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Reproducibility	(���)	
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Outline	

§  Reproducibility/Irreproducibility	in	HPC	

§  Exis:ng	toolset	for	irreproducibility	bugs	
—  Spindle	
—  ReMPI	(MPI	record-and-replay)	
—  Io-watchdog	
—  STAT	

§  Clock	delta	compression	for	ReMPI	
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Reproducibility	(���)	

§  Reproducibility	is	an	ability	to	reproduce	the	same/similar	
experimental	results	even	by	other	persons	

§  Important	to	show	that	the	experiment	is	valid	and	correct	

	
§  In	computa:onal	science,	rela:vely	easy	to	reproduce	behavior	
of	applica:ons,	and	the	final	numerical	results	

§  But,	several	factors	hamper	reproducibility		

Reproducible  
by other persons 
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What	hampers	reproducibility	in	computa9on	?	

•  CPU/GPU model 
•  Memory 
•  Network 
•  Storage system  
•  and others … 

Hardware 

•  Kernel version 
•  Compiler version & 

option 
•  Library version 
•  and others … 

Software 

Different behaviors 
Different numerical results 

Experimental	environment	

Other factors 
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Impact	of	OS	noises	to	applica9ons	

§  Netgauge:		enchmark	for	OS	noises	
§  
ystem	daemons	periodically	wake	�p	and	run	

Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010. Characterizing the Influence of 
System Noise on Large-Scale Applications by Simulation. In Proceedings of the 2010 ACM/IEEE 
International Conference for High Performance Computing, Networking, Storage and Analysis (SC '10) 

OS noise fluctuations hamper reproducibility 
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Impact	of	temperature	to	applica9ons	

§  CPU	temperature	v.s.		CPU	frequency	

Temperature hamper��reproducibility 

Fan speed: A single fan x 500RPM è Two fans x 192RPM 

218 MHz 

Source: http://www.xbitlabs.com/
articles/coolers/display/core-i7-coolers-
roundup_17.html 
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Impact	of	“human”	noise	to	applica9ons		

1.  The	guys	shout	to	the	disk	drives	
2.  The	disk	drives	detect	vibra:on,	and	suspend	the	disk	head	
3.  The	latencies	rise	

Human noise may hamper reproducibility 

Vibration !! 

Shouting ! 

Disk latency !!! 
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What	hampers	reproducibility	in	computa9on	?	

•  CPU/GPU model 
•  Memory 
•  Network 
•  Storage system  
•  and others … 

Hardware 

•  Kernel version 
•  Compiler version & 

option 
•  Library version 
•  and others … 

Software 

Different behaviors 
Different numerical results 

•  System noises 
•  Temperature 
•  Physical noises 

Experimental	environment	

Other factors 

Several factors make MPI applications  
non-deterministic and irreproducible 

Out of our control 
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Now,	reproducibility	is	a	common	issue	in	HPC	

BoF Tue. Nov 17, 
15:30-17:00 

Performance Reproducibility in HPC - Challenges and State-
of-the-Art 13B 

Invited talk Wed, Nov 18, 
13:30 – 14:15 Reproducibility in High Performance Computing Ballroom D 

Tech. paper Thu, Nov 19 
11:00 – 11:30 

Clock Delta Compression for Scalable Order-Replay of Non-
Deterministic Parallel Applications 18AB 

BoF Thu, Nov 19, 
12:15 – 13:15 

Reproducibility of High Performance Codes and Simulations – 
Tools, Techniques, Debugging 17AB 

Tech. paper Thu, Nov 19, 
13:30 – 14:00 Scientific Benchmarking of Parallel Computing Systems 18AB 

Workshop Fri, Nov 20, 
8:00 – 12:00 NRE2015: Numerical Reproducibility at Exascale Hilton 400 - 402 

Student 
Cluster 

Competition 
*	SC16	Student	Cluster	Compe::on	will	be	abont	reproducibility 
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What	is	MPI	non-determinism	(ND)	?	

§ Message	receive	orders	can	be	different	across	execu:ons	
—  Unpredictable	system	noise	(e.g.	network,	system	daemon	&	OS	jicer)	

§  Arithme:c	orders	can	also	change	across	execu:ons	

Execution A: (a+b)+c  

P0 P1 P2 

a	
b	
c	

P0 P1 P2 

b	
c	

a	

Execution B: a+(b+c) 	
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Non-determinism	also	increases	debugging	cost	

§  Non-determinis:c	control	flow	
—  Successful	run,	seg-fault	or	hang	

§  Non-determinis:c	numerical	results	
—  Floa:ng-point	arithme:c	is	“NOT”	necessarily	

associa:ve	

Input 

Deterministic apps 

debug 

§  Control flows of an application can change across different runs 

Non-deterministic apps 

seg-fault Result 
Result A Result B 

(a+b)+c
≠ a+(b+c)
	

Input 

In ND applications, it’s hard to reproduce bugs and incorrect results,  
It costs excessive amounts of time for “reproducing”, finding and fixing bugs 

Bug Result Hangs 
è Developers need to do debug runs until the 
same bug is reproduced 
è Running as intended ?  Application bugs ? 
Silent data corruption ? 

 
“On average, software developers spend  

50% of their programming time finding and fixing bugs.”[1] 



LLNL-PRES-681938 
15	

Irreproducible	numerical	result	
																						---	Case	study:	“Monte	Carlo	Simula9on”	(MCB)		

§  CORAL	proxy	applica:on	
§ MPI	non-determinism	

	

MCB: Monte Carlo Benchmark 

$ diff result_run1.out result_run2.out	
result_run1.out:< IMC E_RR_total  -3.3140234409e-05  -8.302693774e-08  2.9153322360e-08  -4.8198506756e-06  2.3113821822e-06 	
result_run2.out:> IMC E_RR_total  -3.3140234410e-05  -8.302693776e-08  2.9153322360e-08  -4.8198506757e-06  2.3113821821e-06	
	

09e-05	
10e-05	

74e-08	
76e-08	

22e-06	
21e-06	

56e-06	
57e-06	

Final numerical results are different between 1st and 2nd run  

Proposition 1. Receive events are replayable if the all pre-
vious message events are replayed, i.e., “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”.

Proof. Show ∀e ∈ E s.t. e is replayed if E is replayed
by proving e holds conditions in Axiom 1 (i)(ii)(iii). (i) E
is replayed. Therefore, clock of f, e is replayed. In Figure 9,
clocks of f1, f2 and e are replayed because E is replayed.
(ii) ∀f ∈ E s.t. fm(f) < fm(e). Therefore, it holds e ̸→ f
(∵ Definition 5, 6). Because f has no dependency to e,
receive event f eventually happens, and is enqueued to B,
i.e., f ∈ B. In Figure 9, f1 and f2 are eventually received
because e ̸→ f1, f2 is met. (iii) Suppose CDC cannot replay
event e due to fc(e) ≥ LMC, i.e., ∃ĝ ∈ E s.t. fm(e) > fm(ĝ).
(iii-a) If e ̸→ ĝ, receive event ĝ is eventually received, and
LMC is incremented. This LMC incrementation continues
until fc(e) < LMC or e → ĝ is met. (iii-b) If e → ĝ, fc(e) <
fc(ĝ) is met. Therefore, fm(e) < fm(ĝ). This is contrary to
fm(e) > fm(ĝ). According to (i)(ii)(iii), “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”

"

Theorem 1. CDC can correctly replay message events, that
is, E = Ê where E and Ê are ordered sets of events for a
record and a replay mode.

Proof (Mathematical induction). (i) Basis: Show
the first send events are replayable, i.e., ∀x s.t. “Ex

1 is send
events”⇒ “Ex

1 is replayable”. As defined in Definition 7.(i)
Ex

1 is deterministic, that is , Ex
1 is always replayed. In Fig-

ure 12, E1
1 is deterministic, that is, is always replayed. (ii)

Inductive step for send events: Show send events are
replayable if the all previous message events are replayed,
i.e., “∀E → E s.t. E is replayed, E is send event set”⇒ “E
is replayable”. As defined in Definition 7.(ii), E is determin-
istic, that is, E is always replayed. (iii) Inductive step for
receive events: Show receive events are replayable if the
all previous message events are replayed, i.e., “∀E → E s.t.
E is replayed, E is receive event set” ⇒ “E is replayable”.
As proofed in Proposition 1, all message receives in E can
be replayed by CDC. Therefore, all of the events can be re-
played, i.e., E = Ê. (Mathematical induction processes are
graphically shown in Figure 12.) "

Theorem 2. CDC can replay piggyback clocks.

Proof. As proved in Theorem 1, since CDC can replay
all message events, send events and clock ticking are re-
played. Thus, CDC can replay piggyback clock sends. "

6. EVALUATION
Two of our main goals are to reduce the size of the

recorded data and to minimize an impact to the application
performance. In this section, we show how much CDC can
reduce the record size for order-reply compared to the tra-
ditional method. We also show the performance impact to
the applications for recording. We conduct our evaluations
on the Catalyst cluster at LLNL. The details of Catalyst are
described in Table 1. We use local storage, Intel SSD 910
Series, for recording data.

6.1 Compression Efficiency
First, we evaluate the compression efficiencies of various

methods. We use MCB as a representative benchmark for
non-deterministic applications [1]. MCB, one of the CORAL

Table 1: Catalyst Specification
Nodes 304 batch nodes
CPU 2.4 GHz Intel Xeon E5-2695 v2

(24 cores in total)
Memory 128 GB

Interconnect InfiniBand QDR (QLogic)
Local Storage Intel SSD 910 Series

(PCIe 2.0, MLC)
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Figure 13: Total compressed record sizes on MCB
at 3,072 processes (Execution time: 12.3 seconds)

benchmark codes, simulates the behavior of particles based
on the heuristic transport equation model as described in
Section 2.1. Figure 13 shows the total compressed record
sizes produced by different compression methods on MCB
at 3,072 processes. gzip is a method that applies gzip to
the baseline format as shown in Figure 4. We denote a
method which only applies redundancy elimination (Section
3.2) as CDC(RE). CDC(RE + PE + LPE) is a method
which applies the permutation encoding (Section 3.3) and
the linear predictive encoding (Section 3.4), and CDC is the
complete method of CDC which applies all of the presented
techniques including the MF identification (Section 4.4). We
use zlib [9] for the gzip method.

As shown in the Figure 13, CDC exhibits a higher com-
pression rate than gzip, and the compression rate of CDC is
5.7 times higher than gzip. Especially, the average number of
bytes required to record a single receive event (bytes/event)
is 0.51 bytes, which is approximately only 4 bits to record a
single event, i.e., count, flag, rank, with next and clock.
In MCB, particles are exchanged as a message, and an MPI
process does not send a particle x until the MPI process
receives the particle x from another process, and the parti-
cle x hits the boundary. Such communication dependency
constrains the variety of message receives, which effectively
decreases the difference between a reference and an observed
order.

For our evaluation at 3,072 MPI processes, about 9.7 mil-
lion of message-receive events are observed in total. If we
recorded these receives without compression as in the tra-
ditional order-replay technique, i.e., the format in Figure 4,
the record size becomes significantly large. For example,
if we use count (64 bits), flag (1 bit), rank (32 bits),
with next (1 bit), clock (64 bits) for an event (162 bits
in total), the size becomes 197.0 MB. Therefore, the effec-
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Irreproducible	bugs	
																			---	Case	study:	Pf3d	and	Diablo/Hypre	2.10.1	

§  Diablo	-	hung	in	one	of	Hypre	
func:ons	

§  Scien:st	spent	2	months	in	the	
period	of	18	months	

§  Pf3d	–	hung	only	when	
scaling	to	half	a	million	MPI	
processes	

§  Scien:st	refused	to	debug	for	
6	months	…	 Hypre is an MPI-based library for solving large, 

sparse linear systems of equations on massively 
parallel computers 

§  Computa:onal	Scien:sts	are	suffering	from	irreproducible	hangs		
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Typical	debugging	cycles	for	irreproducible	bugs	

Hangs 

Locate hanged function 

Identify root cause 

Successful 
run 

Launch processes 

Wrong 
numerical result 

Run application 

Detect 
hangs 

Launching large application is 
expensive 

Waste computational resources 
until allocated time/walltime ends 

Analyzing every single of stack 
traces are not practical 

MPI behaviors are irreproducible 
(Scientists have to execute 

multiple time )  
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Outline	

§  Irreproducibility	in	HPC	

§  Exis:ng	toolset	for	irreproducibility	bugs	
—  Spindle	
—  ReMPI	(MPI	record-and-replay)	
—  Io-watchdog	
—  STAT	

§  Clock	delta	compression	for	ReMPI	
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Typical	debugging	cycles	for	irreproducible	bugs	

Hangs 

Locate hanged function 

Identify root cause 

Successful 
run 

Launch processes 

Wrong 
numerical result 

Run application 

Launching large application is 
expensive 

MPI behaviors are irreproducible 
(Scientists have to execute 

multiple time )  

Waste computational resources 
until allocated time/walltime ends 

Analyzing every single of one of 
stack traces are not practical 

Detect 
hangs 
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Hangs 

Locate hanged function 

Identify root cause 

Successful 
run 

Launch processes 

Wrong 
numerical result 

Run application 

Detect 
hangs 

ReMPI 

Scalable binary/
library loading 

MPI record-and-replay 

Hang detection 

Stack trace analysis tool 

Io-watchdog 

STAT 

Useful	toolset	for	irreproducible	bugs		
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Dynamic	Linking	Causes	Major	Disrup9on	at	Scale	

§  Mul9-physics	applica9ons	at	LLNL	
—  848	shared	library	files	
—  Load	:me	on	BG/P:	

2k	tasks	à	1	hour	
16k	tasks	à	10	hours	

§  Pynamic	
—  LLNL	Benchmark	
—  Loads	shared	libraries	

and	python	files	
—  495	shared	objects		

à	1.1	GB	

Pynamic running on LLNL Sierra Cluster 
1944 nodes, 12 tasks/node, NFS 
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Challenges	Arise	from	File	Access	Storms	

§  Example:	Pynamic	Benchmark	on	Sierra-Cluster	
—  serial	(1	task):	 	 						5,671	open/stat	calls	
—  parallel	(23,328	tasks)	:				132,293,088	open/stat	calls	

File metadata operations: 
  # of tests =    # of processes   
                     x # of locations  
                     x # of libraries 

File read operations: 
  # of reads =   # of processes  
                     x # of libraries 

§  Formulas: 

§  Caused by dynamic linker  
§  searching and  
§  loading dynamic linked libraries 
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dynamic 
linker 

dynamic 
linker 

File	Access	is	Uncoordinated!		

§  Loading	is	nearly	unchanged	since	1964	(MULTICS)		

§  Each	process	independently	read	shared	libraries	
—  ld-linux.so	uses	serial	POSIX	file	opera:ons	that	are	not	coordinated	among	process.	

dynamic 
linker 

…

dynamic 
linker 

 
 
 
 Process 

 
 
 
 Process 

 
 
 
 Process 

 
 
 
 Process 

…

…

lib 

lib lib lib 

lib 

lib 

lib 

lib 

lib 

lib lib lib 

lib 

lib 

lib 

lib 
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How	SPINDLE	Works	

Reques:ng	dir/file:	

		1.	Request	from	leader	

		2.	Leader	reads	from	disk	

		3.	Leader	distributes	to	peers	

dynamic 
linker 

dynamic 
linker 

dynamic 
linker 

…

…

…

dynamic 
linker 

 
 
 
 Process 

 
 
 
 Process 

 
 
 
 Process 

 
 
 
 Process 

File metadata operations: 
  # of tests = # of locations 

File read operations: 
   # of reads = # of libraries 

SPINDLE: Scalable Parallel Input Network for Dynamic Load Environments 

FILE 

file 

file 

file 

file 

file 

file 

file 

File Req 

DIR 

dir 

dir 

dir 

dir req 

dir 

dir 

dir 

dir 

ü

ü

ü

ü

ü

ü

Scalable binominal tree broadcast 
Cache metadata/libraries in ramdisk 
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SPINDLE	Intercepts			
Dynamic	Linker	Transparently	

§  rtld-audit	interface	of	GNU	linker	
—  rtld-audit	provides	an	audi:ng	API	that	allows	an	applica:on	to	be	

no:fied	when	various	dynamic	linking	events	occur	
—  Redirect	library	loads	to	libraries	read	by	leader	

§  Specify	dynamic	library	with	audit	interface	in	LD_AUDIT 
environment	variable	

§  Server	caching	
—  Stores	metadata/libraries	in	Ramdisk	
—  Server	do	not	send	the	same	requests	to	filesystems	
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SPINDLE’s	Performance	
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Hangs 

Locate hanged function 

Identify root cause 

Successful 
run 

Launch processes 

Wrong 
numerical result 

Run application 

Detect 
hangs 

ReMPI 

Scalable binary/
library loading 

MPI record-and-replay 

Hang detection 

Stack trace analysis tool 

Io-watchdog 

STAT 

Useful	toolset	for	irreproducible	bugs		
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Difficult	to	find	root	cause	of	bugs	
																																				---		HYPRE	2.10.1	example	
§  Func	ParaSailsSetup	(…)	

—  Func	ParaSailsSetupPacern	(…)	
•  MPI_Isend	(tag	=	222)	
•  MPI_Allreduce	(SUM)	
•  MPI_Probe	(ANY_SOURCE,	tag=222)	
•  MPI_Recv	(tag	=	222)	
•  MPI_Isend	(tag	=	223)	
•  MPI_Probe	(ANY_SOURCE,	tag	=	223)	
•  MPI_Recv	(tag	=	223)	

—  Func	ParaSailsSetupValues	(…)	
•  MPI_Isend	(tag	=	222)	
•  MPI_Allreduce	(SUM)	
•  MPI_Probe	(ANY_SOURCE,	tag=222)	
•  MPI_Recv	(tag	=	222)	
•  MPI_Isend	(tag	=	223)	
•  MPI_Probe	(ANY_SOURCE,	tag	=	223)	
•  MPI_Recv	(tag	=	223)	

MPI	rank	

MPI	rank	

MPI	rank	

MPI	rank	
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Irreproducible	bug	In	HYPRE	2.10.1	

§  Hangs	are	totally	irreproducible	
—  Hangs	only	a	few	:mes	per	30	runs	

§  Hangs	aoer	running	for	a	few	hours	
—  Checkpoint/Restart	just	before	the	hang	does	not	work	
è	We	had	to	wait	for	a	few	hours	more	from	the	last	checkpoint	

§  Hangs	in	par:cular	parallelisms	
—  64	procs	è	Hangs		
—  Certain	level	of	parallelismè	Never	hang	

The scientists spent  
 2 months in the 
period of 18 months, 
then gave up 
debugging  

§  Diablo	-	hung	in	one	of	Hypre	
func:ons	
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Difficult	to	find	root	cause	of	bugs	
																																				---		HYPRE	2.10.1	example	
§  Func	ParaSailsSetup	(…)	

—  Func	ParaSailsSetupPacern	(…)	
•  MPI_Isend	(tag	=	222)	
•  MPI_Allreduce	(SUM)	
•  MPI_Probe	(ANY_SOURCE,	tag=222)	
•  MPI_Recv	(tag	=	222)	
•  MPI_Isend	(tag	=	223)	
•  MPI_Probe	(ANY_SOURCE,	tag	=	223)	
•  MPI_Recv	(tag	=	223)	

—  Func	ParaSailsSetupValues	(…)	
•  MPI_Isend	(tag	=	222)	
•  MPI_Allreduce	(SUM)	
•  MPI_Probe	(ANY_SOURCE,	tag=222)	
•  MPI_Recv	(tag	=	222)	
•  MPI_Isend	(tag	=	223)	
•  MPI_Probe	(ANY_SOURCE,	tag	=	223)	
•  MPI_Recv	(tag	=	223)	

MPI	rank	

MPI	rank	

MPI	rank	

MPI	rank	
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Typical MPI non-deterministic code 

Why	MPI	non-determinism	occurs	?	
§  In	such	non-determinis:c	applica:ons,	each	
process	doesn’t	know	which	rank	will	send	
message	
—  e.g.)	Par:cle	simula:on	

§  Messages	can	arrive	in	any	order	from	
neighbors	è	inconsistent	message	arrivals	

MPI_Irecv(…, MPI_ANY_SOURCE, …);	
while(1) {	
  MPI_Test(flag); 	
  if (flag) {	
     <computation>	
     MPI_Irecv(…, MPI_ANY_SOURCE, …);	
  }	
}	
	
	
	north	

south	

west	
east	

Wait family	 Test family	
single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

MPI matching functions 

Source of MPI non-determinism 

MCB: Monte Carlo Benchmark 
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ReMPI	can	reproduce	message	matching	

§  Traces,	records	message	receive	orders	in	a	run,	and	replays	
the	orders	in	successive	runs	for	debugging	
—  Record-and-replay	can	reproduce	a	target	control	flow	
—  Developers	can	focus	on	debugging	a	par:cular	control	flow	

Output 
Output A Output B 

Hanging 

Developer can focus on 
debugging particular 

control flow 

seg-fault 

Debugging a particular control flow in replay 

Input 

rank 0	 rank 1	 rank 2	 rank 3	

rank 0	

rank 2	

rank 1	

rank 1	

rank 3	

rank 2	

rank 1	

rank 3	

rank 2	
rank 1	

Record-and-replay 

ReMPI 

§  ReMPI	can	reproduce	message	matching	by	using	record-and-replay	technique	
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ReMPI:	Implementa9on	
§  PMPI	wrapper	for	record	and	replay	

MPI_Test (MPI_Request *request, int *flag, MPI_Status *status)	
{	
   int ret;	
   ret = PMPI_Test(…, flag, status);	
   <Write record “flag” and “status.MPI_SOURCE” >	
} 	

ReMPI 

MPI_Test (MPI_Request *request, int *flag, MPI_Status *status)	
{	
   int ret;	
   <Read record “flag” and “status.MPI_SOURCE” >	
   ret = PMPI_Probe(…);	
   ret = PMPI_Recv(…);	
} 	

Record	mode	

Replay	mode	
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Record	overhead	to	performance	
§  Performance	metric:	how	may	par:cles	are	tracked	per	second	
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1.50E+09 
2.00E+09 
2.50E+09 
3.00E+09 
3.50E+09 
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4.50E+09 
5.00E+09 
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# of processes 

MCB w/o Recording 
MCB w/   gzip (Local storage) 

§  ReMPI	becomes	scalable	by	recording	to	local	memory/storage	
—  Each	rank	independently	write	record		à	No	communica:on	across	MPI	ranks	

0 1

node 0 

2 3

node 1 

4 5

node 2 

6 7

node 3 

ReMPI 

MCB 
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ReMPI	captures	the	irreproducible	bug	in	Diablo	

§  Diablo	originalyl	hangs	4	–	6	:mes	out	of	30	runs	
§  Even	with	ReMPI,	we	can	s:ll	record	hanging	MPI	behavirs	
	

# of hangs out of 30 runs 
w/o ReMPI 4-6 times 
w/   ReMPI     3 times 

Diablo 
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Hangs 

Locate hanged function 

Identify root cause 

Successful 
run 

Launch processes 

Wrong 
numerical result 

Run application 

Detect 
hangs 

ReMPI 

Scalable binary/
library loading 

MPI record-and-replay 

Hang detection 

Stack trace analysis tool 

Io-watchdog 

STAT 

Useful	toolset	for	irreproducible	bugs		
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IO-Watchdog:	detec9ng	applica9ons’	hangs	

§  IO-Watchdog	detect	applica:ons’	hangs	

§ When	detected,	io-watchdog	triggers	a	set	of	user-
defined	ac:on	(script)		

§  Ac:ons	
— Killing	procceses	
— Email	to	the	usr	
— running	debugger	(e.g.	STAT)	

search /dir/path/to/actions	
timeout = 20m	
actions = STAT, kill	
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IO-Watchdog	watches	IOs	
§  Typical	applica:ons	periodically	write	something	to	a	log	or	data	
file	

§ Monitor	I/O	via	libc	wrapper	
1.  Preload	io-watchdog	wrapper	via	LD_PRELOAD		
2.  Monitor	all	write/output-related	calls	in	libc	from	an	applica:on	
3.  Watchdog	daemon	periodically	wakes	up		
4.  Ensures	that	the	applica:on	has	wricen	something	during	the	last	:meout	

period	
5.  Triggers	ac:ons	 Application	

log OR result	

libc 	
wrapper	

ac:on	
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Hangs 

Locate hanged function 

Identify root cause 

Successful 
run 

Launch processes 

Wrong 
numerical result 

Run application 

Detect 
hangs 

ReMPI 

Scalable binary/
library loading 

MPI record-and-replay 

Hang detection 

Stack trace analysis tool 

Io-watchdog 

STAT 

Useful	toolset	for	irreproducible	bugs		
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STAT:	Stack	Trace	Analysis	tool	
§  Stack	traces	are	useful	to	find	hanging	loca:on	
§  But,	…	at	large	scale	

—  Analyzing	all	traces	is	not	prac:cal		
—  Producing	a	large	mount	of	trace	data	

Storage 
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STAT:	Stack	Trace	Analysis	tool	

Storage 

STAT	provides	a	global	
view	of	stack	traces	

search /dir/path/to/actions	
timeout = 20m	
actions = STAT, kill	

§  Stack	traces	are	useful	to	find	hanging	loca:on	
§  But,	…	at	large	scale	

—  Analyzing	all	traces	is	not	prac:cal		
—  Producing	a	large	mount	of	trace	data	
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STAT provides scalable engine 
supporting this model	

MPI MPI MPI MPI MPI MPI MPI MPI MPI MPI MPI MPI MPI MPI MPI MPI 

FE 

BE BE BE BE 

CP CP 

1) Startup 

2) Attach 

3) Sample 

4) Merge 
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STAT	is	lightweight	as	well	as	scalable	

0 
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Number of Processes 

•  Simple MPI benchmark (MPI ring topology communication) 
•  BG/L: 16K to 212K procs 

STAT reduction/merge time 
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STAT	manifests	Diablo/HYPRE	hangs	
§  Func	ParaSailsSetup	(…)	

—  Func	ParaSailsSetupPacern	(…)	
•  MPI_Isend	(tag	=	222)	
•  MPI_Allreduce	(SUM)	
•  MPI_Probe	(ANY_SOURCE,	tag=222)	
•  MPI_Recv	(tag	=	222)	
•  MPI_Isend	(tag	=	223)	
•  MPI_Probe	(ANY_SOURCE,	tag	=	223)	
•  MPI_Recv	(tag	=	223)	

—  Func	ParaSailsSetupValues	(…)	
•  MPI_Isend	(tag	=	222)	
•  MPI_Allreduce	(SUM)	
•  MPI_Probe	(ANY_SOURCE,	tag=222)	
•  MPI_Recv	(tag	=	222)	
•  MPI_Isend	(tag	=	223)	
•  MPI_Probe	(ANY_SOURCE,	tag	=	223)	
•  MPI_Recv	(tag	=	223)	

Diablo 
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Hangs 

Locate hanged function 

Identify root cause 

Successful 
run 

Launch processes 

Wrong 
numerical result 

Run application 

Detect 
hangs 

ReMPI 

Scalable binary/
library loading 

MPI record-and-replay 

Hang detection 

Stack trace analysis tool 

Io-watchdog 

STAT 

Scalable	toolset	for	irreproducible	bugs		

Scalable	!	

Scalable	!	

Scalable	!	

Scalable	!	

Large	memory	
footprint	!!	
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Outline	

§  Irreproducibility	in	HPC	

§  Exis:ng	toolset	for	irreproducibility	bugs	
—  Spindle	
—  ReMPI	(MPI	record-and-replay)	
—  Io-watchdog	
—  STAT	

§  Clock	delta	compression	for	ReMPI	
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Record-and-replay	won't	work	at	scale	
§  Record-and-replay	produces	large	amount	of	recording	data	

—  Over	”10	GB/node”	per	day	in	MCB	
—  Over	”24	GB/node”	per	day	in	Diablo	

§  For	scalable	record-replay	with	low	overhead,	the	record	data	must	fit	into	local	memory,	
but	capacity	is	limited	
—  Storing	in	shared/parallel	file	system	is	not	scalable	approach	
—  Not	necessary	that	the	systems	have	fast	local	storage	

	Record	size	reduc:on	for	scalable	record-replay	Challenges 

rank 0	 rank 1	 rank 2	 rank 3	

rank 0	

rank 2	

rank 1	

rank 1	

rank 3	

rank 2	

rank 1	

rank 3	

rank 2	
rank 1	

Record-and-replay 

10 GB/node 

MCB 

Diablo 

24 GB/node 
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Overview	of	Clock	Delta	Compression	(CDC)	

§  Puung	logical-clock	(Lamport	clock)	into	each	MPI	message	

§  Actual	message	receive	orders	(i.e.	wall-clock	orders)	are	very	
similar	to	logical	clock	orders	in	each	MPI	rank		
— MPI	messages	are	received	in	almost	monotonically	increasing	logical-

clock	order	

§  CDC	records	only	the	order	differences	between	the	wall-clock	
order	and		the	logical-clock	order	without	recording	the	en:re	
message	order	
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Result	in	MCB	

§  40	:mes	smaller	than	the	one	w/o	compression	

MCB: Monte Carlo Benchmark 

40	

1	 CDC 

original 
record 
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How	to	record-and-replay	MPI	applica9ons	?	

Wait family	 Test family	
single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

Matching functions in MPI 

	What	informa:on	need	to	be	recorded	for	replaying	these	matching	func:ons	?	Questions 

§  Source of MPI non-determinism is these matching functions 
—  “Replaying these matching functions’ behavior” è “Replaying MPI application’s behavior” 

Source of MPI non-determinism 



LLNL-PRES-681938 
51	

Necessary	values	to	be	recorded	for	correct	replay	
§  Example	
rank 0	

rank 1	

rank 2	

rank x	

message	

message	

message	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
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Necessary	values	for	correct	replay	
Wait family	 Test family	

single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
--	
1	

Matching functions in MPI 

§  rank	
—  Who send the messages? 

§  count & flag	
—  For MPI_Test family 

•  flag: Matched or unmatched ? 
•  count: How many time unmatched ? 

§  id	
—  For application-level out-of-order 

§  with_next	
—  For matching some/all functions 
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Necessary	values	for	correct	replay	
Wait family	 Test family	

single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
--	
1	

Matching functions in MPI 

§  rank	
—  Who send the messages? 

§  count & flag	
—  For MPI_Test family 

•  flag: Matched or unmatched ? 
•  count: How many time unmatched ? 

§  id	
—  For application-level out-of-order 

§  with_next	
—  For matching some/all functions 
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Applica9on-level	out-of-order	

§  MPI	guarantees	that	any	two	communica:ons	
executed	by	a	process	are	ordered	
—  Send	order:		msg	A	è	msg	B	
—  Recv	order:		msg	A	è	msg	B	

§  However,	:ming	of	matching	func:on	calls	
depends	on	an	applica:on	
—  Message	receive	order	is	not	necessary	equal	to	

message	send	order	

§  For	example,		
—  “msg: B” may	matches	earlier	than	“msg: A”	

§  Recording	only	“rank”	cannot	dis:nguish	
between	“msg	A	è	msg	B”	and	“	msg	B	è	msg	
A”		

MPI_Irecv (req[0])	

MPI_Irecv (req[1])	

MPI_Test (req[0])	

MPI_Test (req[1])	

MPI_Test (req[0])	

rank 0 rank 1 

MPI_Send	

MPI_Send	

msg: A	

msg: B	

msg: B	

msg: A	

Application-level out-of-order 

msg: B	

msg: A	
msg: A	

msg: B	?? ?? rank	

rank 1	

rank 1	

msg: A	

msg: B	
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Each	rank	need	to	assign	“id”	number	to	each	
message	
rank 0	

rank 1	

rank 2	

rank x	

message	

message	

message	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	

0	

1	
0	
0	
2	
1	

3	

4	

id	

id	

id	
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Necessary	values	for	correct	replay	
Wait family	 Test family	

single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
--	
1	

id	
0	
--	
1	
0	
0	
2	
1	
--	
3	
--	
4	

0	

1	
0	
0	
2	
1	

3	

4	

Matching functions in MPI 

§  rank	
—  Who send the messages? 

§  count & flag	
—  For MPI_Test family 

•  flag: Matched or unmatched ? 
•  count: How many time unmatched ? 

§  id	
—  For application-level out-of-order 

§  with_next	
—  For matching some/all functions 
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Necessary	values	for	correct	replay	
Wait family	 Test family	

single	     MPI_Wait	     MPI_Test	
any	     MPI_Waitany	     MPI_Testany	
some	     MPI_Waitsome	     MPI_Testsome	
all	     MPI_Waitall	     MPI_Testall	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
--	
1	

id	
0	
--	
1	
0	
0	
2	
1	
--	
3	
--	
4	

with_next	

0	
--	
1	
0	
0	
0	
0	
--	
0	
--	
0	

0	

1	
0	
0	
2	
1	

3	

4	

Matching functions in MPI 

§  rank	
—  Who	send	the	messages?	

§  count & flag	
—  For	MPI_Test	family	

•  flag:	Matched	or	unmatched	?	
•  count:	How	many	:me	unmatched	?	

§  id	
—  For	applica:on-level	out-of-order	

§  with_next	
—  For	matching	some/all	func:ons	
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Necessary	values	for	correct	replay	
§  Example	
rank 0	

rank 1	

rank 2	

rank x	

message	

message	

message	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	
rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
--	
1	

id	
0	
--	
1	
0	
0	
2	
1	
--	
3	
--	
4	

with_next	

0	
--	
1	
0	
0	
0	
0	
--	
0	
--	
0	

55 values 

event = 5 values 

11
 e

ve
nt

s 

id	

id	

id	

0	

1	
0	
0	
2	
1	

3	

4	



LLNL-PRES-681938 
59	

Clock Delta Compression (CDC) 

Redundancy elimination Linear predictive encoding Permutation encoding 

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
1	 1	 0	 1	 13	
1	 1	 2	 0	 8	
1	 1	 1	 0	 8	
1	 1	 0	 0	 15	
1	 1	 1	 0	 19	
3	 0	 --	 --	 --	
1	 1	 0	 0	 17	
1	 0	 --	 --	 --	
1	 1	 0	 0	 18	

55 values 

CDC: Clock delta compression 
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CDC:	Clock	delta	compression	

55 values 

Clock Delta Compression (CDC) 

Redundancy elimination Linear predictive encoding Permutation encoding 

13 values 23 values 13 values 

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
1	 1	 0	 1	 13	
1	 1	 2	 0	 8	
1	 1	 1	 0	 8	
1	 1	 0	 0	 15	
1	 1	 1	 0	 19	
3	 0	 --	 --	 --	
1	 1	 0	 0	 17	
1	 0	 --	 --	 --	
1	 1	 0	 0	 18	

index	 count	

1	 2	
6	 3	
7	 1	

index	 delay	

2	 +2	
3	 +1	
8	 -2	

index	

1	

index	 count	

1	 2	
6	 3	
-4	 1	

index	 delay	

2	 +2	
-1	 +1	
4	 -2	

index	

1	
gzip 

with_next 
ID	
1	

rank	 clock	

0	 2	
0	 13	
2	 8	
1	 8	
0	 15	
1	 19	
0	 17	
0	 18	

ID	 count	

2	 2	

3	 3	

8	 1	

matched test 

unmatched test gzip 
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Redundancy	elimina9on	
§  The	base	record	has	redundancy	
§  To	eliminate	redundancy,	and	we	divide	the	original	table	into	three	tables	

—  matched	events	table	(rank	&	id)	
—  unmatched	events	table	(count	&	flag)	
—  with_next	table	(with_next)	

rank	
0	
--	
0	
2	
1	
0	
1	
--	
0	
--	
0	

flag	
1	
0	
1	
1	
1	
1	
1	
0	
1	
0	
1	

count	
--	
2	
--	
--	
--	
--	
--	
3	
--	
1	
--	

id	
0	
--	
1	
0	
0	
2	
1	
--	
3	
--	
4	

with_next	

0	
--	
1	
0	
0	
0	
0	
--	
0	
--	
0	

with_next 
table 
index	

2	1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	

rank	 id	
0	 0	

0	 1	

2	 0	

1	 0	

0	 2	

1	 1	

0	 3	

0	 4	

index	 count	

2	 2	

7	 3	

8	 1	

index 

matched 
table 

unmatched 
table 

matched 
table 

unmatched 
table 

with_next  
table 
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CDC:	Clock	delta	compression	
Clock Delta Compression (CDC) 

55 values 13 values 23 values 13 values 

Redundancy elimination Linear predictive encoding Permutation encoding 

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
1	 1	 0	 1	 13	
1	 1	 2	 0	 8	
1	 1	 1	 0	 8	
1	 1	 0	 0	 15	
1	 1	 1	 0	 19	
3	 0	 --	 --	 --	
1	 1	 0	 0	 17	
1	 0	 --	 --	 --	
1	 1	 0	 0	 18	

index	 count	

1	 2	
6	 3	
7	 1	

index	 delay	

2	 +2	
3	 +1	
8	 -2	

index	

1	

index	 count	

1	 2	
6	 3	
-4	 1	

index	 delay	

2	 +2	
-1	 +1	
4	 -2	

index	

1	
gzip 

with_next 
ID	
1	

rank	 clock	

0	 2	
0	 13	
2	 8	
1	 8	
0	 15	
1	 19	
0	 17	
0	 18	

ID	 count	

2	 2	

3	 3	

8	 1	

matched test 

unmatched test gzip 
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CDC:	Clock	delta	compression	
Clock Delta Compression (CDC) 

55 values 13 values 23 values 13 values 

Redundancy elimination Linear predictive encoding Permutation encoding 

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
1	 1	 0	 1	 13	
1	 1	 2	 0	 8	
1	 1	 1	 0	 8	
1	 1	 0	 0	 15	
1	 1	 1	 0	 19	
3	 0	 --	 --	 --	
1	 1	 0	 0	 17	
1	 0	 --	 --	 --	
1	 1	 0	 0	 18	

index	 count	

1	 2	
6	 3	
7	 1	

index	 delay	

2	 +2	
3	 +1	
8	 -2	

index	

1	

index	 count	

1	 2	
6	 3	
-4	 1	

index	 delay	

2	 +2	
-1	 +1	
4	 -2	

index	

1	
gzip 

with_next 
ID	
1	

rank	 clock	

0	 2	
0	 13	
2	 8	
1	 8	
0	 15	
1	 19	
0	 17	
0	 18	

ID	 count	

2	 2	

3	 3	

8	 1	

matched test 

unmatched test gzip 
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Key	observa9on	in	communica9ons	

§  Received	order	(Wall-clock	order)	are	very	similar	to	Logical-clock	order		
—  Put	“Lamport	clock”	instead	of		msg	“id”	when	sending	a	message	

rank 0	

rank 1	

rank 2	

rank x	

message	

message	

message	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	

2	

13	
8	
8	
15	
19	

17	

18	

clock	

clock	

clock	

Wall-clock order 

rank 0	

rank 1	
rank 2	
rank 0	
rank 0	
rank 0	

rank 0	

rank 1	

rank x	

2	

8	
8	
13	
15	
17	

18	

19	

≈

Logical-clock order 

Sorted by Lamport clock 
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Case	study:	Received	logical-clock	values	in	MCB	

§  Received	logical-clock	values	in	a	received	order	
—  Almost	monotonically	increase	è	received	order	==	logical-clock	order	

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	

2	

13	
8	
8	
15	
19	

17	

18	

Wall-clock order 
0 100 200 300 400 500 600 700 800 
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Monotonically increase 
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Permuta9on	encoding	
§  We	only	records	the	difference	between	wall-order	and	logical-order	instead	
of	recording	en:re	received	order	

rank 0	

rank 1	
rank 2	
rank 0	
rank 0	
rank 0	

rank 0	

rank 1	

rank x	

2	

8	
8	
13	
15	
17	

18	

19	

Logical-clock order 

1st  

2nd 
3rd 
4th 
5th  
6th  

7th   

8th   

rank 0	

rank 0	
rank 2	
rank 1	
rank 0	
rank 1	

rank 0	

rank 0	

rank x	

2	

13	
8	
8	
15	
19	

17	

18	

Wall-clock order 

+2	
+1	

-2	

2nd 
3rd 
8th   

+2	
+1	
-2	

Permutate            message by 
Permutate            message by 
Permutate            message by  

ID	 delay	
2	 +2	
3	 +1	
8	 -2	
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§  Permuta:on	encoding	can	be	regarded	as	an	edit	distance	problem	
compu:ng	minimal	permuta:ons	to	create	from	sequen:al	numbers	to	
observed	wall-clock	order	

Logical-clock order Wall-clock order 
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Edit	distance	algorithm	

§  Edit	distance	algorithm	
—  Compute	similarity	between	two	strings	

•  Wall-clock	order	
•  Logical-clock	order	

—  Time	complexity:	O(N2)	
•  N:	length	of	the	strings	

§  Special	condi:ons	in	CDC	
1.	Logical-clock	order	is	sequen:al	numbers	
2.	Wall-clock	order	is	created	by	
permuta:ons	of	Logical-clock	
è Time	complexity:	O(N+D)	

-  N:	Length	of	the	strings	
-  D:	Edit	distance	
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Why	Logical-clock	order	is	not	recorded	?	
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Logical-clock	order	is	reproducible	

4.3 Replayable Clock
Clock piggybacking is indispensable for CDC to create the

reference order. Some systems have the wall-clock time gen-
erated from a highly accurate physical global clock, and on
such systems one may think this would create a reference
order, which is more close to the corresponding observed
order. However, wall clock is neither deterministic (run to
run) nor replayable because it changes the reference order
in subsequent replays, and thus cannot be used for reliable
replay in CDC. As mentioned before, our approach is to
use a Lamport clock. Although Lamport clocks received by
an MPI process can vary slightly from run to run due to
non-determinism in message receives, Lamport clocks are
replayable, which we validate in Theorem 2 in Section 5.
Another approach would be to use a Vector clock. Unfor-
tunately, Vector clocks are not scalable [26]. Thus, we em-
ploy a Lamport clock following rules defined in Definition 4
for creating the reference order of message receives. For fu-
ture work, we will consider other replayable clock definitions
to further increase similarity between the reference and ob-
served orders.
To send a piggyback clock, we use MPI datatypes to at-

tach piggyback data [24] to a message payload. Because we
use several PMPI layers for CDC, we integrate the PMPI
layers using the PNMPI infrastructure [25]. Piggybacking in
MPI is known to degrade communication performance [24].
However, as shown in Figure 16, with improved datatype
support in modern MPI implementations the overhead is
small, in particular for the domain of debugging tools. What
is more important is for the application to maintain scala-
bility under record and replay, which CDC enables.

4.4 Matching Function (MF) Identification
Non-deterministic applications usually use several MF

calls at different locations in the program. Different MF
instances are used for different purposes, therefore there are
different dependencies among messages exchanged via differ-
ent MFs. If we separately create reference orders for differ-
ent MFs, we can create a reference order that more closely
follows the corresponding observed order. To achieve this,
when MFs are called, we analyze the call stacks of the func-
tion calls, and separately manage the record tables (Table
in Figure 4) for the different MF call instances.

5. REPLAY CORRECTNESS
As mentioned in Section 4.3, CDC can correctly replay a

message-receive order only if the Lamport clock is correctly
replayed. To validate that the clock is replayable and that
CDC can correctly replay program executions, we describe
the proof in this section.

Definition 1 (Ordered set). If X = {x1, x2, . . . } is an or-
dered set, then“X = X́”⇔“xi = x́i”where xi ∈ X, x́i ∈ X́

Definition 2 (Events). Let e be a send or receive event.
Let E be an ordered set of e and contain only send events or
only receive events. Let Ex

i be i-th E of process Px. Let E
be an ordered set of E. Let Ex be E of process Px. Under
the definition, if Ex

i is an ordered set of send events, Ex
i+1 is

an ordered set of receive events. Likewise, if Ex
i is an ordered

set of receive events, Ex
i+1 is an ordered set of send events.

With this definition, we can describe a process as a series of
the events, e. In the example of Figure 12, the process (P1)
can be described as {e0, . . . , e6} = {E1

1 , E1
2 , E1

3} = E1.

Proof in Theorem 1.(i) 

Proof in Theorem 1.(ii) 

Proof in Theorem 1.(iii) 

e2 e3 e4 e5 e6 e0 e1 

P0 

P1 

P2 

E11 E12 E13

E 0
1

E 2
1 E 2

2

E 0
2 E 0

3
Send events Recv events Recv events 

Send events Recv events Send events 

Recv events Send events 

E11 E12 E13
E 0
1

E 2
1 E 2

2

E 0
2 E 0

3

Theorem 1 

Figure 12: Example: Communication dependency
graph with three processes

Definition 3 (Event dependency). If E depends on E, we
denote the dependency as E → E. In Figure 12, E0

2 has a
dependency, {E1

1 , E
0
1} → E0

2 .

Definition 4 (Lamport clock). Let a Lamport clock be up-
dated following two rules: (i) When a process sends a mes-
sage, the process attaches its current clock to the message,
then increments the clock by 1; (ii) When a process receives
a message, the process sets its clock to be the maximum of
the received clock and its own clock, then increments the
clock by 1.

Definition 5 (Event clock function). Let fc be fc : E $→ N,
fc(e) is a clock value of event e. Therefore, “e → f” ⇒
“fc(e) < fc(f)”, or “fc(e) ≥ fc(f)”⇒ “e ̸→ f”.

Definition 6 (Totally ordered relation for creating the ref-
erence order). Let fm be fm : E $→ N, fm(e) is an or-
dering number for message-receive events in CDC where
“fm(e) < fm(f)”⇔ “(i) fc(e) < fc(f) or (ii) rank of sender
e < rank of sender f if fc(e) = fc(f)”. Based on this totally
ordered relation, CDC creates reference logical-clock orders.

Definition 7 (Determinism in message send). In non-
deterministic applications, we can make two assumptions.
(i) The first send events are deterministic, i.e., ∀x s.t. “Ex

1

is send events” ⇒ “Ex
1 is deterministic”, or “φ → Ex

1 ” ⇒
“Ex

1 is deterministic”. In Figure 12, E1
1 is send events, and

has no dependency, i.e., φ → E1
1 . Therefore, E1

1 = {e0, e1}
are deterministic. (ii) Send events are deterministic if the
all previous message events are replayed, i.e., “∀E → E s.t.
E is replayed, E is a send event set” ⇒ “E is determin-
istic”. In Figure 12, if E1

1 and E0
1 are replayed, the next

series of send events (E0
2) becomes deterministic because of

{E1
1 , E

0
1} → E0

2 .

Definition 8 (CDC observed receive-event set: B). Let B
be a set of observed receive events. In Figure 11, when the
main thread enqueues a receive event (e), e is included in
B, i.e., e ∈ B.

Axiom 1 (Condition for correct replay of e). “CDC can
correctly replay e” ⇔ “{∀f ∈ E | fm(f) < fm(e)} s.t. (i)
clocks of f , e is replayed, (ii) f ∈ B and (iii) fc(e) < LMC“.
LMC is the local minimum clock. (Qualitative explanation
is in Section 3.6).

Proposition 1. Receive events are replayable if the all pre-
vious message events are replayed, i.e., “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”.

Proof. Show ∀e ∈ E s.t. e is replayed if E is replayed
by proving e holds conditions in Axiom 1 (i)(ii)(iii). (i) E
is replayed. Therefore, clock of f, e is replayed. In Figure 9,
clocks of f1, f2 and e are replayed because E is replayed.
(ii) ∀f ∈ E s.t. fm(f) < fm(e). Therefore, it holds e ̸→ f
(∵ Definition 5, 6). Because f has no dependency to e,
receive event f eventually happens, and is enqueued to B,
i.e., f ∈ B. In Figure 9, f1 and f2 are eventually received
because e ̸→ f1, f2 is met. (iii) Suppose CDC cannot replay
event e due to fc(e) ≥ LMC, i.e., ∃ĝ ∈ E s.t. fm(e) > fm(ĝ).
(iii-a) If e ̸→ ĝ, receive event ĝ is eventually received, and
LMC is incremented. This LMC incrementation continues
until fc(e) < LMC or e → ĝ is met. (iii-b) If e → ĝ, fc(e) <
fc(ĝ) is met. Therefore, fm(e) < fm(ĝ). This is contrary to
fm(e) > fm(ĝ). According to (i)(ii)(iii), “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”

"

Theorem 1. CDC can correctly replay message events, that
is, E = Ê where E and Ê are ordered sets of events for a
record and a replay mode.

Proof (Mathematical induction). (i) Basis: Show
the first send events are replayable, i.e., ∀x s.t. “Ex

1 is send
events”⇒ “Ex

1 is replayable”. As defined in Definition 7.(i)
Ex

1 is deterministic, that is , Ex
1 is always replayed. In Fig-

ure 12, E1
1 is deterministic, that is, is always replayed. (ii)

Inductive step for send events: Show send events are
replayable if the all previous message events are replayed,
i.e., “∀E → E s.t. E is replayed, E is send event set”⇒ “E
is replayable”. As defined in Definition 7.(ii), E is determin-
istic, that is, E is always replayed. (iii) Inductive step for
receive events: Show receive events are replayable if the
all previous message events are replayed, i.e., “∀E → E s.t.
E is replayed, E is receive event set” ⇒ “E is replayable”.
As proofed in Proposition 1, all message receives in E can
be replayed by CDC. Therefore, all of the events can be re-
played, i.e., E = Ê. (Mathematical induction processes are
graphically shown in Figure 12.) "

Theorem 2. CDC can replay piggyback clocks.

Proof. As proved in Theorem 1, since CDC can replay
all message events, send events and clock ticking are re-
played. Thus, CDC can replay piggyback clock sends. "

6. EVALUATION
Two of our main goals are to reduce the size of the

recorded data and to minimize an impact to the application
performance. In this section, we show how much CDC can
reduce the record size for order-reply compared to the tra-
ditional method. We also show the performance impact to
the applications for recording. We conduct our evaluations
on the Catalyst cluster at LLNL. The details of Catalyst are
described in Table 1. We use local storage, Intel SSD 910
Series, for recording data.

6.1 Compression Efficiency
First, we evaluate the compression efficiencies of various

methods. We use MCB as a representative benchmark for
non-deterministic applications [1]. MCB, one of the CORAL

Table 1: Catalyst Specification
Nodes 304 batch nodes
CPU 2.4 GHz Intel Xeon E5-2695 v2

(24 cores in total)
Memory 128 GB

Interconnect InfiniBand QDR (QLogic)
Local Storage Intel SSD 910 Series

(PCIe 2.0, MLC)
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Figure 13: Total compressed record sizes on MCB
at 3,072 processes (Execution time: 12.3 seconds)

benchmark codes, simulates the behavior of particles based
on the heuristic transport equation model as described in
Section 2.1. Figure 13 shows the total compressed record
sizes produced by different compression methods on MCB
at 3,072 processes. gzip is a method that applies gzip to
the baseline format as shown in Figure 4. We denote a
method which only applies redundancy elimination (Section
3.2) as CDC(RE). CDC(RE + PE + LPE) is a method
which applies the permutation encoding (Section 3.3) and
the linear predictive encoding (Section 3.4), and CDC is the
complete method of CDC which applies all of the presented
techniques including the MF identification (Section 4.4). We
use zlib [9] for the gzip method.

As shown in the Figure 13, CDC exhibits a higher com-
pression rate than gzip, and the compression rate of CDC is
5.7 times higher than gzip. Especially, the average number of
bytes required to record a single receive event (bytes/event)
is 0.51 bytes, which is approximately only 4 bits to record a
single event, i.e., count, flag, rank, with next and clock.
In MCB, particles are exchanged as a message, and an MPI
process does not send a particle x until the MPI process
receives the particle x from another process, and the parti-
cle x hits the boundary. Such communication dependency
constrains the variety of message receives, which effectively
decreases the difference between a reference and an observed
order.

For our evaluation at 3,072 MPI processes, about 9.7 mil-
lion of message-receive events are observed in total. If we
recorded these receives without compression as in the tra-
ditional order-replay technique, i.e., the format in Figure 4,
the record size becomes significantly large. For example,
if we use count (64 bits), flag (1 bit), rank (32 bits),
with next (1 bit), clock (64 bits) for an event (162 bits
in total), the size becomes 197.0 MB. Therefore, the effec-
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CDC:	Clock	delta	compression	
Clock Delta Compression (CDC) 

55 values 13 values 23 values 13 values 

Redundancy elimination Linear predictive encoding Permutation encoding 

count	 flag	 rank	 with_next	 id	
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1	 1	 0	 0	 18	
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CDC:	Clock	delta	compression	
Clock Delta Compression (CDC) 

55 values 13 values 23 values 13 values 

Redundancy elimination Linear predictive encoding Permutation encoding 
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Case	study:	index	values	in	MCB	

§  Problem	in	the	format:	index	values	linearly	increase	as	CDC	records	events	
§  Compression	rate	by	gzip	becomes	worse	as	the	table	size	increases	

—  gzip	encodes	frequent	sequence	of	bits	into	shorter	bits	
—  If	we	can	encode	these	values	into	close	to	zero,	gzip	can	give	a	high	compression	

rate	
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Linear	predic9ve	(LP)	encoding		

§  LP	encoding	is	used	for	compressing	sequence	of	values,	such	as	audio	data	
§  When	encoding								xxxxxxxx	,,	LP	encoding	predicts	each	value		x	from	the	past	p	
number	of	values	assuming	the	sequence	is	linear,	and	store	errors,		xxxxxxxxxxx	.	

{x1, x2,  ... ,  xN}
{e1,e2,  ... ,  eN}

x̂n = a1xn−1 + a2xn−2 +   ...  + apxn−p

xn

en = xn − x̂n

§  Choice of x , and co-efficients, xxxxxxxxxxx , affects 
accuracy of prediction 

§  In CDC, we predict   x is on an extension of a line 
created by  
 

{a1,a2,  ... ,  ap}p

xn
xn−1,  xn−2

p = 2
{a1,  a2} = {2,  −1}

Example  

x6 x7x2 x3

1 1 1
2

4
6

p

If you give a good prediction,  
the index values become close to zero 

x̂4

x̂8
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Case	study:	Linear	predic9ve	encoding		in	MCB	
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CDC:	Clock	delta	compression	

count	 flag	 rank	 with_next	 id	
1	 1	 0	 0	 2	
2	 0	 --	 --	 --	
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1	 1	 0	 0	 17	
1	 0	 --	 --	 --	
1	 1	 0	 0	 18	
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Implementa9on:	Clock	piggybacking	[1]	

§  We	use	PMPI	wrapper	to	record	
—  events	and	clock	piggybacking	

§  Clock	piggybacking	
—  MPI_Send/Isend:		

•  When	sending	MPI	message,	the	PMPI	wrapper	define	new	MPI_Datatype	that	
combining	message	payload	&	clock	

—  MPI	Test/Wait	family:		
•  Retrieve	the	clock	value,	and	synchronize	the	local	Lamport	clock	
•  Pass	record	data	to	CDC	thread	

MPI_Isend	 MPI_Isend	 PMPI_Isend	
PMPI_Isend	

User program PMPI Wrapper library MPI library 

MPI_Test	 MPI_Test	 PMPI_Test	

MPI_Isend	

MPI_Test	
PMPI_Test	

clock	

clock	message payload	

new MPI_Datatype	

[1]  M. Schulz, G. Bronevetsky, and B. R. Supinski. On the Performance of Transparent MPI Piggyback Messages. In Proceedings of the 15th 
European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages 194–201, Berlin, 
Heidelberg, 2008. Springer-Verlag.  
 

msg	
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msg	

Asynchronous	encoding	

§  CDC-dedicated	thread	is	running	
§  Asynchronously	compress	and	record	events	

MPI_Isend	 MPI_Isend	 PMPI_Isend	
PMPI_Isend	

User program PMPI Wrapper library MPI library 

MPI_Test	 MPI_Test	 PMPI_Test	

MPI_Isend	

MPI_Test	
PMPI_Test	

clock	

CDC encoding	

CDC thread 

Record 
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Compression improvement in MCB 

				Compressed	size	becomes	40x	smaller	than	original	size	High compression 

gzip itself can reduce  
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§  For	example,	if	1GB	of	memory	per	
node	for	record-and-replay	…	
—  w/o	compression:	2	hours	
—  gzip:		19	hours	
—  CDC:	4	days		

Total compressed record sizes on MCB at 3,072 procs (12.3 sec) 
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Similarity	between	wall-clock	and	logical-clock	order	
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How	many	messages	need	to	be	permutated	?	

Histogram of percentage of permutation  
across all 3,072 procs (12.3 sec) 
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Compression	overhead	to	performance	

§  Performance	metric:	how	may	par:cles	are	tracked	per	second	
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4.00E+09 
4.50E+09 
5.00E+09 

48 96 192 384 768 1536 3072 
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# of processes 

MCB w/o Recording 
MCB w/   gzip (Local storage) 
MCB w/   CDC (Local storage) 

About 20% overhead 

In both gzip and CDC, compression is 
asynchronously done.  

The overhead to applications is minimized 

				CDC	overhead	are	about	20%	on	average	Low overhead 

CDC executes more complicated compression 
algorithm. CDC overhead becomes a little higher 

than gzip 

In practice, capacity of local memory is limited. 
Because all record data must fit in local memory 

for scalability, high compression rate is more 
important than lower overhead 
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Summary	

§  Irreproducibility	is	a	common	issue	in	HPC	

§  Exis:ng	toolset	helps	to	track	irreproducibility	bugs	
—  Spindle,	ReMPI,	io-watchdog	and	STAT	

§  Especially,	ReMPI	can	help	to	reproduce	buggy	MPI	behaviors	
— However,	it	produces	large	amount	of	data	
—  This	hampers	scalability	of	the	tool	

§  Clock	Delta	Compression	(CDC)	
— Only	record	difference	between	wall-clock	order	and	logical-clock	order	

•  Logical-clock	order	is	always	reproducible	
	
§  Our	group	will	eradicate	irreproducibility	issues	for	
computa:onal	science	in	future	J	
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Toolset	

§  Spindle	
—  hcp://computa:on.llnl.gov/projects/spindle	

§  ReMPI	
—  (Preparing	for	sooware	release)	

§  IO-watchdog	
—  hcps://code.google.com/archive/p/io-watchdog/	

§  STAT	
—  hcps://compu:ng.llnl.gov/code/STAT/	
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Thanks	!	
Speaker:  

 
Kento Sato (�� ��) 

Lawrence Livermore National Laboratory 

hcps://kento.github.io	
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