writes temporary file checkpoint data as files to apply gzip

Breakdown of compression time

<table>
<thead>
<tr>
<th>Component</th>
<th>Compression time [msec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other overheads</td>
<td>0</td>
</tr>
<tr>
<td>Wavelet transformation</td>
<td>1</td>
</tr>
<tr>
<td>Quantization and Encoding</td>
<td>3</td>
</tr>
<tr>
<td>Temporal file write for gzip</td>
<td>6</td>
</tr>
<tr>
<td>gzip</td>
<td>29</td>
</tr>
</tbody>
</table>

I/O time for temporary file is cut if we apply gzip to the data internally.
Estimation on Massively Parallel Case

Assumptions for compression time

- I/O throughput…20GB/s
- Checkpoint size that each process has…about 1.5MB
 → Total checkpoint size…about (1.5 × # of parallelism)MB

Actual survey

- Compression time
- Compression rate

Calculation from assumption

- I/O time

Total checkpoint size(×compression rate) / I/O Throughput
Estimation on Massively Parallel Systems

An assumption about compression time

- I/O throughput…20GB/s
- Checkpoint size that each process has…about 1.5MB
 → Total checkpoint size…about (1.5 × # of parallelism)MB

Each process compresses 1.5MB checkpoint data in spite of # of parallelism

- Compression time is constant
- I/O time depends on total checkpoint size

Our approach takes advantage when # of parallelism increases

If compression time is negligible by increasing # of parallelism, I/O time reduces by about 81%
Evaluation Method for Error Transition

We evaluate error transition as shown in bottom figure.

Time step:
- $t=0$
- $t=720$
- $t=1220$
- $t=2220$

Original execution

Checkpoint (Introduce errors)

Evaluation of errors

Execution with a lossy checkpoint
Evaluation of Error Transition

Lossy compression is applied to checkpoint data

→ Applications use the data with errors
 → The errors may diverge even if initial errors are small

Lossy compression has been becoming feasible for checkpoint image data in an N-body cosmology simulation [※]

![Graph showing relative error over time steps](image)

- Simple quantization
- Proposed quantization

Relative error [%]

Time steps (One step simulates 1200 seconds of climate changes)

Related Work

Multi-level checkpointing [Bautista-Gomez, SC, 2011]
- Applications write checkpoint to local storage frequently, and to parallel file system less frequently
- We can combine our approach with this technique

Incremental checkpointing [Naksinehaboon, CCGRID, 2008]
- This stores only differences with the last checkpoint
- We can combine our approach with this technique

MCREngine [Islam, SC, 2012]
- This study aims to improve compression rate with lossless compression
 - The scheme merges distributed checkpoint images per each variable, and select effective compression methods for each variable
Conclusion

Contribution

• We apply our approach to real climate application, NICAM, then overall checkpoint time included compression time is reduced by 81% with 1.2% relative error on average in particular situation

• We improve compression rate compared to lossless compression with the same degree of inherent errors to scientific simulations, such as sensor errors and model errors

Future work

• Improvement of the compression algorithm
 • Reduce compression rate and errors
• Investigation of the feasibility in other applications
• Combination with other efforts