LLNL-PRES-670952

Exploration of Lossy
Compression for Application-
level Checkpoint/Restart

Naoto Sasaki’, Kento Sato3,

Toshio Endo':2, Satoshi Matsuoka:2

1 Tokyo institute of technology

2 Global Scientific Information and Computing Center

3 Lawrence Livermore National Laboratory

LLNL-PRES-670952

Needs for Fault Tolerance

The scale of HPC systems are exponentially growing

» exa-scale supercomputers in about 2020
 The failure rate increases as systems size grows

| ¢
Applications’ users want to continue its
computation even on a failure

4

Checkpoint/Restart technique is widely used as fault tolerant
function

 But this technique has problems

LLNL-PRES-670952

Needs for Reduction in Checkpoint Time

Checkpoint/Restart

—Data of memory is stored in the disk
—High I/O cost

On TSUBAMEZ2.5

Memory capacity:about 116TB
I/O throughput:about 8GB/s

l

Checkpoint time:about 4 hours

MTBF(Mean Time Between Failure) is reduced by
expansion in the scale of HPC systems

* MTBEF is projected to shrink to over 30min in 2020 [31]

- =

If MTBF < Checkpoint time
an application may not be able to run !

l

Needs for reduction in checkpoint time !

4

Applications’ users need to reduce checkpoint time

%1 : Peter Kogge, Editor & Study Lead (2008)

ExaScale Computing Study: Technology Challenges in Achieving ExaScale Systems

LLNL-PRES-670952

To Reduce Checkpoint Time

There are techniques to reduce checkpoint size

« Compression

* Incremental checkpointing
« This stores only differences with the last checkpoint

Compression can be combined with incremental
checkpointing

* In addition, the effect of incremental checkpointing may be
limited in scientific applications

We focus on compression for checkpoint image data

LLNL-PRES-670952

Lossless and Lossy Compression

gzip, bzip2, etc. jpeg, mp4, etc.
Y e
Features of lossless Features of lossy
* No data loss » High compression rate
* Low compression rate without bias Errors are introduced

« Scientific data has a randomness

100

©
-

Qo
-

If we apply lossless
compression to floating point
arrays, the compression rate

is limited

¥

We focus on lossy compression

3
-}

o
@)

N
(@)

Compression rate [%)]
o
=)

D W
o O

—
-

@)

Moriginal Mgzip

LLNL-PRES-670952

Discussion on Errors Introduced by Lossy Methods

Errors may be acceptable if we examine processes for developing
real scientific applications

 Scientific model and sensors also introduce errors
* We need to investigate whether the errors are acceptable

gzip 2.19MB jpeg2000 0.153MB

(citation of images :

Don’t apply lossy compression to data that must not have an error
(e.g. pointer)

We apply lossy compression to checkpoint data

* The calculation continues with data including errors

LLNL-PRES-670952

Outline of Our Study

Purpose

* To reduce checkpoint time, lossy compression is applied to
checkpoint data then checkpoint size is reduced

Proposed Approach

1. We apply wavelet transformation, quantization and encoding to
a target data, then store the data in a recoverable format

2. We apply gzip to the recoverable format data

Contribution

« We apply our approach to real climate application, NICAM, then
overall checkpoint time included compression time is reduced by
81% with 1.2% relative error on average in particular situation

LLNL-PRES-670952

Assumption for Our Approach

We assume application-level checkpoint
« We utilize that difference between neighbor
values
 Target data are an arrays of physical quantities

« We target 1,2 or 3D mesh data represented _

by floating point arrays

There are data to which must not be applied our
approach because errors are introduced

« Data structure including pointers (e.g. tree)

-

Users specify a range of data to
which are applied our approach

LLNL-PRES-670952

Motivation of Wavelet Transformation

Lossless compression is effective in data that have redundancy

 Scientific data has a randomness
* We need to make redundancy in the scientific data

To make much redundancy and make errors small...

 The target data should have dense and small values
The scientific data does not spatially changed much

‘ To make good use of this feature...

We focus on wavelet transformation

LLNL-PRES-670952

About Wavelet Transformation

Wavelet transformation is a technique of frequency analysis

We suspect that compression that uses
wavelet transformation is efficient in
applications that uses physical quantities
(e.g. pressure, temperature)

Multiple resolution an@sis is effective in compression

« JPEG2000 uses this

* It is known that t@s technique is effective in smooth data

- This “smooth” means the difference between neighbor values
is small

echnique

>Wavelet transformation itself is NOT compression method,
but we use it for preprocessing

LLNL-PRES-670952

Proposal Approach:
Lossy Compression Based On Wavelet

Original checkpoint data (Floating point array)
|
[1. Wavelet transformation]7

4 4
Lonritieereney bemd High-frequency band array
array

—[2. Quantization

/ 4
High-frequency band array bitmap a;ﬁ;%f

[3. En(lzoding]
v

High-frequency band array

\
[4. Formatting]
\

average

sy Low and high-frequency band arrays

bitmap

[5. Appl}\lfling gzip]

Compressed data

LLNL-PRES-670952

Wavelet Transformation

Original checkpoint data (Floating point array)
|

[1. Wavelet transformation J*

4 4
Low-frequency band
array

High-frequency band array
|

—[2. Quantization

/ 4
High-frequency band array bitmap a;§;g§e

[3. Enclzoding]
v

High-frequency band array
\

[4. Formatting

\

)
)

|
average

array

bitmap Low and high-frequency band arrays

|

[5. Appl}\lfling 2zIp]

Compressed data

LLNL-PRES-670952

1D Wavelet Transformation in Our Approach

We use average of two neighbor values and difference
between two neighbor values

Original 1D array

Wavelet
transformation

\ 4

Transformed array

value

value

A
index >
A
M average
| .
_! difference
[—— >
— 1] |—|_|
Low-frequency High-frequency

In high-frequency band, most of values are close to zero

—We expect that an introduced error is small even if the precision
of values in high-frequency band region is dropped

LLNL-PRES-670952

Multi-dimensional Wavelet Transformation

Low- High-
In multi-dimensional iiequencyly | frequency
array, we apply 1D q
wavelet transformation
to each dimension ‘
1D wavelet
In case of 2D array ! !
« # of low...1 ‘1Dwavelet‘
* # of high...3
1 low-frequency
In case of 3D array band
* # of low...1

* # of high...7 3 high-frequency
band

Fig : an example of wavelet transformation for
a 2D array

LLNL-PRES-670952

Quantization

Original checkpoint data (Floating point array)
|

[1. Wavelet transformation]*

4 4
Low-frequency band
array

High-frequency band array
|

—[2. Quantization |

/ 4
High-frequency band array bitmap a;ﬁ;ﬁ%’f

[3. Enclzoding]
v

High-frequency band array
\

[4. Formatting

\

)
)

|
average

array

bitmap Low and high-frequency band arrays

[5. Appl}\lfling 2zIp]

Compressed data

LLNL-PRES-670952

Simple Quantization

1. Divide high-frequency band values into n partitions

* This nis called the number of division Introduce

2. Replace all values of each partition with an average of an error
the corresponding partition .

n=4 an error

Calculate an average

M Calculate an average _I

> S

\
\ A
\ \

v

Focus on

\ \
\ \ AY
\ 1 AY
\\ \‘ \\
\ \
\\\ ‘\\ \\\
\\ “ \\
\ \ \
\ ‘\ N
\\ “ A
\ ‘\ I
. Replace
high-frequency band
\\ “ \\
N \ \
AN \‘ \
N e I ! — —
—)

index a—

value
value

Problems of Simple Quantization

Simple quantization introduces large errors

Frequency

Distribution of high-frequency band

LLNL-PRES-670952

average [2](—average 3]

P9 Q10 10 O 19 19 &G 0 15

Values in high-frequency band

High-frequency band

LLNL-PRES-670952

To reduce Errors

Target data is expected to be smooth

* Most of values in high-frequency band are close to zero
* These make a “spike” in the distribution

To reduce an error, we apply the quantization to the
“spike” parts only

* An impact on compression rate is low because the spike parts
consist of most of values in high-frequency band

Apply quantization to this
“spike” part only

No
guantization

No P

quantization

LLNL-PRES-670952

Proposed Quantization

This method is improved version of simple one

d=10 n=4
|average [1]|§ §|a\:1erage [2]|
- d e e et A e e e
MmO N 10 O W =10 N WM M AN =0 O 0 =10 N M0 <H MO NN T DO ~ 10N ®LY T
R T S S S R TR == S S TR = = S PN TS
Values in high-frequency band Values in high-frequency band Values in|Hightfrequency band
Make
histogram Red elements belong
to “spike” parts
High-frequency band
o(1(1(1(11111(0

bitmap

LLNL-PRES-670952

Difference in quantization methods

Simple quantization

* Replace all values in high-frequency band
—Introduce large errors
—High compression rate because of less type of values

Proposed quantization

* Replace parts of values in high-frequency band
—Introduce small errors
—Low compression rate by lack of regularity

LLNL-PRES-670952

Encoding

Original checkpoint data (Floating point array)
|

[1. Wavelet transformation]*

4 4
Low-frequency band
array

High-frequency band array

|
—[2. Quantization |
y

High-frequency band array bitmap

/

average
array

(3. Encoding |
v

High-frequency band array
\

[4. Formatting

\

)
)

|
average

array

bitmap Low and high-frequency band arrays

[5. Appl}\lfling 2zIp]

Compressed data

Encoding

LLNL-PRES-670952

In quantization step, all or part of high-frequency band are
replaced with n kinds of values

* n kinds of double values are replaced with corresponding char values

* |In case of double, data size becomes 1/8
* |In case of float, data size becomes 1/4

In recovery, an average array is required

+

ave[0]

ave[1]

ave[2]

ave[3]

(char) 310(1

average

1

—~

[0]

We apply encoding to

quantized parts only

[1]

[2]

[3]

LLNL-PRES-670952

Formatting

Original checkpoint data (Floating point array)
|

[1. Wavelet transformation]*

4 4
Low-frequency band
array

High-frequency band array

|
—[2. Quantization |
y

High-frequency band array bitmap

/

average
array

[3. Enclzoding]
v

High-frequency band array

(‘]
| 4. Formatting |
\

average
array

bitmap Low and high-frequency band arrays

[5. Appl}iing gsz]

Compressed data

LLNL-PRES-670952

Recoverable Format

Required data in restart

* Bitmap ol11111]1]1]1]o0

* Average array | avelol| avel1]| avel2]| ave[3]

* Char and double data to which is applied our approach
A

(char)

_ _ 3[01[2[2[1—>
We apply gzip to this formatted data

O|111{1{1({1(1]10]|+ + “7 W (char)
30 12 2| 1

LLNL-PRES-670952

Computational Complexity

Our compression algorithm contains only single loop that
processes all or part of arrays

Original checkpoint data (Floating point array)

|
[1. Wavelet transformation]—
\
High-frequency band array

[
[2. Quantization }

Low-frequency band
array

\ \
High-frequency band array bitmap “array

[3. En(I:oding]

v
High-frequency band array

\
{ 4. Formatting

\

1
J

. average
bitmap arraﬁr Low and high-frequency band arrays

An algorithm of our approach has computational
complexity O(s) with checkpoint size s

LLNL-PRES-670952

Evaluation Environment

To estimate a impact of our approach, we evaluate...

« Compression time =2
« Compression rate
* The degree of errors

Our approach is applied to real climate
simulation, NICAM[M.Satoh, 2008]

* Target physical quantities are pressure, temperature
and velocity.

» double precision, 3Darray, 1156*82*2
* The data is too smooth in initial state

—apply our approach after 720 steps from initial state ‘ =
Machine spec '

CPU Intel Core i7-3930K 6 cores 3.20GHz

Memory size 16GB

(citation of image : HPCS2014 £ KR IaL—avItBWT, ECETTREELADEMN ?)

LLNL-PRES-670952

Metrics for Evaluation

Compression rate

CS
C R _ compressed X 100[%]

CS,iginal CS, g - Original checkpoint size

CS.ompressed - checkpoint size with compression

Relative error

|xi - jzi| X ={x,} :original data

RE, =

max {xj} - minj {'xj} X ={%} :data with our approach

LLNL-PRES-670952

Evaluation of Compression Rate

Original checkpoint data Apply gzip Compressed checkpoint data
(Floating point array) with gzip

Apply our approach with simple quantization Apply our approach with proposal quantization
(The number of division nis 128) (The number of division nis 128)
Compressed checkpoint data e Compressed checkpoint data
with simple quantization N with proposal quantization
N
100 —
®original
90 N If we apply gzip to scientific checkpoint
— 80 data directly, the size is reduced by
%‘ 70 Simple quantization | about 13%
8 (n=128)
£ 60 ¥ Proposed quantization ' Y .
o =128 approach reduces checkpoint size by
.2 50 ' ——
0
§ 40 Simple quantization achieves better
= 30 / compression rate, but introduces a
S 20 % larger error than proposal quantization
1 -
A

LLNL-PRES-670952

RE, = Y=,
Evaluation of Errors " max, {x,}-min, {x,}

J

Errors are reduced with # of division (n) increasing

* Errors are reduced by about 98% at n = 128 compared with n = 1
Proposed quantization reduces an error compared with simple one

* The degree of reduction in errors is different depending on arrays

0.007 0.9
0.006 Simple quantization ¥ Proposed quantization" 0.8 Simple quantization ® Proposed quantization
_ 07+ b
I%:"0.005 r o_: 0.6
£0.004 205 _
S i N |
20.003 g 04 § §~“
< 20.3 § §
~0.002 I § %\ |
0.001 o1 § § N —
0 77 - - - - O & & & § “ AN -
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Division number Division number
An average error on pressure array An average error on temperature array

On all variables, maximum errors are within 5% and average
errors are within 1.2%

LLNL-PRES-670952

Evaluation of Compression Time

The figure shows breakdown of compression time

* The current implementation writes temporary file checkpoint data
as files to apply gzip li ||IIIII ||I||I |I|||||II i IIlIIIllIIIIII I I|I|||I|||iI

Y ""lm""‘i\ii'li *

Inl il
Other Wavelet Quantization Temporal file gzip
overheads transformation and Encoding wirte for gzip

Breakdown of compression time

w
o

&)

N DN

o

RN
o

compression time [msec]
—_—
(@)}

o O

LLNL-PRES-670952

Estimation on Massively Parallel Case

Assumptions for compression time

* 1/0O throughput...20GB/s

» Checkpoint size that each process has...about 1.5MB
—Total checkpoint size...about (1.5 x # of parallelism)MB

200

Actu al sSUu rvey 150 S\ Checkpoint time (w/ compression)
|| W gzip

Temporal file wirte for gzip

[op}
(e}
|

« Compression time
« Compression rate

Quantization and Encoding /x
| ™ Wavelet transformation

| ™= Other overheads /
-%-Checkpoint time (w/o compression)

W
(@)

DO
o

= = =

overall checkpoint time [msec]

00
Calculation from 80
. N
assumption 60 N\
P . e
* 1/O time 90
Total checkpoint size(xcompression rate) 0 w w w x x x x |
/0 Th hout 256 512 768 1024 1280 1536 1792 2048
roughpu the number of paralellisms

LLNL-PRES-670952

~

Estimation on Massively Pa ' compression time s
negligible by increasing #

An assumption about compression time of parallelism, 1/O time

* /0 throughput...20GB/s reduces by about 81%

» Checkpoint size that each process has...about 1.5MB
—Total checkpoint size...about (1.5 x # of parallelism)MB

Each process compresses [Reduction in checkpoint time
1.5MB checkpoint data in - S—
spite of # of para"elism é}ﬂ 160 Temporal file wirte for gzi
é Quantization and Encoding
° Compression time is o 140 - mmWavelet transformation
constant g 120 Bl Other overheads
. £ -%-Checkpoint time (w/o compression)
I/O time depends on total 5 100
checkpoint size $ 80
= 60 - S \
‘ g 0 ﬁ ﬁ\ § § §
>
S
Our approach takes 20
O — — — — — — — —

advantage when # of

parallelism increases 256 512 768 1024 1280 1536 1792 2048

the number of paralellisms

LLNL-PRES-670952

Evaluation Method for Error Transition

We evaluate error transition as shown in bottom figure

Time step
t=0 t=720 t=1220 t=2220

Original
Py execution

Checkpoint Evaluation Evaluation
(Introduce errors) of errors of errors

Execution
with a lossy
s checkpoint

LLNL-PRES-670952

Evaluation of Error Transition

Lossy compression is applied to checkpoint data

— Applications use the data with errors
— The errors may diverge even if initial errors are small

Lossy compression has been becoming feasible for checkpoint
image data in an N-body cosmology simulation []

5
4.5 Simple quantization
© 4 7| —Proposed quantization
83'5
§3
0 2.5
22
+~
= 1.5
q) _‘_H'—d-f—'-'_'_'_ﬂ-'_‘
=R |
0.5I—
0
OO0 0000000000000 O
NS SRS B BN A S B B B E SIS B B S RS~ B S
S~ 0 0H OO A NNMNMMFE FIDOIWO O~ 0ODENO O~ ~ N
— oA o = = o A H = = 1 = = = = NN NN

07]

econds of climate changes)

—
x-axis begins Time steps (One step simulates 1200
from 720

[2%¢ Xiang Ni, SC, 2014, “Lossy compression for checkpointing: Fallible or feasible?”]

LLNL-PRES-670952

Related Work

Multi-level checkopointing [Bautista-Gomez, SC, 2011]

 Applications write checkpoint to local storage frequently, and to
parallel file system less frequently

* We can combine our approach with this technique

Incremental checkpointing [Naksinehaboon, CCGRID, 2008]

* This stores only differences with the last checkpoint
* We can combine our approach with this technique

MCREngine [Islam, SC, 2012]

* This study aims to improve compression rate with lossless
compression

« The scheme merges distributed checkpoint images per each variable,
and select effective compression methods for each variable

LLNL-PRES-670952

Conclusion

Contribution

« We apply our approach to real climate application, NICAM,
then overall checkpoint time included compression time is
reduced by 81% with 1.2% relative error on average in
particular situation

* We improve compression rate compared to lossless
compression with the same degree of inherent errors to
scientific simulations, such as sensor errors and model errors

Future work

* Improvement of the compression algorithm
* Reduce compression rate and errors
* Investigation of the feasibility in other applications

« Combination with other efforts

