
LLNL-PRES-698040
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Scalable	Tools	Workshop	 Kento	Sato,	Dong	H.	Ahn,	Ignacio	Laguna,	
	Gregory	L.	Lee,	Mar>n	Schulz	and	Chris	Chambreau August 2nd, 2016

Scalable Tools
for Debugging Non-Deterministic MPI Applications

ReMPI: MPI Record-and-Replay tool

LLNL-PRES-698040
2	

Debugging	large-scale	applica4ons	is	already	
challenging	

“On average, software developers spend

50% of their programming time finding and fixing bugs.”[1]

[1] Source: http://www.prweb.com/releases/2013/1/prweb10298185.htm,
CAMBRIDGE, UK (PRWEB) JANUARY 08, 2013

With trends towards asynchronous communication patterns in MPI applications,
MPI non-determinism will significantly increase debugging cost

LLNL-PRES-698040
3	

What	is	MPI	non-determinism	?	

§ Message	receive	orders	can	be	different	across	execu>ons	
—  Unpredictable	system	noise	(e.g.	network,	system	daemon	&	OS	jiPer)	

§  Floa>ng	point	arithme>c	orders	can	also	change	across	
execu>ons	

Execution A: (a+b)+c

P0 P1 P2

a	
b	
c	

P0 P1 P2

b	
c	

a	

Execution B: a+(b+c) 	

LLNL-PRES-698040
4	

Non-determinism	also	increases	debugging	cost	

§  Non-determinis>c	control	flow	
—  Successful	run,	seg-fault	or	hang	

§  Non-determinis>c	numerical	results	
—  Floa>ng-point	arithme>c	is	non-associa>ve	

§  Control flows of an application can change across different runs

seg-fault Result
Result A Result B

(a+b)+c�≠ a+(b+c)�	

Input

In non-deterministic applications, it’s hard to reproduce bugs and incorrect results.
It costs excessive amounts of time for “reproducing” target bugs

Hangs è Developers need to do debug runs until the
target bug manifests

LLNL-PRES-698040
5	

Non-determinis4c	bugs	
																			---	Case	study:	Pf3d	and	Diablo/Hypre	2.10.1	

§  Diablo	-		hung	only	once	every	30	
runs	aZer	a	few	hours	

§  The	scien>sts	spent	2	months	in	the	
period	of	18	months	and	gave	up	
debugging	it	

§  Pf3d	–	hung	only	when	
scaling	to	half	a	million	MPI	
processes	

§  The	scien>sts	refused	to	
debug	for	6	months	…	

Hypre is an MPI-based library for solving large,
sparse linear systems of equations on massively
parallel computers

§  Debugging	non-determinis>c	hangs	oZen	cost	computa>onal	scien>sts	
substan>al	>me	and	efforts		

LLNL-PRES-698040
6	

Non-determinis4c	numerical	result	
																						---	Case	study:	“Monte	Carlo	Simula4on”	(MCB)		

§  CORAL	proxy	applica>on	
§ MPI	non-determinism	

	

MCB: Monte Carlo Benchmark

$ diff result_run1.out result_run2.out	
result_run1.out:< IMC E_RR_total -3.3140234409e-05 -8.302693774e-08 2.9153322360e-08 -4.8198506756e-06 2.3113821822e-06 	
result_run2.out:> IMC E_RR_total -3.3140234410e-05 -8.302693776e-08 2.9153322360e-08 -4.8198506757e-06 2.3113821821e-06	
	

09e-05	
10e-05	

74e-08	
76e-08	

22e-06	
21e-06	

56e-06	
57e-06	

Final numerical results are different between 1st and 2nd run

Proposition 1. Receive events are replayable if the all pre-
vious message events are replayed, i.e., “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”.

Proof. Show ∀e ∈ E s.t. e is replayed if E is replayed
by proving e holds conditions in Axiom 1 (i)(ii)(iii). (i) E
is replayed. Therefore, clock of f, e is replayed. In Figure 9,
clocks of f1, f2 and e are replayed because E is replayed.
(ii) ∀f ∈ E s.t. fm(f) < fm(e). Therefore, it holds e ̸→ f
(∵ Definition 5, 6). Because f has no dependency to e,
receive event f eventually happens, and is enqueued to B,
i.e., f ∈ B. In Figure 9, f1 and f2 are eventually received
because e ̸→ f1, f2 is met. (iii) Suppose CDC cannot replay
event e due to fc(e) ≥ LMC, i.e., ∃ĝ ∈ E s.t. fm(e) > fm(ĝ).
(iii-a) If e ̸→ ĝ, receive event ĝ is eventually received, and
LMC is incremented. This LMC incrementation continues
until fc(e) < LMC or e → ĝ is met. (iii-b) If e → ĝ, fc(e) <
fc(ĝ) is met. Therefore, fm(e) < fm(ĝ). This is contrary to
fm(e) > fm(ĝ). According to (i)(ii)(iii), “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”

"

Theorem 1. CDC can correctly replay message events, that
is, E = Ê where E and Ê are ordered sets of events for a
record and a replay mode.

Proof (Mathematical induction). (i) Basis: Show
the first send events are replayable, i.e., ∀x s.t. “Ex

1 is send
events”⇒ “Ex

1 is replayable”. As defined in Definition 7.(i)
Ex

1 is deterministic, that is , Ex
1 is always replayed. In Fig-

ure 12, E1
1 is deterministic, that is, is always replayed. (ii)

Inductive step for send events: Show send events are
replayable if the all previous message events are replayed,
i.e., “∀E → E s.t. E is replayed, E is send event set”⇒ “E
is replayable”. As defined in Definition 7.(ii), E is determin-
istic, that is, E is always replayed. (iii) Inductive step for
receive events: Show receive events are replayable if the
all previous message events are replayed, i.e., “∀E → E s.t.
E is replayed, E is receive event set” ⇒ “E is replayable”.
As proofed in Proposition 1, all message receives in E can
be replayed by CDC. Therefore, all of the events can be re-
played, i.e., E = Ê. (Mathematical induction processes are
graphically shown in Figure 12.) "

Theorem 2. CDC can replay piggyback clocks.

Proof. As proved in Theorem 1, since CDC can replay
all message events, send events and clock ticking are re-
played. Thus, CDC can replay piggyback clock sends. "

6. EVALUATION
Two of our main goals are to reduce the size of the

recorded data and to minimize an impact to the application
performance. In this section, we show how much CDC can
reduce the record size for order-reply compared to the tra-
ditional method. We also show the performance impact to
the applications for recording. We conduct our evaluations
on the Catalyst cluster at LLNL. The details of Catalyst are
described in Table 1. We use local storage, Intel SSD 910
Series, for recording data.

6.1 Compression Efficiency
First, we evaluate the compression efficiencies of various

methods. We use MCB as a representative benchmark for
non-deterministic applications [1]. MCB, one of the CORAL

Table 1: Catalyst Specification
Nodes 304 batch nodes
CPU 2.4 GHz Intel Xeon E5-2695 v2

(24 cores in total)
Memory 128 GB

Interconnect InfiniBand QDR (QLogic)
Local Storage Intel SSD 910 Series

(PCIe 2.0, MLC)

0

10

20

30

40

200

w/o
Compression

gzip CDC (RE) CDC (RE + PE
+ LPE)

CDC

C
om

pr
es

se
d

re
co

rd
 s

iz
e

(M
B

)

Figure 13: Total compressed record sizes on MCB
at 3,072 processes (Execution time: 12.3 seconds)

benchmark codes, simulates the behavior of particles based
on the heuristic transport equation model as described in
Section 2.1. Figure 13 shows the total compressed record
sizes produced by different compression methods on MCB
at 3,072 processes. gzip is a method that applies gzip to
the baseline format as shown in Figure 4. We denote a
method which only applies redundancy elimination (Section
3.2) as CDC(RE). CDC(RE + PE + LPE) is a method
which applies the permutation encoding (Section 3.3) and
the linear predictive encoding (Section 3.4), and CDC is the
complete method of CDC which applies all of the presented
techniques including the MF identification (Section 4.4). We
use zlib [9] for the gzip method.

As shown in the Figure 13, CDC exhibits a higher com-
pression rate than gzip, and the compression rate of CDC is
5.7 times higher than gzip. Especially, the average number of
bytes required to record a single receive event (bytes/event)
is 0.51 bytes, which is approximately only 4 bits to record a
single event, i.e., count, flag, rank, with next and clock.
In MCB, particles are exchanged as a message, and an MPI
process does not send a particle x until the MPI process
receives the particle x from another process, and the parti-
cle x hits the boundary. Such communication dependency
constrains the variety of message receives, which effectively
decreases the difference between a reference and an observed
order.

For our evaluation at 3,072 MPI processes, about 9.7 mil-
lion of message-receive events are observed in total. If we
recorded these receives without compression as in the tra-
ditional order-replay technique, i.e., the format in Figure 4,
the record size becomes significantly large. For example,
if we use count (64 bits), flag (1 bit), rank (32 bits),
with next (1 bit), clock (64 bits) for an event (162 bits
in total), the size becomes 197.0 MB. Therefore, the effec-

* The source was modified by the scientist to demonstrate the issue in the field

LLNL-PRES-698040
7	

MPI_ANY_SOURCE communication

Why	MPI	non-determinism	occurs	?	

§  It’s	typically	due	to	communica>on	with	MPI_ANY_SOURCE	
§  In	non-determinis>c	applica>ons,	each	process	doesn’t	know	which	rank	will	
send	message	

§  Messages	can	arrive	in	any	order	from	neighbors	è	inconsistent	message	arrivals	

MPI_Irecv(…, MPI_ANY_SOURCE, …);	
while(1) {	
 MPI_Test(flag); 	
 if (flag) {	
 <computation>	
 MPI_Irecv(…, MPI_ANY_SOURCE, …);	
 }	
}	
	
	
	

north	

south	

west	
east	

MCB: Monte Carlo Benchmark

Communications with neighbors

LLNL-PRES-698040
8	

ReMPI	can	reproduce	message	matching	

§  Traces,	records	message	receive	orders	in	a	run,	and	replays	
the	orders	in	successive	runs	for	debugging	
—  Record-and-replay	can	reproduce	a	target	control	flow	
—  Developers	can	focus	on	debugging	a	par>cular	control	flow	

Output
Output A Output B

Hanging

Developer can focus on
debugging particular

control flow

seg-fault

Debugging a particular control flow in replay

Input

rank 0	 rank 1	 rank 2	 rank 3	

rank 0	

rank 2	

rank 1	

rank 1	

rank 3	

rank 2	

rank 1	

rank 3	

rank 2	
rank 1	

Record-and-replay

§  ReMPI	can	reproduce	message	matching	by	using	record-and-replay	
technique	

LLNL-PRES-698040
11	

Record	overhead	to	performance	
§  Performance	metric:	how	many	par>cles	are	tracked	per	second	

0.00E+00
5.00E+08
1.00E+09
1.50E+09
2.00E+09
2.50E+09
3.00E+09
3.50E+09
4.00E+09
4.50E+09
5.00E+09

48 96 192 384 768 1536 3072

Pe
rf

or
m

an
ce

 (t
ra

ck
s/

se
c)

of processes

MCB w/o Recording
MCB w/ gzip (Local storage)

§  ReMPI	becomes	scalable	by	recording	to	local	memory/storage	
—  Each	rank	independently	writes	record		à	No	communica>on	across	MPI	ranks	

0 1

node 0

2 3

node 1

4 5

node 2

6 7

node 3

MCB

ReMPI
ReMPI

LLNL-PRES-698040
12	

Record-and-replay	won't	work	at	scale	
§  Record-and-replay	produces	large	amount	of	recording	data	

—  Over	”10	GB/node”	per	day	in	MCB	
—  Over	”24	GB/node”	per	day	in	Diablo	

§  For	scalable	record-replay	with	low	overhead,	the	record	data	must	fit	into	local	memory,	
but	capacity	is	limited	
—  Storing	in	shared/parallel	file	system	is	not	scalable	approach	
—  Some	systems	may	not	have	fast	local	storage	

	Record	size	reduc>on	for	scalable	record-replay	Challenges

rank 0	 rank 1	 rank 2	 rank 3	

rank 0	

rank 2	

rank 1	

rank 1	

rank 3	

rank 2	

rank 1	

rank 3	

rank 2	
rank 1	

Record-and-replay

10 GB/node

MCB

Diablo

24 GB/node

LLNL-PRES-698040
13	

Clock	Delta	Compression	(CDC)	

sender 1

sender 2

sender 3

Receiver

Received order
(Order by wall-clock)

1	

2	

3	

4	

5	

6	

≈

Logical order
(Order by logical-clock)

1	

2	

4	

5	

3	

6	

Logical clock

LLNL-PRES-698040
14	

Logical	clock	vs.	wall	clock	

“ The global order of messages exchanged among MPI processes
are very similar to a logical-clock order (e.g., Lamport clock) “

Each process frequently exchanges
messages with neighbors

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

La
m

po
rt

 cl
oc

k

of
 re

ce
iv

ed
 m

es
sa

ge

Received messages in received order (MPI rank = 0)

Lamport clock values of received messages for particle exchanges in MCB (MPI rank = 0)

LLNL-PRES-698040
15	

Clock	Delta	Compression	(CDC)	
§  Our	approach,	clock	delta	compression,	only	records	the	difference	between	
received	order	and	logical	order	instead	of	recording	en>re	received	order	

1	

2	

3	

4	

5	

6	

Received order
(Order by wall-clock)

Logical order
(Order by logical-clock)

Permutation
difference

diff	

LLNL-PRES-698040
16	

Logical	clock	order	is	reproducible	[1]	

4.3 Replayable Clock
Clock piggybacking is indispensable for CDC to create the

reference order. Some systems have the wall-clock time gen-
erated from a highly accurate physical global clock, and on
such systems one may think this would create a reference
order, which is more close to the corresponding observed
order. However, wall clock is neither deterministic (run to
run) nor replayable because it changes the reference order
in subsequent replays, and thus cannot be used for reliable
replay in CDC. As mentioned before, our approach is to
use a Lamport clock. Although Lamport clocks received by
an MPI process can vary slightly from run to run due to
non-determinism in message receives, Lamport clocks are
replayable, which we validate in Theorem 2 in Section 5.
Another approach would be to use a Vector clock. Unfor-
tunately, Vector clocks are not scalable [26]. Thus, we em-
ploy a Lamport clock following rules defined in Definition 4
for creating the reference order of message receives. For fu-
ture work, we will consider other replayable clock definitions
to further increase similarity between the reference and ob-
served orders.
To send a piggyback clock, we use MPI datatypes to at-

tach piggyback data [24] to a message payload. Because we
use several PMPI layers for CDC, we integrate the PMPI
layers using the PNMPI infrastructure [25]. Piggybacking in
MPI is known to degrade communication performance [24].
However, as shown in Figure 16, with improved datatype
support in modern MPI implementations the overhead is
small, in particular for the domain of debugging tools. What
is more important is for the application to maintain scala-
bility under record and replay, which CDC enables.

4.4 Matching Function (MF) Identification
Non-deterministic applications usually use several MF

calls at different locations in the program. Different MF
instances are used for different purposes, therefore there are
different dependencies among messages exchanged via differ-
ent MFs. If we separately create reference orders for differ-
ent MFs, we can create a reference order that more closely
follows the corresponding observed order. To achieve this,
when MFs are called, we analyze the call stacks of the func-
tion calls, and separately manage the record tables (Table
in Figure 4) for the different MF call instances.

5. REPLAY CORRECTNESS
As mentioned in Section 4.3, CDC can correctly replay a

message-receive order only if the Lamport clock is correctly
replayed. To validate that the clock is replayable and that
CDC can correctly replay program executions, we describe
the proof in this section.

Definition 1 (Ordered set). If X = {x1, x2, . . . } is an or-
dered set, then“X = X́”⇔“xi = x́i”where xi ∈ X, x́i ∈ X́

Definition 2 (Events). Let e be a send or receive event.
Let E be an ordered set of e and contain only send events or
only receive events. Let Ex

i be i-th E of process Px. Let E
be an ordered set of E. Let Ex be E of process Px. Under
the definition, if Ex

i is an ordered set of send events, Ex
i+1 is

an ordered set of receive events. Likewise, if Ex
i is an ordered

set of receive events, Ex
i+1 is an ordered set of send events.

With this definition, we can describe a process as a series of
the events, e. In the example of Figure 12, the process (P1)
can be described as {e0, . . . , e6} = {E1

1 , E1
2 , E1

3} = E1.

Proof in Theorem 1.(i)

Proof in Theorem 1.(ii)

Proof in Theorem 1.(iii)

e2 e3 e4 e5 e6 e0 e1

P0

P1

P2

E11 E12 E13

E 0
1

E 2
1 E 2

2

E 0
2 E 0

3
Send events Recv events Recv events

Send events Recv events Send events

Recv events Send events

E11 E12 E13
E 0
1

E 2
1 E 2

2

E 0
2 E 0

3

Theorem 1

Figure 12: Example: Communication dependency
graph with three processes

Definition 3 (Event dependency). If E depends on E, we
denote the dependency as E → E. In Figure 12, E0

2 has a
dependency, {E1

1 , E
0
1} → E0

2 .

Definition 4 (Lamport clock). Let a Lamport clock be up-
dated following two rules: (i) When a process sends a mes-
sage, the process attaches its current clock to the message,
then increments the clock by 1; (ii) When a process receives
a message, the process sets its clock to be the maximum of
the received clock and its own clock, then increments the
clock by 1.

Definition 5 (Event clock function). Let fc be fc : E $→ N,
fc(e) is a clock value of event e. Therefore, “e → f” ⇒
“fc(e) < fc(f)”, or “fc(e) ≥ fc(f)”⇒ “e ̸→ f”.

Definition 6 (Totally ordered relation for creating the ref-
erence order). Let fm be fm : E $→ N, fm(e) is an or-
dering number for message-receive events in CDC where
“fm(e) < fm(f)”⇔ “(i) fc(e) < fc(f) or (ii) rank of sender
e < rank of sender f if fc(e) = fc(f)”. Based on this totally
ordered relation, CDC creates reference logical-clock orders.

Definition 7 (Determinism in message send). In non-
deterministic applications, we can make two assumptions.
(i) The first send events are deterministic, i.e., ∀x s.t. “Ex

1

is send events” ⇒ “Ex
1 is deterministic”, or “φ → Ex

1 ” ⇒
“Ex

1 is deterministic”. In Figure 12, E1
1 is send events, and

has no dependency, i.e., φ → E1
1 . Therefore, E1

1 = {e0, e1}
are deterministic. (ii) Send events are deterministic if the
all previous message events are replayed, i.e., “∀E → E s.t.
E is replayed, E is a send event set” ⇒ “E is determin-
istic”. In Figure 12, if E1

1 and E0
1 are replayed, the next

series of send events (E0
2) becomes deterministic because of

{E1
1 , E

0
1} → E0

2 .

Definition 8 (CDC observed receive-event set: B). Let B
be a set of observed receive events. In Figure 11, when the
main thread enqueues a receive event (e), e is included in
B, i.e., e ∈ B.

Axiom 1 (Condition for correct replay of e). “CDC can
correctly replay e” ⇔ “{∀f ∈ E | fm(f) < fm(e)} s.t. (i)
clocks of f , e is replayed, (ii) f ∈ B and (iii) fc(e) < LMC“.
LMC is the local minimum clock. (Qualitative explanation
is in Section 3.6).

Proposition 1. Receive events are replayable if the all pre-
vious message events are replayed, i.e., “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”.

Proof. Show ∀e ∈ E s.t. e is replayed if E is replayed
by proving e holds conditions in Axiom 1 (i)(ii)(iii). (i) E
is replayed. Therefore, clock of f, e is replayed. In Figure 9,
clocks of f1, f2 and e are replayed because E is replayed.
(ii) ∀f ∈ E s.t. fm(f) < fm(e). Therefore, it holds e ̸→ f
(∵ Definition 5, 6). Because f has no dependency to e,
receive event f eventually happens, and is enqueued to B,
i.e., f ∈ B. In Figure 9, f1 and f2 are eventually received
because e ̸→ f1, f2 is met. (iii) Suppose CDC cannot replay
event e due to fc(e) ≥ LMC, i.e., ∃ĝ ∈ E s.t. fm(e) > fm(ĝ).
(iii-a) If e ̸→ ĝ, receive event ĝ is eventually received, and
LMC is incremented. This LMC incrementation continues
until fc(e) < LMC or e → ĝ is met. (iii-b) If e → ĝ, fc(e) <
fc(ĝ) is met. Therefore, fm(e) < fm(ĝ). This is contrary to
fm(e) > fm(ĝ). According to (i)(ii)(iii), “∀E → E s.t. E is
replayed, E is a receive event set”⇒ “E is replayable”

"

Theorem 1. CDC can correctly replay message events, that
is, E = Ê where E and Ê are ordered sets of events for a
record and a replay mode.

Proof (Mathematical induction). (i) Basis: Show
the first send events are replayable, i.e., ∀x s.t. “Ex

1 is send
events”⇒ “Ex

1 is replayable”. As defined in Definition 7.(i)
Ex

1 is deterministic, that is , Ex
1 is always replayed. In Fig-

ure 12, E1
1 is deterministic, that is, is always replayed. (ii)

Inductive step for send events: Show send events are
replayable if the all previous message events are replayed,
i.e., “∀E → E s.t. E is replayed, E is send event set”⇒ “E
is replayable”. As defined in Definition 7.(ii), E is determin-
istic, that is, E is always replayed. (iii) Inductive step for
receive events: Show receive events are replayable if the
all previous message events are replayed, i.e., “∀E → E s.t.
E is replayed, E is receive event set” ⇒ “E is replayable”.
As proofed in Proposition 1, all message receives in E can
be replayed by CDC. Therefore, all of the events can be re-
played, i.e., E = Ê. (Mathematical induction processes are
graphically shown in Figure 12.) "

Theorem 2. CDC can replay piggyback clocks.

Proof. As proved in Theorem 1, since CDC can replay
all message events, send events and clock ticking are re-
played. Thus, CDC can replay piggyback clock sends. "

6. EVALUATION
Two of our main goals are to reduce the size of the

recorded data and to minimize an impact to the application
performance. In this section, we show how much CDC can
reduce the record size for order-reply compared to the tra-
ditional method. We also show the performance impact to
the applications for recording. We conduct our evaluations
on the Catalyst cluster at LLNL. The details of Catalyst are
described in Table 1. We use local storage, Intel SSD 910
Series, for recording data.

6.1 Compression Efficiency
First, we evaluate the compression efficiencies of various

methods. We use MCB as a representative benchmark for
non-deterministic applications [1]. MCB, one of the CORAL

Table 1: Catalyst Specification
Nodes 304 batch nodes
CPU 2.4 GHz Intel Xeon E5-2695 v2

(24 cores in total)
Memory 128 GB

Interconnect InfiniBand QDR (QLogic)
Local Storage Intel SSD 910 Series

(PCIe 2.0, MLC)

0

10

20

30

40

200

w/o
Compression

gzip CDC (RE) CDC (RE + PE
+ LPE)

CDC

C
om

pr
es

se
d

re
co

rd
 s

iz
e

(M
B

)

Figure 13: Total compressed record sizes on MCB
at 3,072 processes (Execution time: 12.3 seconds)

benchmark codes, simulates the behavior of particles based
on the heuristic transport equation model as described in
Section 2.1. Figure 13 shows the total compressed record
sizes produced by different compression methods on MCB
at 3,072 processes. gzip is a method that applies gzip to
the baseline format as shown in Figure 4. We denote a
method which only applies redundancy elimination (Section
3.2) as CDC(RE). CDC(RE + PE + LPE) is a method
which applies the permutation encoding (Section 3.3) and
the linear predictive encoding (Section 3.4), and CDC is the
complete method of CDC which applies all of the presented
techniques including the MF identification (Section 4.4). We
use zlib [9] for the gzip method.

As shown in the Figure 13, CDC exhibits a higher com-
pression rate than gzip, and the compression rate of CDC is
5.7 times higher than gzip. Especially, the average number of
bytes required to record a single receive event (bytes/event)
is 0.51 bytes, which is approximately only 4 bits to record a
single event, i.e., count, flag, rank, with next and clock.
In MCB, particles are exchanged as a message, and an MPI
process does not send a particle x until the MPI process
receives the particle x from another process, and the parti-
cle x hits the boundary. Such communication dependency
constrains the variety of message receives, which effectively
decreases the difference between a reference and an observed
order.

For our evaluation at 3,072 MPI processes, about 9.7 mil-
lion of message-receive events are observed in total. If we
recorded these receives without compression as in the tra-
ditional order-replay technique, i.e., the format in Figure 4,
the record size becomes significantly large. For example,
if we use count (64 bits), flag (1 bit), rank (32 bits),
with next (1 bit), clock (64 bits) for an event (162 bits
in total), the size becomes 197.0 MB. Therefore, the effec-

§  Logical-clock	order	is	always	reproducible,	so	CDC	only	records	the	
permuta>on	difference	

1	

2	

3	

4	

5	

6	

Logical order
(Order by logical-clock)

[1] Kento Sato, Dong H. Ahn, Ignacio Laguna, Gregory L. Lee and Martin Schulz, “Clock Delta Compression for
Scalable Order-Replay of Non-Deterministic Parallel Applications”, In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis 2015 (SC15), Austin, USA, Nov, 2015.

LLNL-PRES-698040
17	

Clock	Delta	Compression	(CDC)	
§  Our	approach,	clock	delta	compression,	only	records	the	difference	between	
received	order	and	logical	order	instead	of	recording	en>re	received	order	

1	

2	

3	

4	

5	

6	

Received order
(Order by wall-clock)

Logical order
(Order by logical-clock)

Permutation
difference

This	logical	order	is	reproducible	

+	

LLNL-PRES-698040
18	

Implementa4on	

§  We	use	PMPI	wrapper	
—  Tracing	message	receive	order	
—  Clock	piggybacking	

§  Clock	piggybacking	[1]	
— When	sending	an	MPI	message,	the	PMPI	wrapper	defines	a	new	

MPI_Datatype	that	combines	message	payload	&	clock	

MPI_Isend	 MPI_Isend	 PMPI_Isend	
PMPI_Isend	

User program PMPI Wrapper library MPI library

MPI_Test	 MPI_Test	 PMPI_Test	

MPI_Isend	

MPI_Test	
PMPI_Test	

clock	

clock	message payload	

new MPI_Datatype	

[1] M. Schulz, G. Bronevetsky, and B. R. Supinski. On the Performance of Transparent MPI Piggyback Messages. In Proceedings of the 15th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages 194–201, Berlin, Heidelberg, 2008. Springer-Verlag.

msg	

LLNL-PRES-698040
19	

Compression improvement in MCB

				Compressed	size	becomes	40x	smaller	than	original	size	High compression

gzip itself can reduce
the original format by 8x

5x more reduction

0

10

20

30

40

200

w/o Compression gzip CDC

Co
m

pr
es

se
d

re
co

rd
 s

iz
e

(M
B)

 196 MB

5 MB

25 MB

190

§  For	example,	if	1GB	of	memory	per	
node	for	record-and-replay	…	
—  w/o	compression:	2	hours	
—  gzip:		19	hours	
—  CDC:	4	days		

Total compressed record sizes on MCB at 3,072 procs (12.3 sec)

x8

x5

LLNL-PRES-698040
20	

Summary	

§  Non-determinism	is	a	common	issue	in	debugging	MPI	
applica>ons	

§  ReMPI	can	help	to	reproduce	buggy	MPI	behaviors	with	
minimum	record	size	

	

