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ABSTRACT
Big data means big datacenters, comprised of hundreds or
thousands of machines. With so many machines, failures
are commonplace. Failure detection is crucial: undetected
failures may lead to data loss and outages.

Recent health monitoring approaches use anomaly detec-
tion to forecast failures – anomalous machines are considered
to be at risk of future failures. Our previous work focused on
detecting latent faults in large web services, which are often
characterized by scale-out architecture where load is dynam-
ically balanced. We proposed a robust and unsupervised
latent fault detector for such systems, with statistical bounds
on the rate of false positives. That detector, however, is
unsuitable for applications without dynamic load balancing,
such as statically-balanced key-value stores, Hadoop jobs,
and supercomputer applications.

We describe an improved latent fault detection method
for unbalanced workloads. It retains the advantages of our
previous methods: it is unsupervised, robust to changes, and
statistically sound. Moreover, the statistical bounds for the
new method scale better with the number of machines, and
so dramatically reduce the number of measurements needed.
Preliminary evaluation on supercomputer logs shows that
the new method is able to correctly predict some failures,
while our previous methods completely fail in this setting.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance
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1. INTRODUCTION
Recent years have seen an increasing demand for comput-

ing power and storage. Large scale applications – whether
offline batch computations or modern web services and clouds
– are implemented on top of large datacenters, comprised of
thousands of machines or more. For large cloud services,
it is unreasonable to assume that all machines are working
properly and are well configured [29, 28]. Unnoticed failures
may cause data loss and service outages. Similarly, modern
supercomputers and high-performance clusters are increas-
ingly comprised of more and more individual components
(multiple CPUs, drives, and recently multiple GPUs [32]),
resulting in higher failure rates [31, 1]. In such systems,
failures may delay long computation, even to the point where
little useful computation is being done [30, 31, 27].

Many current failure detectors model normal behavior from
historical data. Modeling can be manual, by setting static
thresholds [14], or automatic, using supervised machine learn-
ing [2]. Modeling from historical behavior is suboptimal, how-
ever [9]. Workload changes, data-dependent computations,
and software updates render learned models inaccurate [12,
9]: static thresholds must be adjusted by domain experts,
and machine learning models must be retrained from recent
data. This retraining requires relabeling data as exhibiting
normal and abnormal behavior – an expensive process. Fur-
thermore, supervised techniques often only detect problems
that have been foreseen or encountered before.

More recent approaches [17, 18, 19] focus on unsupervised
methods (mainly anomaly detection) which require no la-
beling and less domain expertise. Within this context we
focus on latent fault detection [9]. Latent faults are subtle
behavior deviations that may indicate problems or miscon-
figurations. The aim is to catch unforeseen faults that “fly
under the radar” of monitoring systems, before they manifest
as machine or software failures. In our previous work [9] we
proposed a statistical latent fault detection framework for
web services. It is robust to software changes and workload
fluctuations, and provides statistical bounds on the rate of
false positives. Our evaluation showed that latent faults are
common and can precede failures by days. We have also
extended that work for distributed settings [8], where the
goal is to reduce communication and computational load.

Despite its advantages, our existing latent fault detection
framework, like many other anomaly detection techniques,



assumed that workload is dynamically distributed over iden-
tical machines. Though this setup is common in scale-out,
replicated services, it is not always the case in every setting.
First, some large-scale web services are statically balanced or
simply poorly balanced. Consider, for example, a key-value
store where keys are statically assigned to machines by a hash
function. If commonly used keys fall on a small number of
machines, these machines are much more heavily loaded than
the rest. Similarly, parallel computation frameworks such as
Hadoop generally use key values to partition loads, resulting
in unbalanced workloads [22]. Finally, large scale compu-
tations in compute clusters may distribute work to nodes
unequally, due to data locality or because there is no easy
way to predict how data distribution affects computation.

Our previous work also required a large number of mea-
surements for a single run of the detection algorithm. The
statistical bound grew linearly weaker with the number of
machines: the more machines, the larger the required time
window.

This work proposes a statistical latent fault detection
test for unbalanced workloads, making it more practical in
settings such as supercomputers, and in other large scale
systems whose computational workload is not necessarily
balanced. It also reduces the window size from a full day
(roughly 300 measurements) to minutes (4 measurements).
Since the new bound scales much better as the number of
monitored machines grows, the new detector is much more
responsive to immediate changes. It can therefore be used
to monitor large systems when rapid response is important.

A preliminary evaluation on historical metric and failure
logs from the TSUBAME2 supercomputer1 shows that the
new detector is superior: while our previous latent fault
detectors fail completely in this setting, the new detector
can predict some failures several days in advance.

2. IMPROVED ANOMALY DETECTION
Our previous latent fault detection framework [9, 8] relied

on several assumptions, which we now revisit. First, ma-
chines in the system are homogenous in terms of hardware,
software infrastructure and running code. Second, the ma-
jority of machines are not faulty; in a large system, most
machines perform well most of the time. Finally, the mon-
itored system uses dynamic load balancing – on average,
workload is distributed evenly across machines. Thus when
measuring aggregated performance counters, we could expect
healthy machines to exhibit the same behavior, on average.
We wish to keep the first two assumptions, but avoid the
third.

As with web services, machines in compute clusters are
often homogenous for logistical reasons. Where they are not,
it is often possible to cluster to a few distinct configurations,
using hardware and job data. Indeed supercomputers have
strict, almost uniform hardware. For example, TSUBAME2
has 6 types of nodes2 with well-documented hardware con-
figurations.

The second assumption is also quite reasonable; it is hard
to imagine an expensive datacenter running for lengths of
time with a majority of faulty machines.

We can no longer assume dynamic load balancing though.

1http://www.gsic.titech.ac.jp/en/tsubame2 .
2http://tsubame.gsic.titech.ac.jp/docs/guides/
tsubame2/html_en/overview.html#computing-nodes .

Table 1: Hypothetical machine measurements.
Node D has anomalous memory and CPU usage.

Node Reqs Memory DB CPU
A 3 630 9 6
B 5 650 15 10
C 4 640 12 8
D 3 740 9 15
E 8 680 24 16
F 7 670 21 14
G 5 645 15 11
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Figure 1: Scatterplot of the hypothetical requests vs
CPU usage, with normal and abnormal subspaces.
Machine D is visibly an outlier.

Instead, given our original assumption of homogenous ma-
chines running the same code, we assume there are common,
inherent interdependencies, or correlations, between different
counters, stemming from the fact that all machines do the
same job, and run the same code. These correlations (not
necessarily linear) between sets of counters are the result
of what the machines are doing, and are not affected by
workload. For instance, suppose task A requires k of some
resource X and n of some resource Y for each unit of work.
Increasing the workload to 5 units of work will require 5k of
X and 5n of Y, but the correlation between k and n remains;
it will remain even if we don’t measure the actual workload.
Generalizing to dependencies that may involve more than
two counters, we can instead discuss correlations or rela-
tionships between or within sets of counters; for example,
2k + 3n+ l2 = m.

Given the first two basic assumptions and the above, we
can assume that similar machines doing the same task will
result in the same correlations (relationships) between sets of
counter values. The counters of machines with latent faults
will not exhibit the same relationships.

For example, consider a hypothetical web service where
for each client request we need 10MB of memory, 3 database
transactions, and 2% CPU time. Machines with latent faults
might have too few DB transactions, or too much memory
use, or CPU usage that doesn’t match the workload. Table 1
shows 5 such hypothetical machines. Machines A, B, C
and E all exhibit the expected relationship between their
counter values. Machine D, however, is anomalous, because
its memory and CPU usage are far too high for its workload
of 3 requests, for example due to a memory leak.

Our strategy is therefore to establish the linear correla-
tions3 within the aggregated counters at every time point,

3Not limited to the Pearson correlation, which is pairwise.

http://www.gsic.titech.ac.jp/en/tsubame2
http://tsubame.gsic.titech.ac.jp/docs/guides/tsubame2/html_en/overview.html#computing-nodes
http://tsubame.gsic.titech.ac.jp/docs/guides/tsubame2/html_en/overview.html#computing-nodes


and find machines whose counters consistently (across several
time points) exhibit different correlations.

2.1 PCA Subspace Decomposition
We will use Principal Component Analysis subspace de-

composition [6, 23] to decompose the space of counters into
a normal subspace and an abnormal subspace.

PCA is a statistical technique commonly used to auto-
matically choose a smaller set of dimensions – the principal
components – which captures most of the data variance.
Since this subspace captures the variance in normal data, we
can refer to it as the normal subspace. This normal subspace
represents normal (healthy) linear correlations between the
counters.

The residual components, on the other hand, define the
complementary subspace that captures very little variance.
In other words, when projecting a normal data point to the
residual subspace, we can expect the projected vector to be
very small, close to zero. The residual subspace is therefore
the abnormal subspace, which represents violations of healthy
relationships between counters.

Subsections 2.2 and 2.3 describe two variations using this
basic idea. In the first variant, data vectors are projected
into the abnormal subspace, and those vectors whose projec-
tion is above some threshold are declared to be abnormal.
Jackson and Mudholkar [15] developed a way to infer the
threshold from the data to guarantee a desired false positive
rate. While their guarantee is only for multivariate Gaussian
distributions, in practice the threshold is known to be robust
even when the data is not Gaussian [16, 35]. Alternatively,
we can apply the latent fault statistical framework [7] as is,
using the projection to the abnormal subspace (normalized
by the vector length) as the score function S (m,x(t)).

Figure 1 illustrates the technique. It shows requests vs.
CPU usage of hypothetical machines from Table 1, including
some additional healthy machines. The normal subspace is
represented by the line Y = 2X, where X is requests and Y
is CPU usage. The abnormal subspace is the perpendicular
line. The outlier machine D clearly has a large presence in
the abnormal subspace – projecting D’s data to this space
results in a large vector.

Ordinarily, historical data that is guaranteed to be“normal”
is used to learn the normal and abnormal subspaces [23, 35].
In our case, we wish to detect small problems, and to support
complex systems where we do not have a guaranteed error-
free history. Instead we will make use of the large number of
machines in the system. Since we assume most machines are
fine at any given point in time, we can use this to extract
the normal and abnormal subspaces.

One wrinkle in our plan is the presence of outliers in our
data. Since we assume a small number of faulty machines
(outliers), the resulting subspaces will include their faulty
data. We therefore use a robust approach to PCA called
HR-PCA, described by Xu et al. [34]. It is robust to outliers
and arbitrarily corrupted data, and can recover the princi-
pal subspace even when the number of counters approaches
the number of machines (C ≈ M). HR-PCA is also quite
efficient.

2.2 Formalizing the Algorithm
There are M machines, performing identical tasks, each

periodically reporting C aggregated performance counters in
a time window of length T . We standardize counter values

in the time window across all machines to zero mean and
unit variance in the time window. We denote by x(m, t) the
vector of standardized counter values for machine m at time
t, and by x(t) =

⋃
m x(m, t) their union. Denote by X the

M × C data matrix x(t) after pre-processing and scaling at
time t. Denote by xm the row in X that came from machine
m, meaning xm = x(m, t).

Using PCA we extract the normal subspace of X, com-
prised as the first k principal components v1, . . . vk that
capture the most variance (say 95%). Denote by Hno the
C×K normal subspace projection matrix built from the first
k principal components, Hno = [v1, v2, . . . , vk]. Let the ab-
normal subspace projection matrix be the residual subspace
Hab = I −HnoHT

no.
Given the projection Hab, we can then map each machine

vector x(m, t) to its residual: x̃m = Habxm. Using the test
statistic and threshold given in [15], define: Qm = ‖x̃m‖2 =
‖Habxm‖2. A machine is declared abnormal at time t if
Qm > Qα, where Qα denotes the threshold for the 1 − α
confidence level:

Qα = φ1

[
cα
√

2φ2h2
0

φ1
+ 1 +

φ2h0(h0 − 1)

φ2
1

] 1
h0

,

where

h0 = 1− 2φ1φ3

3φ2
2

, φi =

C∑
j=k+1

λij ,

λj is the variance captured by the j-th principal component,
and cα is the upper 1− α percentile of the standard normal
distribution. For a normal machine, Pr [Qm > Qα] < α. In
other words, α is the false alarm probability when testing a
single machine.

Detecting one abnormal machine at time t is not sufficient,
however. We are testing multiple machines, and must there-
fore guard against false positives. Hence we will only flag a
machine if it is abnormal for T ′ consecutive times.

How big must T ′ be to guarantee a false alarm probability
p when testing M machines? The probability of a false alarm

for a specific machine m in T ′ consecutive time points is αT
′
.

The false alarm probability in at least one machine after T ′

time points is therefore 1−
(

1− αT
′
)M

, and so we require:

1−
(

1− αT
′
)M
≤ p.

Thus for a desired false alarm probability p with M ma-
chines, we need a window size of:

T ′ =
⌈
logα

(
1− M

√
1− p

)⌉
. (1)

Note that the probability of false alarms drops roughly expo-
nentially with T ′. We discuss this below in Subsection 2.5.

The final algorithm for target false probabilities p and α:

1. Preprocess: select counters and scale to unit variance.
2. For each time t across T ′ consecutive times:

2.1 Compute robust PCA (HR-PCA) from data x(t).
2.2 Choose k that captures most variance (say 95%).
2.3 Build Hno, Hab, Qα.
2.4 For each machine m, check if Qm > Qα.

3. Report m if Qm > Qα for T ′ consecutive times.

2.3 Alternative to Thresholding
The threshold Qα is determined from the actual data, and

so may be too conservative. It is possible that, due to noisy



data, the resulting threshold is too high. The test is binary:
Qm > Qα is either true or false; there is no middle ground.
Hence, it is possible that even if Qm is consistently high,
much higher than the Q of other machines, it is still below
the threshold. Our conservative design to limit false positives
will result in too many false negatives, as few faulty machines
are flagged.

Instead, we can use the statistical framework from [9, 7].
Let S (m,x(t)) be a test, a ranking function that assigns an
outlier score (either a scalar or a vector) to machine m at
time t. Given a test S, and desired false alarm probability
0 < α < 1, we can present the framework as follows:

1. Preprocess: select counters and scale to unit variance.
2. Compute for every machine m the vector:
vm = 1

T

∑
t S(m,x(t)) (integration phase).

3. Compute the p-values (defined below) p(m) from vm.
4. Report every machine with p(m) < α as suspicious.

We use the normalized Qm as the score function:

S (m,x(t)) =
Qm
‖xm‖2

=
‖x̃m‖2

‖xm‖2
=
‖Habxm‖2

‖xm‖2
.

We derive probabilistic bounds using the machinery from [7].
Note that 0 ≤ S (m,x(t)) ≤ 1, thus even if we change all of
x(t) S cannot change by more than 1. Moreover, HR-PCA is
robust, so changing just one vector x(m, t) should not overtly
affect Hab, thus Qm′ for any other machine m′ should not
change. Therefore S is 1, 0-bounded [7, Definition 2.3.1], and
we can apply [7, Lemma 2.3.3] to get a p-value:

p(m) = (M + 1) exp

− 2TMγ2(√
M + 1

)2
 (2)

where γ = max (0, ‖vm‖ − v̂), and v̂ = 1
M

∑
m ‖vm‖. This

p-value is the probability that ‖vm‖ is larger than the mean v̂
by γ when m is healthy, given that we are testing m machines;
testing for p(m) < α guarantees false alarm probability α
across all machines, equivalent to p in Subsection 2.2.
p(m) is more flexible than Qα – it is computed from data

of T times (step 2, above), rather than tested each time
separately. Consistently small deviations from the norm
accumulate if T is large enough. The advantage of this “soft
threshold” approach is that it is much more sensitive to
smaller anomalies (Q < Qα) than the original “all or nothing”
approach. The downside is that the improved window size
described in Subsection 2.5 no longer applies.

2.4 Unbalanced Workloads and Robustness
Our previous framework required that workload be dy-

namically balanced, on average, across all machines. This
was because we directly compared counter values between
machines. Aggregating across a large time window helped
us overcome, and take advantage of, temporal noise. Indeed,
temporary workload imbalance is very likely, since it is dif-
ficult to guarantee that all machines are equally loaded for
any short time interval. Averaged across a larger interval,
these small random imbalances cancel each other out.

Conversely, the algorithm described above does not depend
on the absolute counter values, but instead on the correlations
between them at each point in time. We expect that these
correlations will remain similar regardless of the load.

Table 2: Hypothetical machine measurements ex-
hibiting unbalanced load.

Load Reqs Memory DB CPU
low 8 680 24 16
low 5 650 15 10
low 6 660 18 12
high 33 930 99 66
high 40 1000 120 80
high 37 970 111 74
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Figure 2: Scatterplot of the unbalanced hypothetical
requests vs CPU usage. All machines lie on normal
subspace.

For example, consider our hypothetical web service from
above. For each client request, we need 10MB of memory, 3
database transactions, and 2% CPU time. Table 2 shows 6
such hypothetical machines. The first 3 machines are lightly
loaded (few requests), while the last three are heavily loaded.
Still, all exhibit the expected relationship between their
counter values, and so lie on the normal subspace (Figure 2).
A machine exhibiting anomalous CPU usage for the number
of requests would lie outside this normal subspace.

Moreover, as with our previous methods, the subspace
decomposition approach is robust to changes in the monitored
system. The normal and abnormal subspaces are recomputed
using counter values measured at the same time, and we never
compare such values across different times. If the software is
updated, for example, the new behavior is never compared
to the old one.

2.5 Improved Window Size
The bounds for our previous methods [9] required increas-

ing window sizes as the number of machines grew. As illus-
trated by Equation (2), the framework bound grows linearly
weaker with the number of machines M , meaning that we
have to increase the window size T to compensate.

This can be intuitively be explained by the need to aggre-
gate different measurements across many times to overcome
temporal noise in counter values, such as short-term workload
imbalance. The experiments described in [9] were performed
with window size of T = 288, which translated to a full
24-hour day since counters were sampled every 5 minutes.

The PCA method has an improved window size. T ′ from
Equation (1) is logarithmic in the number of machines M .
The intuitive explanation is that we no longer need to track
counter behavior across time to overcome minute random
imbalances or random noise. For example, given M = 10000
machines, α = 0.01, and overall false alarm probability
p = 0.01, Equation (1) tells us we need a window size of only
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Figure 3: Performance of original latent fault detector on TSUBAME2 data with 7 day horizon.

3 time points, i.e., 15 minutes:

T ′ = dlog0.01

(
1− 10000

√
1− 0.01

)
e = d2.9989e = 3 .

Even for a million machines, M = 106, a window size of 4
time points, meaning 20 minutes, is sufficient to guarantee a
false positive rate of 0.01:

T ′ = dlog0.01

(
1− 106

√
1− 0.01

)
e = d3.9989e = 4 .

3. PRELIMINARY EVALUATION
We used historical machine metric logs and failure records

from the TSUBAME2 supercomputer to compare the new
subspace decomposition approach to our existing latent fault
detectors [9].

3.1 Supercomputer Workloads
Supercomputer workloads are very different from cloud

workloads in many ways: long jobs rather than short requests;
parallelization and load balancing are done within single jobs,
not over all requests; and jobs are heterogeneous, so different
nodes do not run the same code at the same time. Thus,
the job uniformity assumption we make in Section 2 and our
previous work [9] may no longer hold.

Computational jobs often perform many iterations of the
same basic loop [30, 31]. For computations whose perfor-
mance is not data-dependant (such as many common matrix
operations), a single computation iteration will usually re-
quire the same amount of resources (CPU time, GPU load,
etc.) as any other iteration. Moreover, required resources for
one iteration will be the same for all nodes in the system with
the same hardware configuration. This essentially brings us
back to the PCA approach suggested in Section 2 – metrics
of healthy nodes will lie in the same subspace.

Latent fault detection tests should be run on groups of
machines partitioned by job. Scheduling logs that contain
start and end times (along with the list of assigned machines)
can be used to subdivide machines in this way.

3.2 The TSUBAME2 Dataset
We used 45 common machine metrics (e.g., cpu idle time,

GPU utilization, user time, swap free, various temperatures),
sampled every 1 to 10 minutes (depending on the metric),
from one month of runs (roughly jobs, see below). We divided

Table 3: Statistics of inferred jobs (runs).
Statistic Median Max

Number of machines (M) 99 236
Length (minutes) 1016 5699

each run of 240 minutes or more, with at least 10 machines,
to windows of length 240 minutes each. This resulted in 60
runs with a total of 252 windows, summarized in Table 3.
We performed latent fault detection on each such window.
The results of the detector were compared with the historical
failure log within a 7 day horizon – a node is considered to
have failed if it failed within 7 days from the time window;
otherwise it is considered to have not failed.

Since our TSUBAME2 logs did not include any job schedul-
ing information, our preliminary experiments relied on CPU
and GPU usage metrics to infer which machines were being
used and how they were grouped. A group of machines that
together became busy and then idle were considered to be a
single job, or a “run”. This method is ad-hoc and inherently
inaccurate. For example, a failing machine might stop at
the beginning of the computation and so would never be
considered part of the run, as it did not finish with the rest.
Section 5 discusses a potentially more robust alternative.

3.3 Results
We first evaluated the performance of our existing latent

fault detectors: the sign, LOF and Tukey tests [9], with
T = 240 and α = 0.01. Figure 3 shows the receiver operating
characteristic (ROC) curves for our existing latent fault
detection tests. Ignoring computed p-values, we swept the
threshold for anomaly scores ‖vm‖ (as in Eq. (2)) across a
range of values and drew the resulting false positive and false
negative rates. The performance of all three previous tests
is no better than a random guess, where the false positive
and false negative rates are equal.

We repeated the tests with the PCA approach suggested
in Section 2, using the “soft threshold” variation described
in Subsection 2.3. We used T = 240 and α = 0.01. k was
selected to capture 95% of variance. Finally, HR-PCA [34]
was used as the robust PCA building block, with the max-
imum number of corrupted points set to 10% of machines
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Figure 4: Performance of PCA latent fault detector
on TSUBAME2 data with 7 day horizon.

(t̂ = 0.9M). As can be seen in Figure 4, the subspace decom-
position approach performs better than our original latent
fault detectors. Though still no better than random guess at
lower false positive rates, it is still able to predict some node
failures several days ahead.

4. RELATED WORK
PCA residuals have been used in the past for monitoring

tasks [6]. Lakhina et al. [23] famously used this approach
to detect network traffic anomalies. Like many similar ap-
proaches, they monitor the network as a whole, and do not
attempt to localize it to a specific node. Furthermore, they
rely on historical data that is guaranteed to be normal, and
assume that the system is unchanged, again a common theme.
Xu et al. [35] analyze program source code to parse console
log messages and use principal component analysis to identify
unusual message patterns based on their frequency. As with
Lakhina’s work, this technique relies on error-free history and
relatively stable systems. Console logs also tend to contain
different sorts of data, and are likely to catch different sorts
of anomalies. Similarly, Chen et al. [3] localize failures in
software components of a Java application; they propose an
online algorithm to update normal and abnormal behavior
models. Chen et al. [4] also analyze the correlation between
sets of measurements and track them over time. Their ap-
proach requires domain knowledge for choosing counters,
and requires training on “healthy” periods to model baseline
correlations.

Ling et al. [13] use Stochastic Matrix Perturbation theory
to adapt Lakhina’s work to distributed monitoring with PCA.
Liu et al. [26], in turn, apply the distributed PCA monitoring
approach on linear sketches of the network data to reduce
running time and space costs.

5. CONCLUSIONS AND FUTURE WORK
Failure detection and prediction techniques are increasingly

important in the era of clouds and compute clusters. Several
recent approaches rely on anomaly detection techniques to
detect failures ahead of time, while avoiding costly relabeling
and retraining of models.

In this work we have presented a new latent fault detector
suitable for settings where the workload is unbalanced. As

with our previous methods, the new approach is robust to
changes in the monitored system, it requires neither domain
expertise nor labeled data, and it comes with statistical
guarantees on the rate of false positives. Our preliminary
evaluation showed that the new approach is clearly superior
to the previous latent fault detectors in the supercomputer
setting. Though the results obtained may not yet be prac-
tical in the supercomputer setting (possibly due to lack of
scheduling logs), they show that the new detector does cope
with unbalanced loads.

There are several avenues to pursue: more complete eval-
uation, communication-efficient and computation-efficient
algorithms, and subspace clustering for job detection.

First, we wish to evaluate the new approach in additional
settings where the workload is unbalanced. In the cloud set-
ting, key-value stores are good candidates for our monitoring
approach. In the compute cluster setting, Hadoop jobs have
many machines running the same code in the reduce phase,
but their computational load may be different.

Second, we can further combine PCA with distributed
online detection as in [8], since collecting metrics from all
nodes and computing PCA may be prohibitive for some
large systems. We previously described [8] a communication-
efficient approach using safe zones [21, 20] to standardize
counter values across machines. Ling et al. [13] adapt PCA
anomaly detection for distributed stream monitoring. We can
combine their technique with recent distributed monitoring
approaches [24, 11]. Beyond that, we can follow Liu et al.
[26], who apply the distributed PCA technique on a linear
sketch. Recent work by Liberty [25] introduces a better
matrix sketching technique called Frequent Directions with
improved bounds that is well-suited for PCA computation
in a streaming setting. Indeed, streaming constructions of
PCA using this approach are proposed by Ghashami and
Phillips [10] and Cohen et al. [5].

Finally, more complete job and scheduling information in
the supercomputer setting may help us improve results even
further. A more robust approach to job detection might be
subspace clustering [33]. Given a collection of vectors drawn
from a union of (potentially disjoint) subspaces, subspace
clustering algorithms cluster these data points according
to the subspace they originate from. For similar reasons
described in Section 2, and since hardware is uniform, we
could assume that metrics of machines running the same job
will lie in the same subspace. Thus, we might be able to
use subspace clustering to identify machines that run similar
code. Given such a group of machines, our anomaly detection
techniques can be more effective. Moreover, the ability to
cluster running code can be useful in monitoring settings
such as virtual machine clouds, where operators have less
information on what code runs inside virtual machines.

6. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union’s Seventh Framework Programme
FP7-ICT-2013-11 under grant agreement No 619491 and
No 619435. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
(LLNL-CONF-665287). This work was also supported by
Grant-in-Aid for Research Fellow of the Japan Society for
the Promotion of Science (JSPS Fellows) 24008253, and
Grant-in-Aid for Scientific Research S 23220003.



7. REFERENCES
[1] G. Bronevetsky, I. Laguna, S. Bagchi, B. R.

de Supinski, D. H. Ahn, and M. Schulz. Statistical fault
detection for parallel applications with AutomaDeD. In
Proc. SELSE, 2010.

[2] G. Bronevetsky, I. Laguna, B. De Supinski, and
S. Bagchi. Automatic fault characterization via
abnormality-enhanced classification. In Proc. DSN,
2012.

[3] H. Chen, G. Jiang, C. Ungureanu, and K. Yoshihira.
Failure detection and localization in component based
systems by online tracking. In Proc. KDD, 2005.

[4] H. Chen, G. Jiang, and K. Yoshihira. Failure detection
in large-scale internet services by principal subspace
mapping. IEEE Trans. Knowl. Data Eng., 2007.

[5] M. B. Cohen, S. Elder, C. Musco, C. Musco, and
M. Persu. Dimensionality reduction for k-means
clustering and low rank approximation. CoRR, 2014.

[6] R. Dunia and S. J. Qin. Multi-dimensional fault
diagnosis using a subspace approach. In Proc. ACC,
1997.

[7] M. Gabel. Unsupervised anomaly detection in large
datacenters. Master’s thesis, Technion I.I.T, 2013.

[8] M. Gabel, D. Keren, and A. Schuster.
Communication-efficient distributed variance
monitoring and outlier detection for multivariate time
series. In Proc. IPDPS, 2014.

[9] M. Gabel, A. Schuster, R.-G. Bachrach, and N. Bjorner.
Latent fault detection in large scale services. In Proc.
DSN, 2012.

[10] M. Ghashami and J. M. Phillips. Relative errors for
deterministic low-rank matrix approximations. In Proc.
SODA. 2014.

[11] N. Giatrakos, A. Deligiannakis, M. Garofalakis,
I. Sharfman, and A. Schuster. Distributed geometric
query monitoring using prediction models. ACM Trans.
Database Syst., 2014.

[12] C. Huang, I. Cohen, J. Symons, and T. Abdelzaher.
Achieving scalable automated diagnosis of distributed
systems performance problems. Technical report, HP
Labs, 2007.

[13] L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein,
M. Jordan, A. Joseph, and N. Taft.
Communication-efficient online detection of
network-wide anomalies. In Proc. INFOCOM, 2007.

[14] M. Isard. Autopilot: automatic data center
management. SIGOPS Oper. Syst. Rev., 2007.

[15] J. E. Jackson and G. S. Mudholkar. Control procedures
for residuals associated with principal component
analysis. Technometrics, 1979.

[16] D. R. Jensen and H. Solomon. A gaussian
approximation to the distribution of a definite
quadratic form. Journal of the American Statistical
Association, 1972.

[17] S. Kadirvel, J. Ho, and J. A. B. Fortes. Fault
management in Map-Reduce through early detection of
anomalous nodes. In Proc. ICAC, 2013.

[18] S. Kavulya, S. Daniels, K. Joshi, M. Hiltunen,
R. Gandhi, and P. Narasimhan. Draco: Statistical
diagnosis of chronic problems in large distributed
systems. In Proc. DSN, 2012.

[19] S. Kavulya, R. Gandhi, and P. Narasimhan. Gumshoe:
Diagnosing performance problems in replicated
file-systems. In Proc. SRDS, 2008.

[20] D. Keren, G. Sagy, A. Abboud, D. Ben-David,
A. Schuster, I. Sharfman, and A. Deligiannakis.
Geometric monitoring of heterogeneous streams. Trans.
on Knowl. and Data Eng., 2014.

[21] D. Keren, I. Sharfman, A. Schuster, and A. Livne.
Shape sensitive geometric monitoring. Trans. Knowl.
Data Eng., 2012.

[22] Y. Kwon, K. Ren, M. Balazinska, and B. Howe.
Managing skew in Hadoop. IEEE Data Eng. Bull.,
2013.

[23] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In Proc. SIGCOMM,
2004.

[24] A. Lazerson, I. Sharfman, D. Keren, A. Schuster,
M. Garofalakis, and V. Samoladas. Monitoring
distributed streams using convex decompositions. In
Proc. VLDB, 2015. To appear.

[25] E. Liberty. Simple and deterministic matrix sketching.
In Proc. KDD, 2013.

[26] Y. Liu, L. Zhang, and Y. Guan. A distributed data
streaming algorithm for network-wide traffic anomaly
detection. SIGMETRICS, 2009.

[27] A. Moody, G. Bronevetsky, K. Mohror, and B. R.
De Supinski. Design, modeling, and evaluation of a
scalable multi-level checkpointing system. In Proc. SC,
2010.

[28] E. B. Nightingale, J. R. Douceur, and V. Orgovan.
Cycles, cells and platters: An empirical analysis of
hardware failures on a million consumer pcs. In Proc.
EuroSys, 2011.

[29] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff.
Mining for misconfigured machines in grid systems. In
Proc. SIGKDD, 2006.

[30] K. Sato, N. Maruyama, K. Mohror, A. Moody,
T. Gamblin, B. R. de Supinski, and S. Matsuoka.
Design and modeling of a non-blocking checkpointing
system. In Proc. SC, 2012.

[31] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. d.
Supinski, N. Maruyama, and S. Matsuoka. FMI: Fault
tolerant messaging interface for fast and transparent
recovery. In Proc. IPDPS, 2014.

[32] U. Verner, A. Schuster, and M. Silberstein. Processing
data streams with hard real-time constraints on
heterogeneous systems. In Proc. ICS, 2011.

[33] R. Vidal. Subspace clustering. IEEE Signal Processing
Magazine, 2011.

[34] H. Xu, C. Caramanis, and S. Mannor. Outlier-robust
PCA: The high-dimensional case. IEEE Transactions
on Information Theory, 2013.

[35] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I.
Jordan. Detecting large-scale system problems by
mining console logs. In Proc. SOSP, 2009.


	Introduction
	Improved Anomaly Detection
	PCA Subspace Decomposition
	Formalizing the Algorithm
	Alternative to Thresholding
	Unbalanced Workloads and Robustness
	Improved Window Size

	Preliminary Evaluation
	Supercomputer Workloads
	The TSUBAME2 Dataset
	Results

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

