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Background

LATENT FAULT DETECTION
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The Problem With Predefined Rules
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Flexible Latent Fault Detection

» Find latent faults: machines with problems “under the radar”.
» Latent faults precede > 20% of failures days in advance.
» Outlier detection on performance counter logs.

GOOD - EASY, FLEXIBLE, PRACTICAL:
» Predict failures up to 14 days in advance with high precision.
» No tuning, specialized knowledge, or labeled examples.

PROBLEMS — CENTRALIZATION, LOAD BALANCING:

» Large data: communicating and processing machine metrics.
» Only for load-balanced services.
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TASK: Find Outliers

» Given M multivariate time series of £ measurements...
» Machines in scale-out, load balance service.

Series 1 Series 2 Outlier Series M
T (XX .
times 1]
v
—>
A

» Task: find outliers — series with “bad” behavior.
» Example: machine with HW/SW error
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IDEA: Wisdom of the Crowds

» Exploit suitable homogeneity assumptions:

Similar processes (machines) will exhibit similar behavior.
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Outliers Are Different

» Outliers come from different processes — break homogeneity:

Outliers (faulty machines) are consistently different.
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Sign Test: Is Machine 7an Outlier?

» At each time: average direction from 7s vector to others.
» Add the average directions across 7 times; compare lengths.

» Compute probability pJ7 =Pr| series 7 not outlier |.

» Via concentration bounds or something else.

» »li too low =2 series /is an outlier.
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Detect Latent Faults In More Settings

Go beyond load-balanced, scale out web services:

» Unbalanced cloud workloads
» Statically-balanced key-value stores

» Parallel computation clusters
» Hadoop

» Supercomputers
» TSUBAME?2
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Central Assumptions

» Homogenous machines /
» Common for logistical reasons

» Majority of machines are OK
» Otherwise systems don’t work

AN

» Dynamic load balancing
» Hadoop and similar have unbalanced workloads

Managing skew in Hadoop. IEEE Data Eng. Bull., 2013.

Y. Kwon, K. Ren, M. Balazinska, and B. Howe. J

» Supercomputers: uneven work distribution
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Assume Intrinsic Correlations

» Inherent dependencies exists between counter values.
» (not necessarily linear, pairwise)

» Characterize running job — same regardless of load.

» Example: for each client request we need:
» 10MB of memory, 3 DB transactions, 2% CPU

Requests _____|Memory ____IDB_______lcPU________
3 630 9 6

5 650 15 10
4 640 12 8

\=7 Technion " :
. M Israel Institute of Moshe Gabel, Datacenter Health Monitoring and Anomaly Detection

Technology



Faults Break Correlations

» Established rule:
1/10 memory+1/3 DB—1/2 CPU—-requests —60=0

» Problems cause deviation from established relationships.
» DB errors, memory leaks, high CPU usage...

Requests ____Memoy ___[DB_______cPu________
3 630 9 6

5 650 15 10
4 640 12 8

) 3 740 9 15 -
: 680 24 16
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CPU Usage vs Requests
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New Strategy

» New assumption:
similar machines doing same work = similar correlations.

» Establish linear correlations at each point in time.
» Machine consistently breaks correlations? = latent fault.

P Limit false positives via statistics.

* J.E.Jackson and G. S. Mudholkar. Control procedures for residuals associated with principal
component analysis. Technometrics, 1979.

* H. Xu, C. Caramanis, and S. Mannor. Outlier-robust PCA: The high-dimensional case. IEEE
Transactions on Information Theory, 2013.

* M. Gabel, A. Schuster, R.-G. Bachrach, and N. Bjorner. Latent fault detection in large scale services. In
Proc. DSN, 2012 y
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PCA Subspace Decomposition

» Counters = normal subspace + abnormal subspace.
» Top principal components capture most variance
» Normal subspace = top principal components = healthy correlations
» Abnormal subspace = residual subspace

P Learn normal subspace from majority of machines.
» Historical data unreliable or irrelevant.

» Project to abnormal subspace. Large projection? = outlier
» Statistical guarantees: Jackson and Mudholkar 1979, Gabel et al. 2012.

» HR-PCA (Xu et al. 2013) robust to outliers, corrupted data.
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Subspace Decomposition
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Subspace Decomposition
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At Each Point of Time

» We have many machines at each point in time:

< C counters >

N Normal subspace
(k dimensions)
. Hino=(W1I1,1 &-- &
" M1,k @:&-.& @hiC1
= & &hICk )
E PCA
§ Abnormal subspace
(d - k dimensions)
- Hlab=(0bi1,1 & &
DI, C—k @: & & @HiC1
& &DIC,C—k
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Variant 1 — Hard Threshold

B4

» Create MX C matrix and apply PCA.

» Standardize data to zero mean, unit variance.

» Normal subspace: Hino=[vil ,vi2,...vik]
» First k principal components that capture 95% of variance.
» Abnormal subspace: Hlab=(/—Hino HinolT")

» Project machine data to abnormal subspace:
Qlm=|[Hlab xim [|T2

» If Odm >QJla consistently, machine is suspect.
» Threshold @Ja from Jackson and Mudholkar 1979.
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Dealing With Many Machines

» (Jla guarantees false positive rate a for testing one machine.
» We must test #/ machines!

» Raise alarm only if Q47 >QJa for ' consecutive times.

» False alarm probability decreases exponentially in 7°.

» False alarm in specific machine min I'T" consecutive times: aT7T

» False alarm in at least one machine after 7'T" times: 1— (1—al7'T
"M

» Window 7’ that guarantees final false alarm probability p:
71 =flogda 1—VM&E1—p )]
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Variant 2 — Latent Fault Framework

» Hard threshold too strict: high ¢Ja in noisy data.
» Qlm <Qla even for faulty machines = missed faults.

P Statistical framework from Gabel et al. 2012:
S(mx(t))=0dm /llxdm [[T2 =[|Hlab xim [[T2 /|[xdm [[T2

» Integrate for each machine:

» Get p-value:
o(m)=(M+1)exp(—2TMy12 /(VM +1)T2 )
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Moshe Gabel, Technion

Probability Bound Tightness with M

» Old Framework: probability linearly weaker with more
machines:

p(m)=(M+1)exp(—T2y12 M/ (VM +1)12 )

higher M weakens bound  higher T ~

fightens bound weaken bound for low M

» Had to increase window size 7 to comperfas far g /7.

» New bound: false alarm probability drops exponentially in M:
p=1—A—al7lT )TM
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Very Small Window T’

B4

» 7’7" logarithmic in /.

O R N W &~ U

100 1000 10000 100000 1000000
M [log]

» Examples for a=0.01,
false alarm » < 0.01.

» //=10000 machines =2 need window size of just 3:
717 =/logl0.01 (1—v10000&1—0.01 )]=/2.99891...]=3

» For one million machines, need window size = 4:
7=[10g0.01 (1—v1000000&1—0.01 )]=/3.99891...]=4
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Unbalanced Work

» Healthy machines

100 -

have same

correlations. CPU 50 -
O —

loads

» Normal data lies in
normal subspace!

» PCA recomputed each time
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— robust to changes in system!
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Preliminary Results on Supercomputer

» TSUBAME2 logs of one month of “jobs”
» No scheduling info.
» CPU and GPU load used to infer grouping.
» At least 10 machines per job, at least 240 minutes.

» 45 common metrics, collected every 1-10 minutes.

» Compare to historical failure logs — 7 day horizon.
» Failure probability per day: roughly 0.2%
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Original Latent Fault Detector

» Complete failure: no better than random guess.

Slgn test Tu key test LOF test
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PCA (Variant 2, “soft threshold”)

P Significant improvement!

» Hard threshold variant too ‘ E

» Issued no alerts. 0.6 _ ........... ...........

True positive rate

» Not yet practical.
» Low FPR - low TPR.

. PCA—

0O 02 04 06 08 1
» Ad-hoc grouping problematic. False positive rate

» excludes failing machines, includes
unrelated machines.
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Future Work

P Test on additional data: » Communication-efficient
» Mobile network data. version.
» Key-value stores. » Distributed variance monitor to
» Hadoop logs. normalize data.

» Sparse PCA. » New class of PCA sketches.

» Geometric monitoring based

P Infer jobs with subspace on convex decompositions.

clustering.

* E. Liberty. Simple and deterministic matrix sketching. In Proc. KDD, 2013.

* M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu. Dimensionality reduction for k-means clustering
and low rank approximation. CoRR, 2014.

* M. Ghashami and J. M. Phillips. Relative errors for deterministic low-rank matrix approximations. In Proc.

SODA. 2014.
* A lLazerson, |. Sharfman, D. Keren, A. Schuster, M. Garofalakis, and V. Samoladas. Monitoring distributed
streams using convex decompositions. In Proc. VLDB, 2015. 7
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