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Debugging large-scale applications is becoming 
problematic 

 
“On average, software developers spend  

50% of their programming time finding and fixing bugs.”[1] 

[1] Source:  http://www.prweb.com/releases/2013/1/prweb10298185.htm, CAMBRIDGE, UK 
(PRWEB) JANUARY 08, 2013 
 

With trends towards asynchronous communication patterns in MPI applications, 
MPI non-determinism will significantly increase debugging cost 
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What is MPI non-determinism (ND) ? 
!  Message receive orders can be different across executions (" Internal ND) 

—  Unpredictable system noise (e.g. network, system daemon & OS jitter) 
!  Arithmetic orders can also change across executions (" External ND) 

Execution A: (a+b)+c  

P0 P1 P2 

a	
b	
c	

P0 P1 P2 

b	
c	

a	

Execution B: a+(b+c) 	



LLNL-PRES-679294 
4"

MPI non-determinism significantly increases debugging cost 

!  Non-deterministic control flow 
—  Successful run, seg-fault or hang 

!  Non-deterministic numerical results 
—  Floating-point arithmetic is “NOT” 

necessarily associative 

Input 

Deterministic apps 

debug 

!  Control flows of an application can change across different runs 

Non-deterministic apps 

seg-fault Result 
Result A Result B 

(a+b)+c�≠ a+(b+c)�	

Input 

In ND applications, it’s hard to reproduce bugs and incorrect results,  
It costs excessive amounts of time for “reproducing”, finding and fixing bugs 

Bug Result Hangs 
" Developers need to do debug runs until the 
same bug is reproduced 
" Running as intended ?  Application bugs ? 
Silent data corruption ? 
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Case study: “Monte Carlo Simulation Benchmark” (MCB)  

!  CORAL proxy application 
!  MPI non-determinism 

 

MCB: Monte Carlo Benchmark 

$ diff result_run1.out result_run2.out	
result_run1.out:< IMC E_RR_total  -3.3140234409e-05  -8.302693774e-08  2.9153322360e-08  -4.8198506756e-06  2.3113821822e-06 	
result_run2.out:> IMC E_RR_total  -3.3140234410e-05  -8.302693776e-08  2.9153322360e-08  -4.8198506757e-06  2.3113821821e-06	
	

09e-05	
10e-05	

74e-08	
76e-08	

22e-06	
21e-06	

56e-06	
57e-06	

Final numerical results are different between 1st and 2nd run  
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Typical MPI non-deterministic code 

Why MPI non-determinism occurs ? 
!  In such non-deterministic applications, each 

process doesn’t know which rank will send 
message 
—  e.g.) Particle simulation 

!  Messages can arrive in any order from 
neighbors " inconsistent message arrivals 

MPI_Irecv(…, MPI_ANY_SOURCE, …);	
while(1) {	
  MPI_Test(flag); 	
  if (flag) {	
     <computation>	
     MPI_Irecv(…, MPI_ANY_SOURCE, …);	
  }	
}	
	
	
	

north	

south	

west	
east	

Wait family	 Test family	
single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

MPI matching functions 

Source of MPI non-determinism 

MCB: Monte Carlo Benchmark 
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State-of-the-art approach: Record-and-replay 

!  Traces, records message receive orders in a run, and 
replays the orders in successive runs for debugging 
—  Record-and-replay can reproduce a target control flow 
—  Developers can focus on debugging a particular control 

flow 

Output 
Output A Output B 

Hanging 

Developer can focus on 
debugging particular 

control flow 

seg-fault 

Debugging a particular control flow in replay 

Input 

rank 0	 rank 1	 rank 2	 rank 3	

rank 0	

rank 2	

rank 1	

rank 1	

rank 3	

rank 2	

rank 1	

rank 3	

rank 2	
rank 1	

Record-and-replay 
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Record-and-replay won't work at scale 
!  Record-and-replay produces large amount of recording data 

—  Over ”10 GB/node” for 24 hours in MCB 

!  For scalable record-replay with low overhead, the record data must fit into local memory, but capacity is 
limited 
—  Storing in shared/parallel file system is not scalable approach 

"Record"size"reduc4on"for"scalable"record:replay"Challenges 

rank 0	 rank 1	 rank 2	 rank 3	

rank 0	

rank 2	

rank 1	

rank 1	

rank 3	

rank 2	

rank 1	

rank 3	

rank 2	
rank 1	

Record-and-replay 

10 GB/node 
MCB: Monte Carlo Benchmark 
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Proposal: Clock Delta Compression (CDC) 
!  Putting logical-clock (Lamport clock) into each MPI message 
!  Actual message receive orders (i.e. wall-clock orders) are very similar to logical clock 

orders in each MPI rank  
—  MPI messages are received in almost monotonically increasing logical-clock order 

!  CDC records only the order differences between the wall-clock order and  the logical-
clock order without recording the entire message order 

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	

2	

13	
8	
8	
15	
19	

17	

18	
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Result in MCB 

!  40 times smaller than the one w/o compression 

MCB: Monte Carlo Benchmark 

40	

1	 CDC 

original 
record 
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Outline 

!  Background 
!  General record-and-replay 
!  CDC: Clock delta compression 
!  Implementation 
!  Evaluation 
!  Conclusion 
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How to record-and-replay MPI applications ? 

Wait family	 Test family	
single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

Matching functions in MPI 

"What"informa4on"need"to"be"recorded"for"replaying"these"matching"func4ons"?"Questions 

!  Source of MPI non-determinism is these matching functions 
—  “Replaying these matching functions’ behavior” " “Replaying MPI application’s behavior” 

Source of MPI non-determinism 
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Necessary values to be recorded for correct replay 
!  Example 
rank 0	

rank 1	

rank 2	

rank x	

message	

message	

message	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
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Necessary values for correct replay 

Wait family	 Test family	
single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
--	
1	

Matching functions in MPI 

!  rank	
—  Who send the messages? 

!  count & flag	
—  For MPI_Test family 

•  flag: Matched or unmatched ? 
•  count: How many time unmatched ? 

!  id	
—  For application-level out-of-order 

!  with_next	
—  For matching some/all functions 
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Necessary values for correct replay 

Wait family	 Test family	
single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
--	
1	

Matching functions in MPI 

!  rank	
—  Who send the messages? 

!  count & flag	
—  For MPI_Test family 

•  flag: Matched or unmatched ? 
•  count: How many time unmatched ? 

!  id	
—  For application-level out-of-order 

!  with_next	
—  For matching some/all functions 
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Application-level out-of-order 
!  MPI guarantees that any two communications 

executed by a process are ordered 
—  Send:  A " B 
—  Recv:  A " B 

!  However, timing of matching function calls depends 
on an application 
—  Message receive order is not necessary equal to 

message send order 

!  For example,  
—  “msg: B” may matches earlier than “msg: A”	

!  Recording only “rank” cannot distinguish between 
A " B and B " A  

MPI_Irecv (req[0])	

MPI_Irecv (req[1])	

MPI_Test (req[0])	

MPI_Test (req[1])	

MPI_Test (req[0])	

rank 0 rank 1 

MPI_Send	

MPI_Send	

msg: A	

msg: B	

msg: B	

msg: A	

Application-level out-of-order 

msg: B	

msg: A	
msg: A	

msg: B	?? ?? rank	

rank 1	

rank 1	

msg: A	

msg: B	
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Each rank need to assign “id” number to each message 

rank 0	

rank 1	

rank 2	

rank x	

message	

message	

message	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	

0	

1	
0	
0	
2	
1	

3	

4	

id	

id	

id	
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Necessary values for correct replay 

Wait family	 Test family	
single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
--	
1	

id	
0	
--	
1	
0	
0	
2	
1	
--	
3	
--	
4	

0	

1	
0	
0	
2	
1	

3	

4	

Matching functions in MPI 

!  rank	
—  Who send the messages? 

!  count & flag	
—  For MPI_Test family 

•  flag: Matched or unmatched ? 
•  count: How many time unmatched ? 

!  id	
—  For application-level out-of-order 

!  with_next	
—  For matching some/all functions 
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Necessary values for correct replay 

Wait family	 Test family	
single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
--	
1	

id	
0	
--	
1	
0	
0	
2	
1	
--	
3	
--	
4	

with_next	

0	
--	
1	
0	
0	
0	
0	
--	
0	
--	
0	

0	

1	
0	
0	
2	
1	

3	

4	

Matching functions in MPI 

!  rank	
—  Who send the messages? 

!  count & flag	
—  For MPI_Test family 

•  flag: Matched or unmatched ? 
•  count: How many time unmatched ? 

!  id	
—  For application-level out-of-order 

!  with_next	
—  For matching some/all functions 
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Necessary values for correct replay 
!  Example 
rank 0	

rank 1	

rank 2	

rank x	

message	

message	

message	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
--	
1	

id	
0	
--	
1	
0	
0	
2	
1	
--	
3	
--	
4	

with_next	

0	
--	
1	
0	
0	
0	
0	
--	
0	
--	
0	

55 values 

event = 5 values 

11
 e

ve
nt

s 

id	

id	

id	

0	

1	
0	
0	
2	
1	

3	

4	
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Clock Delta Compression (CDC) 

Redundancy elimination Linear predictive encoding Permutation encoding 

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
1	 1	 0	 1	 13	
1	 1	 2	 0	 8	
1	 1	 1	 0	 8	
1	 1	 0	 0	 15	
1	 1	 1	 0	 19	
3	 0	 --	 --	 --	
1	 1	 0	 0	 17	
1	 0	 --	 --	 --	
1	 1	 0	 0	 18	

55 values 

CDC: Clock delta compression 
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CDC: Clock delta compression 

55 values 

Clock Delta Compression (CDC) 

Redundancy elimination Linear predictive encoding Permutation encoding 

13 values 23 values 13 values 

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
1	 1	 0	 1	 13	
1	 1	 2	 0	 8	
1	 1	 1	 0	 8	
1	 1	 0	 0	 15	
1	 1	 1	 0	 19	
3	 0	 --	 --	 --	
1	 1	 0	 0	 17	
1	 0	 --	 --	 --	
1	 1	 0	 0	 18	

index	 count	

1	 2	
6	 3	
7	 1	

index	 delay	

2	 +2	
3	 +1	
8	 -2	

index	

1	

index	 count	

1	 2	
6	 3	
-4	 1	

index	 delay	

2	 +2	
-1	 +1	
4	 -2	

index	

1	
gzip 

with_next 
ID	
1	

rank	 clock	

0	 2	
0	 13	
2	 8	
1	 8	
0	 15	
1	 19	
0	 17	
0	 18	

ID	 count	

2	 2	

3	 3	

8	 1	

matched test 

unmatched test gzip 
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Redundancy elimination 
!  The base record has redundancy 
!  To eliminate redundancy, and we divide the original table into three tables 

—  matched events table (rank & id) 
—  unmatched events table (count & flag) 
—  with_next table (with_next) 

rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
1	
--	

id	
0	
--	
1	
0	
0	
2	
1	
--	
3	
--	
4	

with_next	

0	
--	
1	
0	
0	
0	
0	
--	
0	
--	
0	

with_next 
table 
index	

2	1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	

rank	 id	
0	 0	

0	 1	

2	 0	

1	 0	

0	 2	

1	 1	

0	 3	

0	 4	

index	 count	

2	 2	

7	 3	

8	 1	

index 

matched 
table 

unmatched 
table 

matched 
table 

unmatched 
table 

with_next  
table 
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CDC: Clock delta compression 

Clock Delta Compression (CDC) 

55 values 13 values 23 values 13 values 

Redundancy elimination Linear predictive encoding Permutation encoding 

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
1	 1	 0	 1	 13	
1	 1	 2	 0	 8	
1	 1	 1	 0	 8	
1	 1	 0	 0	 15	
1	 1	 1	 0	 19	
3	 0	 --	 --	 --	
1	 1	 0	 0	 17	
1	 0	 --	 --	 --	
1	 1	 0	 0	 18	

index	 count	

1	 2	
6	 3	
7	 1	

index	 delay	

2	 +2	
3	 +1	
8	 -2	

index	

1	

index	 count	

1	 2	
6	 3	
-4	 1	

index	 delay	

2	 +2	
-1	 +1	
4	 -2	

index	

1	
gzip 

with_next 
ID	
1	

rank	 clock	

0	 2	
0	 13	
2	 8	
1	 8	
0	 15	
1	 19	
0	 17	
0	 18	

ID	 count	

2	 2	

3	 3	

8	 1	

matched test 

unmatched test gzip 
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CDC: Clock delta compression 

Clock Delta Compression (CDC) 

55 values 13 values 23 values 13 values 

Redundancy elimination Linear predictive encoding Permutation encoding 

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
1	 1	 0	 1	 13	
1	 1	 2	 0	 8	
1	 1	 1	 0	 8	
1	 1	 0	 0	 15	
1	 1	 1	 0	 19	
3	 0	 --	 --	 --	
1	 1	 0	 0	 17	
1	 0	 --	 --	 --	
1	 1	 0	 0	 18	

index	 count	

1	 2	
6	 3	
7	 1	

index	 delay	

2	 +2	
3	 +1	
8	 -2	

index	

1	

index	 count	

1	 2	
6	 3	
-4	 1	

index	 delay	

2	 +2	
-1	 +1	
4	 -2	

index	

1	
gzip 

with_next 
ID	
1	

rank	 clock	

0	 2	
0	 13	
2	 8	
1	 8	
0	 15	
1	 19	
0	 17	
0	 18	

ID	 count	

2	 2	

3	 3	

8	 1	

matched test 

unmatched test gzip 
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Key observation in communications 
!  Received order (Wall-clock order) are very similar to Logical-clock order  

—  Put “Lamport clock” instead of  msg “id” when sending a message 

rank 0	

rank 1	

rank 2	

rank x	

message	

message	

message	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	

2	

13	
8	
8	
15	
19	

17	

18	

clock	

clock	

clock	

Wall-clock order 

rank 0	

rank 1	
rank 2	
rank 0	
rank 0	
rank 0	

rank 0	

rank 1	

rank x	

2	

8	
8	
13	
15	
17	

18	

19	

≈

Logical-clock order 

Sorted by Lamport clock 
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Case study: Received logical-clock values in MCB 
!  Received logical-clock values in a received order 

—  Almost monotonically increase " received order == logical-clock order 

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	

2	

13	
8	
8	
15	
19	

17	

18	

Wall-clock order 
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Monotonically increase 
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Permutation encoding 
!  We only records the difference between wall-order and logical-order instead of recording 

entire received order 

rank 0	

rank 1	
rank 2	
rank 0	
rank 0	
rank 0	

rank 0	

rank 1	

rank x	

2	

8	
8	
13	
15	
17	

18	

19	

Logical-clock order 

1st  

2nd 
3rd 
4th 
5th  
6th  

7th   

8th   

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	

2	

13	
8	
8	
15	
19	

17	

18	

Wall-clock order 

+2	
+1	

-2	

2nd 
3rd 
8th   

+2	
+1	
-2	

Permutate            message by 
Permutate            message by 
Permutate            message by  

ID	 delay	
2	 +2	
3	 +1	
8	 -2	
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Permutation encoding 
!  Permutation encoding can be regarded as an edit distance problem computing minimal 

permutations to create from sequential numbers to observed wall-clock order 

Logical-clock order Wall-clock order 

+2	
+1	

-2	

2nd 
3rd 
8th   

+2	
+1	
-2	

Permutate            message by 
Permutate            message by 
Permutate            message by  

ID	 delay	
2	 +2	
3	 +1	
8	 -2	

1	
4	
3	
2	
5	
8	
6	
7	

1	
2	
3	
4	
5	
6	
7	
8	

rank x	 rank x	
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Edit distance algorithm 

1	 2	 3	 4	 5	 6	 7	 8	

1	

4	

3	

2	

5	

8	

6	

7	

Permutation 
among 3 messages 

W
al

l-c
lo

ck
 o

rd
er

 

Logical-clock order 

Permutation 
among 3 messages 

BS0 

BS1 

BS2 

BS3 

BS4 

BS5 

BS6 

BS7 

!  Edit distance algorithm 
—  Compute similarity between two strings 

•  Wall-clock order 
•  Logical-clock order 

—  Time complexity: O(N2) 
•  N: length of the strings 

!  Special conditions in CDC 
1. Logical-clock order is sequential numbers 
2. Wall-clock order is created by permutations of 
Logical-clock 
"  Time complexity: O(N+D) 

-  N: Length of the strings 
-  D: Edit distance 
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Why Logical-clock order is not recorded ? 

rank 0	

rank 1	
rank 2	
rank 0	
rank 0	
rank 0	

rank 0	

rank 1	

rank x	

2	

8	
8	
13	
15	
17	

18	

19	

Logical-clock order 

1st  

2nd 
3rd 
4th 
5th  
6th  

7th   

8th   

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	

2	

13	
8	
8	
15	
19	

17	

18	

Wall-clock order 

+2	
+1	

-2	

2nd 
3rd 
8th   

+2	
+1	
-2	

Permutate            message by 
Permutate            message by 
Permutate            message by  

ID	 delay	
2	 +2	
3	 +1	
8	 -2	
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Logical-clock order is reproducible 

4.3 Replayable Clock
Clock piggybacking is indispensable for CDC to create the

reference order. Some systems have the wall-clock time gen-
erated from a highly accurate physical global clock, and on
such systems one may think this would create a reference
order, which is more close to the corresponding observed
order. However, wall clock is neither deterministic (run to
run) nor replayable because it changes the reference order
in subsequent replays, and thus cannot be used for reliable
replay in CDC. As mentioned before, our approach is to
use a Lamport clock. Although Lamport clocks received by
an MPI process can vary slightly from run to run due to
non-determinism in message receives, Lamport clocks are
replayable, which we validate in Theorem 2 in Section 5.
Another approach would be to use a Vector clock. Unfor-
tunately, Vector clocks are not scalable [26]. Thus, we em-
ploy a Lamport clock following rules defined in Definition 4
for creating the reference order of message receives. For fu-
ture work, we will consider other replayable clock definitions
to further increase similarity between the reference and ob-
served orders.
To send a piggyback clock, we use MPI datatypes to at-

tach piggyback data [24] to a message payload. Because we
use several PMPI layers for CDC, we integrate the PMPI
layers using the PNMPI infrastructure [25]. Piggybacking in
MPI is known to degrade communication performance [24].
However, as shown in Figure 16, with improved datatype
support in modern MPI implementations the overhead is
small, in particular for the domain of debugging tools. What
is more important is for the application to maintain scala-
bility under record and replay, which CDC enables.

4.4 Matching Function (MF) Identification
Non-deterministic applications usually use several MF

calls at different locations in the program. Different MF
instances are used for different purposes, therefore there are
different dependencies among messages exchanged via differ-
ent MFs. If we separately create reference orders for differ-
ent MFs, we can create a reference order that more closely
follows the corresponding observed order. To achieve this,
when MFs are called, we analyze the call stacks of the func-
tion calls, and separately manage the record tables (Table
in Figure 4) for the different MF call instances.

5. REPLAY CORRECTNESS
As mentioned in Section 4.3, CDC can correctly replay a

message-receive order only if the Lamport clock is correctly
replayed. To validate that the clock is replayable and that
CDC can correctly replay program executions, we describe
the proof in this section.

Definition 1 (Ordered set). If X = {x1, x2, . . . } is an or-
dered set, then“X = X́”⇔“xi = x́i”where xi ∈ X, x́i ∈ X́

Definition 2 (Events). Let e be a send or receive event.
Let E be an ordered set of e and contain only send events or
only receive events. Let Ex

i be i-th E of process Px. Let E
be an ordered set of E. Let Ex be E of process Px. Under
the definition, if Ex

i is an ordered set of send events, Ex
i+1 is

an ordered set of receive events. Likewise, if Ex
i is an ordered

set of receive events, Ex
i+1 is an ordered set of send events.

With this definition, we can describe a process as a series of
the events, e. In the example of Figure 12, the process (P1)
can be described as {e0, . . . , e6} = {E1

1 , E1
2 , E1

3} = E1.

Proof in Theorem 1.(i) 

Proof in Theorem 1.(ii) 

Proof in Theorem 1.(iii) 

e2 e3 e4 e5 e6 e0 e1 

P0 

P1 

P2 

E11 E12 E13

E 0
1

E 2
1 E 2

2

E 0
2 E 0

3
Send events Recv events Recv events 

Send events Recv events Send events 

Recv events Send events 

E11 E12 E13
E 0
1

E 2
1 E 2

2

E 0
2 E 0

3

Theorem 1 

Figure 12: Example: Communication dependency
graph with three processes

Definition 3 (Event dependency). If E depends on E, we
denote the dependency as E → E. In Figure 12, E0

2 has a
dependency, {E1

1 , E
0
1} → E0

2 .

Definition 4 (Lamport clock). Let a Lamport clock be up-
dated following two rules: (i) When a process sends a mes-
sage, the process attaches its current clock to the message,
then increments the clock by 1; (ii) When a process receives
a message, the process sets its clock to be the maximum of
the received clock and its own clock, then increments the
clock by 1.

Definition 5 (Event clock function). Let fc be fc : E $→ N,
fc(e) is a clock value of event e. Therefore, “e → f” ⇒
“fc(e) < fc(f)”, or “fc(e) ≥ fc(f)”⇒ “e ̸→ f”.

Definition 6 (Totally ordered relation for creating the ref-
erence order). Let fm be fm : E $→ N, fm(e) is an or-
dering number for message-receive events in CDC where
“fm(e) < fm(f)”⇔ “(i) fc(e) < fc(f) or (ii) rank of sender
e < rank of sender f if fc(e) = fc(f)”. Based on this totally
ordered relation, CDC creates reference logical-clock orders.

Definition 7 (Determinism in message send). In non-
deterministic applications, we can make two assumptions.
(i) The first send events are deterministic, i.e., ∀x s.t. “Ex

1

is send events” ⇒ “Ex
1 is deterministic”, or “φ → Ex

1 ” ⇒
“Ex

1 is deterministic”. In Figure 12, E1
1 is send events, and

has no dependency, i.e., φ → E1
1 . Therefore, E1

1 = {e0, e1}
are deterministic. (ii) Send events are deterministic if the
all previous message events are replayed, i.e., “∀E → E s.t.
E is replayed, E is a send event set” ⇒ “E is determin-
istic”. In Figure 12, if E1

1 and E0
1 are replayed, the next

series of send events (E0
2) becomes deterministic because of

{E1
1 , E

0
1} → E0

2 .

Definition 8 (CDC observed receive-event set: B). Let B
be a set of observed receive events. In Figure 11, when the
main thread enqueues a receive event (e), e is included in
B, i.e., e ∈ B.

Axiom 1 (Condition for correct replay of e). “CDC can
correctly replay e” ⇔ “{∀f ∈ E | fm(f) < fm(e)} s.t. (i)
clocks of f , e is replayed, (ii) f ∈ B and (iii) fc(e) < LMC“.
LMC is the local minimum clock. (Qualitative explanation
is in Section 3.6).

Proposition 1. Receive events are replayable if the all pre-
vious message events are replayed, i.e., “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”.

Proof. Show ∀e ∈ E s.t. e is replayed if E is replayed
by proving e holds conditions in Axiom 1 (i)(ii)(iii). (i) E
is replayed. Therefore, clock of f, e is replayed. In Figure 9,
clocks of f1, f2 and e are replayed because E is replayed.
(ii) ∀f ∈ E s.t. fm(f) < fm(e). Therefore, it holds e ̸→ f
(∵ Definition 5, 6). Because f has no dependency to e,
receive event f eventually happens, and is enqueued to B,
i.e., f ∈ B. In Figure 9, f1 and f2 are eventually received
because e ̸→ f1, f2 is met. (iii) Suppose CDC cannot replay
event e due to fc(e) ≥ LMC, i.e., ∃ĝ ∈ E s.t. fm(e) > fm(ĝ).
(iii-a) If e ̸→ ĝ, receive event ĝ is eventually received, and
LMC is incremented. This LMC incrementation continues
until fc(e) < LMC or e → ĝ is met. (iii-b) If e → ĝ, fc(e) <
fc(ĝ) is met. Therefore, fm(e) < fm(ĝ). This is contrary to
fm(e) > fm(ĝ). According to (i)(ii)(iii), “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”

"

Theorem 1. CDC can correctly replay message events, that
is, E = Ê where E and Ê are ordered sets of events for a
record and a replay mode.

Proof (Mathematical induction). (i) Basis: Show
the first send events are replayable, i.e., ∀x s.t. “Ex

1 is send
events”⇒ “Ex

1 is replayable”. As defined in Definition 7.(i)
Ex

1 is deterministic, that is , Ex
1 is always replayed. In Fig-

ure 12, E1
1 is deterministic, that is, is always replayed. (ii)

Inductive step for send events: Show send events are
replayable if the all previous message events are replayed,
i.e., “∀E → E s.t. E is replayed, E is send event set”⇒ “E
is replayable”. As defined in Definition 7.(ii), E is determin-
istic, that is, E is always replayed. (iii) Inductive step for
receive events: Show receive events are replayable if the
all previous message events are replayed, i.e., “∀E → E s.t.
E is replayed, E is receive event set” ⇒ “E is replayable”.
As proofed in Proposition 1, all message receives in E can
be replayed by CDC. Therefore, all of the events can be re-
played, i.e., E = Ê. (Mathematical induction processes are
graphically shown in Figure 12.) "

Theorem 2. CDC can replay piggyback clocks.

Proof. As proved in Theorem 1, since CDC can replay
all message events, send events and clock ticking are re-
played. Thus, CDC can replay piggyback clock sends. "

6. EVALUATION
Two of our main goals are to reduce the size of the

recorded data and to minimize an impact to the application
performance. In this section, we show how much CDC can
reduce the record size for order-reply compared to the tra-
ditional method. We also show the performance impact to
the applications for recording. We conduct our evaluations
on the Catalyst cluster at LLNL. The details of Catalyst are
described in Table 1. We use local storage, Intel SSD 910
Series, for recording data.

6.1 Compression Efficiency
First, we evaluate the compression efficiencies of various

methods. We use MCB as a representative benchmark for
non-deterministic applications [1]. MCB, one of the CORAL

Table 1: Catalyst Specification
Nodes 304 batch nodes
CPU 2.4 GHz Intel Xeon E5-2695 v2

(24 cores in total)
Memory 128 GB

Interconnect InfiniBand QDR (QLogic)
Local Storage Intel SSD 910 Series

(PCIe 2.0, MLC)
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Figure 13: Total compressed record sizes on MCB
at 3,072 processes (Execution time: 12.3 seconds)

benchmark codes, simulates the behavior of particles based
on the heuristic transport equation model as described in
Section 2.1. Figure 13 shows the total compressed record
sizes produced by different compression methods on MCB
at 3,072 processes. gzip is a method that applies gzip to
the baseline format as shown in Figure 4. We denote a
method which only applies redundancy elimination (Section
3.2) as CDC(RE). CDC(RE + PE + LPE) is a method
which applies the permutation encoding (Section 3.3) and
the linear predictive encoding (Section 3.4), and CDC is the
complete method of CDC which applies all of the presented
techniques including the MF identification (Section 4.4). We
use zlib [9] for the gzip method.

As shown in the Figure 13, CDC exhibits a higher com-
pression rate than gzip, and the compression rate of CDC is
5.7 times higher than gzip. Especially, the average number of
bytes required to record a single receive event (bytes/event)
is 0.51 bytes, which is approximately only 4 bits to record a
single event, i.e., count, flag, rank, with next and clock.
In MCB, particles are exchanged as a message, and an MPI
process does not send a particle x until the MPI process
receives the particle x from another process, and the parti-
cle x hits the boundary. Such communication dependency
constrains the variety of message receives, which effectively
decreases the difference between a reference and an observed
order.

For our evaluation at 3,072 MPI processes, about 9.7 mil-
lion of message-receive events are observed in total. If we
recorded these receives without compression as in the tra-
ditional order-replay technique, i.e., the format in Figure 4,
the record size becomes significantly large. For example,
if we use count (64 bits), flag (1 bit), rank (32 bits),
with next (1 bit), clock (64 bits) for an event (162 bits
in total), the size becomes 197.0 MB. Therefore, the effec-

rank 0	
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rank x	
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Logical-clock order 

!  Logical-clock order is always reproducible, so CDC only records the permutation difference 
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CDC: Clock delta compression 

Clock Delta Compression (CDC) 

55 values 13 values 23 values 13 values 

Redundancy elimination Linear predictive encoding Permutation encoding 

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
1	 1	 0	 1	 13	
1	 1	 2	 0	 8	
1	 1	 1	 0	 8	
1	 1	 0	 0	 15	
1	 1	 1	 0	 19	
3	 0	 --	 --	 --	
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CDC: Clock delta compression 

Clock Delta Compression (CDC) 

55 values 13 values 23 values 13 values 

Redundancy elimination Linear predictive encoding Permutation encoding 

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
1	 1	 0	 1	 13	
1	 1	 2	 0	 8	
1	 1	 1	 0	 8	
1	 1	 0	 0	 15	
1	 1	 1	 0	 19	
3	 0	 --	 --	 --	
1	 1	 0	 0	 17	
1	 0	 --	 --	 --	
1	 1	 0	 0	 18	
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Case study: index values in MCB 
!  Problem in the format: index values linearly increase as CDC records events 
!  Compression rate by gzip becomes worse as the table size increases 

—  gzip encodes frequent sequence of bits into shorter bits 
—  If we can encode these values into close to zero, gzip can give a high compression rate 
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Linear predictive (LP) encoding  
!  LP encoding is used for compressing sequence of values, such as audio data 
!  When encoding        xxxxxxxx ,, LP encoding predicts each value  x from the past p 

number of values assuming the sequence is linear, and store errors,  xxxxxxxxxxx . 
{x1, x2,  ... ,  xN}

{e1,e2,  ... ,  eN}

x̂n = a1xn−1 + a2xn−2 +   ...  + apxn−p

xn

en = xn − x̂n

!  Choice of x , and co-efficients, xxxxxxxxxxx , affects 
accuracy of prediction 

!  In CDC, we predict   x is on an extension of a line 
created by  
 

{a1,a2,  ... ,  ap}p

xn
xn−1,  xn−2

p = 2
{a1,  a2} = {2,  −1}

Example  

x6 x7x2 x3

1 1 1
2

4
6

p

If you give a good prediction,  
the index values become close to zero 

x̂4

x̂8
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Case study: Linear predictive encoding  in MCB 
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CDC: Clock delta compression 

count	 flag	 rank	 with_next	 id	
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Outline 

!  Background 
!  General record-and-replay 
!  CDC: Clock delta compression 
!  Implementation 
!  Evaluation 
!  Conclusion 
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Implementation: Clock piggybacking [1] 

!  We use PMPI wrapper to record 
—  events and clock piggybacking 

!  Clock piggybacking 
—  MPI_Send/Isend:  

•  When sending MPI message, the PMPI wrapper define new 
MPI_Datatype that combining message payload & clock 

—  MPI Test/Wait family:  
•  Retrieve the clock value, and synchronize the local Lamport clock 
•  Pass record data to CDC thread 

MPI_Isend	 MPI_Isend	 PMPI_Isend	
PMPI_Isend	

User program PMPI Wrapper library MPI library 

MPI_Test	 MPI_Test	 PMPI_Test	

MPI_Isend	

MPI_Test	
PMPI_Test	

clock	

clock	message payload	

new MPI_Datatype	

[1]  M. Schulz, G. Bronevetsky, and B. R. Supinski. On the Performance of Transparent MPI Piggyback Messages. In Proceedings of the 15th 
European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages 194–201, Berlin, 
Heidelberg, 2008. Springer-Verlag.  
 

msg	
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msg	

Asynchronous encoding 

!  CDC-dedicated thread is running 
!  Asynchronously compress and record events 

MPI_Isend	 MPI_Isend	 PMPI_Isend	
PMPI_Isend	

User program PMPI Wrapper library MPI library 

MPI_Test	 MPI_Test	 PMPI_Test	

MPI_Isend	

MPI_Test	
PMPI_Test	

clock	

CDC encoding	

CDC thread 

Record 
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MCB: Monte Carlo Benchmark 

Compression improvement in MCB 

""""Compressed"size"becomes"40x"smaller"than"original"size"High compression 

gzip itself can reduce  
the original format by 8x 

5x more reduction 
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!  For example, if 1GB of memory per 
node for record-and-replay … 
—  w/o compression: 2 hours 
—  gzip:  19 hours 
—  CDC: 4 days  

Total compressed record sizes on MCB at 3,072 procs (12.3 sec) 
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Similarity between wall-clock and logical-clock order 
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Compression overhead to performance 
!  Performance metric: how may particles are tracked per second 
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MCB w/o Recording 
MCB w/   gzip (Local storage) 
MCB w/   CDC (Local storage) 

"""""""""""""ReMPI"overhead"are"only"between"13.1%"and"25.5%""Low overhead 

Figure 2: Runtime overhead 

About 20% overhead 

In both gzip and CDC, compression is 
asynchronously done.  

The overhead to applications is minimized 

""""CDC"overhead"are"about"20%"on"average"Low overhead 

CDC executes more complicated compression 
algorithm. CDC overhead becomes a little higher 

than gzip 

In practice, capacity of local memory is limited. 
Because all record data must fit in local memory 

for scalability, high compression rate is more 
important than lower overhead 
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Conclusion 
!  MPI non-determinism is problematic for debugging 
!  Record-and-replay solve the problem 

—  However, it produces large amount of data 
—  This hampers scalability of the tool 

!  CDC: Clock Delta Compression 
—  Only record difference between wall-clock order and logical-clock order 

•  Logical-clock order is always reproducible 
 

!  With CDC, the applications can be scale even if recording 
—  All record data can be fit into local memory for longer time 

!  Future work 
—  Reduce record size more by using more accurate Logical-clock and accurate 

prediction for LP encoding 
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Thanks ! 
Speaker:  

 
Kento Sato (�� ��) 

Lawrence Livermore National Laboratory 

https://kento.github.io 
(The slides will be uploaded here) 
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