Latent Fault Detection With Unbalanced Workloads

Moshe Gabel

Assaf Schuster With

Danny Keren,

Kento Sato @ LLNL Satoshi Matsuoka @ TITECH

Submitted to EPForDM 2015

Background

LATENT FAULT DETECTION

The Problem With Predefined Rules

Flexible Latent Fault Detection

- Find *latent faults*: machines with problems "under the radar".
- ► Latent faults precede > 20% of failures days in advance.
- Outlier detection on performance counter logs.

GOOD – EASY, FLEXIBLE, PRACTICAL:

- ▶ Predict failures up to 14 days in advance with high precision.
- ► No tuning, specialized knowledge, or labeled examples.

PROBLEMS – CENTRALIZATION, LOAD BALANCING:

- ► Large data: communicating and processing machine metrics.
- Only for load-balanced services.

TASK: Find Outliers

- ightharpoonup Given M multivariate time series of C measurements...
- ► Machines in scale-out, load balance service.

- ► Task: find outliers series with "bad" behavior.
 - ► Example: machine with HW/SW error

IDEA: Wisdom of the Crowds

Exploit suitable **homogeneity** assumptions:

Similar processes (machines) will exhibit similar behavior.

Outliers Are Different

► Outliers come from different processes – break homogeneity:

Outliers (faulty machines) are consistently different.

Sign Test: Is Machine i an Outlier?

- ightharpoonup At each time: average direction from t s vector to others.
- ightharpoonup Add the average directions across T times; compare lengths.
- ► Compute probability $p \downarrow i = \Pr[\text{ series } i \text{ not outlier }].$
 - ► Via concentration bounds or something else.
- $ightharpoonup p \downarrow i$ too low ightharpoonup series i is an outlier.

Workload	Centralized	Distributed
Balanced		
Unbalanced	√	

Submitted to EPForDM 2015

With Kento Sato @ LLNL, Satoshi Matsuoka @ TITECH

LATENT FAULT DETECTION WITH UNBALANCED WORKLOADS

Detect Latent Faults In More Settings

Go beyond load-balanced, scale out web services:

- Unbalanced cloud workloads
 - Statically-balanced key-value stores
- Parallel computation clusters
 - Hadoop
- Supercomputers
 - ► TSUBAME2

Central Assumptions

- ► Homogenous machines
 - Common for logistical reasons

- ► Majority of machines are OK
 - ▶ Otherwise systems don't work

- Dynamic load balancing
 - ► Hadoop and similar have unbalanced workloads

Y. Kwon, K. Ren, M. Balazinska, and B. Howe. Managing skew in Hadoop. IEEE Data Eng. Bull., 2013.

Supercomputers: uneven work distribution

Assume Intrinsic Correlations

- ► Inherent dependencies exists between counter values.
 - (not necessarily linear, pairwise)
- Characterize running job same regardless of load.
- Example: for each client request we need:
 - ▶ 10MB of memory, 3 DB transactions, 2% CPU

Requests	Memory	DB	CPU
3	630	9	6
5	650	15	10
4	640	12	8

Faults Break Correlations

- Established rule: $1/10 \text{ memory}+1/3 DB-1/2 CPU-requests}-60=0$
- ▶ Problems cause deviation from established relationships.
 - ▶ DB errors, memory leaks, high CPU usage...

Requests	Memory	DB	CPU
3	630	9	6
5	650	15	10
4	640	12	8
3	740	9	15
8	680	24	16

CPU Usage vs Requests

New Strategy

- New assumption: similar machines doing same work → similar correlations.
- Establish linear correlations at each point in time.
- ► Machine consistently breaks correlations? → latent fault.
- Limit false positives via statistics.
 - J. E. Jackson and G. S. Mudholkar. Control procedures for residuals associated with principal component analysis. Technometrics, 1979.
 - H. Xu, C. Caramanis, and S. Mannor. Outlier-robust PCA: The high-dimensional case. IEEE Transactions on Information Theory, 2013.
 - M. Gabel, A. Schuster, R.-G. Bachrach, and N. Bjorner. Latent fault detection in large scale services. In Proc. DSN, 2012

PCA Subspace Decomposition

- Counters = normal subspace + abnormal subspace.
 - ► Top principal components capture most variance
 - Normal subspace = top principal components = healthy correlations
 - Abnormal subspace = residual subspace
- ► Learn normal subspace from majority of machines.
 - Historical data unreliable or irrelevant.
- ► Project to abnormal subspace. Large projection? → outlier
 - ► Statistical guarantees: Jackson and Mudholkar 1979, Gabel et al. 2012.
- ► HR-PCA (Xu et al. 2013) robust to outliers, corrupted data.

Subspace Decomposition

Subspace Decomposition

At Each Point of Time

► We have many machines at each point in time:

Variant 1 – Hard Threshold

- ightharpoonup Create $M \times C$ matrix and apply PCA.
 - Standardize data to zero mean, unit variance.
- Normal subspace: $H \downarrow no = [v \downarrow 1, v \downarrow 2, ..., v \downarrow k]$
 - First *k* principal components that capture 95% of variance.
- ► Abnormal subspace: $H \downarrow ab = (I H \downarrow no H \downarrow no \uparrow T)$
- Project machine data to abnormal subspace: $Q \downarrow m = ||H \downarrow ab \ x \downarrow m||1$
- ▶ If $Q \downarrow m > Q \downarrow \alpha$ consistently, machine is suspect.
 - ▶ Threshold $Q \downarrow \alpha$ from Jackson and Mudholkar 1979.

Dealing With Many Machines

- $\triangleright Q \downarrow \alpha$ guarantees false positive rate α for testing one machine.
 - ▶ We must test *M* machines!
- ► Raise alarm only if $Q \downarrow m > Q \downarrow \alpha$ for T' consecutive times.
- ► False alarm probability decreases **exponentially** in *T*′.
 - ▶ False alarm in specific machine m in T^{\uparrow} consecutive times: $\alpha \uparrow T^{\uparrow}$
 - ► False alarm in at least one machine after T1' times: $1-(1-\alpha \uparrow T1)$ ')↑M
- ightharpoonup Window T that guarantees final false alarm probability p:

$$TT' = \lceil \log \lambda \alpha \left(1 - \sqrt{M \& 1 - p} \right) \rceil$$

Variant 2 – Latent Fault Framework

- ► Hard threshold too strict: high $Q \downarrow \alpha$ in noisy data.
 - ▶ $Q \downarrow m < Q \downarrow \alpha$ even for faulty machines → missed faults.
- Statistical framework from Gabel et al. 2012: $S(m,x(t))=Q\downarrow m /||x\downarrow m||12 = ||H\downarrow ab x\downarrow m||12 /||x\downarrow m||12$
- Integrate for each machine: $v \downarrow m = 1/T \sum t \uparrow MS(m,x(t))$
- ► Get p-value: $p(m)=(M+1)\exp(-2TM\gamma \uparrow 2/(\sqrt{M}+1) \uparrow 2)$

Probability Bound Tightness with M

Old Framework: probability linearly weaker with more machines:

$$p(m) = (M+1)\exp(-T2\gamma t^2 M/(\sqrt{M}+1)t^2)$$

higher M weakens bound

higher

weaken bound for low M

tightens bound

Had to increase window size T to compensate for high M.

New bound: false alarm probability drops **exponentially** in M: $p=1-(1-\alpha \uparrow T \uparrow')\uparrow M$

Very Small Window T'

ightharpoonup TT' logarithmic in M.

Examples for α =0.01, false alarm p < 0.01.

- ► M=10000 machines \rightarrow need window size of just 3: $T1' = \lceil \log 10.01 \ (1 \sqrt{10000 \& 1 0.01}) \rceil = \lceil 2.99891... \rceil = 3$
- For **one million** machines, need **window size = 4**: $T = [\log \downarrow 0.01 \ (1 \sqrt{1000000} \& 1 0.01)] = [3.99891...] = 4$

Unbalanced Workloads

Healthy machines have same correlations.

Normal data lies in normal subspace!

► PCA recomputed each time → robust to changes in system!

Preliminary Results on Supercomputer

- ► TSUBAME2 logs of one month of "jobs"
 - ► No scheduling info.
 - ► CPU and GPU load used to infer grouping.
 - ► At least 10 machines per job, at least 240 minutes.
- ▶ 45 common metrics, collected every 1-10 minutes.
- Compare to historical failure logs 7 day horizon.
 - ► Failure probability per day: roughly 0.2%

Original Latent Fault Detector

Complete failure: no better than random guess.

PCA (Variant 2, "soft threshold")

- Significant improvement!
- Hard threshold variant too conservative.
 - Issued no alerts.
- ► Not yet practical.
 - \triangleright Low FPR \rightarrow low TPR.
- Ad-hoc grouping problematic.
 - excludes failing machines, includes unrelated machines.

Future Work

- ▶ Test on additional data:
 - Mobile network data.
 - ► Key-value stores.
 - Hadoop logs.
- ► Sparse PCA.
- Infer jobs with subspace clustering.

- ► Communication-efficient version.
 - Distributed variance monitor to normalize data.
 - ► New class of PCA sketches.
 - Geometric monitoring based on convex decompositions.
- E. Liberty. Simple and deterministic matrix sketching. In Proc. KDD, 2013.
- M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu. Dimensionality reduction for k-means clustering and low rank approximation. CoRR, 2014.
- M. Ghashami and J. M. Phillips. Relative errors for deterministic low-rank matrix approximations. In Proc. SODA. 2014.
- A. Lazerson, I. Sharfman, D. Keren, A. Schuster, M. Garofalakis, and V. Samoladas. Monitoring distributed streams using convex decompositions. In Proc. VLDB, 2015.

