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Debugging	large-scale	applications	is	challenging

“On average, software developers spend 
50% of their programming time finding and fixing bugs.”[1]

[1] Source: http://www.prweb.com/releases/2013/1/prweb10298185.htm, 
CAMBRIDGE, UK (PRWEB) JANUARY 08, 2013

In HPC, applications run in parallel 
which makes debugging particularly challenging
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“MPI	non-determinism”	makes	debugging	
applications	even	more	complicated
§ MPI	supports	wildcard	receives	

— MPI	processes	can	wait	messages	from	any	MPI	processes	

§ Message	receive	orders	can	change	across	executions
— Due	to	non-deterministic	system	noise	(e.g.		Network,	OS	jitter)

èMPI	non-deterministic	application	which	correctly	ran	in	first	execution	can	

crash	in	the	second	execution	even	with	the	same	input
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Real-world	non-deterministic	bugs	in	Diablo/Hypre 2.10.1*

§ It	hung	only	once	every	50	runs	

after	a	few	hours

§ The	scientists	spent	2	months	in	the	

period	of	18	months,	and	then	gave	

up	on	debugging	it

* Hypre is an MPI-based library for solving large, sparse linear systems of equations on massively parallel computers

§ MPI	non-deterministic	bugs	cost	computational	scientists	substantial	

amounts	of	time	and	efforts

The scientists
§ We	found	that	the	cause	is	due	to	a	

”Unintended	message	matching”	by	

misused	MPI	tag	(message	race	

bug)

§ We	spent	2	weeks	in	the	period	of	3	

months to	fix	the	bug

Our debugging team

Diablo/Hypre 2.10.1
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Observing	a	non-deterministic	bug	is	costly

§ Due	to	such	non-determinism,	we	needed	to	

submit	a	bunch	of	debug	jobs	to	observe	the	bug

— The	bug	did	not	manifest	in	98%	of	jobs	

— Wasted	9,560	node-hour

§ Rarely-occurring	message	race	bugs	waste	both	

scientists'	productivity	and	machine	resources	

(thereby	affect	also	other	users)	
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A tool to frequently and quickly expose 
message race bugs is invaluable
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NINJA

§ NINJA:	Noise	Injection	Agent

— Frequent	manifestation:	Injects	network	noise	in	order	to	frequently	and	

quickly	expose	message	race	bugs

— High	portably:	NINJA	is	developed	in	MPI	profiling	layer	(PMPI)

§ Experimental	results

— NINJA	consistently	manifests	the	Hypre 2.10.1	message	race	bug	which	

does	not	manifest	itself	without	NINJA
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Outline

§ Introduction

§ Message	race	bugs

§ NINJA:	Noise	Injection	Agent

§ Evaluation

§ Conclusion
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Data-parallel	model	(or	SPMD)
§ In	HPC,	many	applications	are	written	based	on	a	data-parallel	model	(or	

SPMD)
— Easy	to	scale	out	the	application	by	simply	dividing	a	problem	across	processes

§ In	SPMD,	each	process	calls	the	same	series	of	routines	in	the	same	order	

§ So	messages	sent	in	a	communication	routine	are	all	received	within	the	

same	communication	routine	
è “self-contained”	communication	routine	(or	communication	routine)

P0 P1 P2

Communication

Communication

Computation

Computation

P0 P1 P2
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Plots	of	Send	and	Receive	time	stamps
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§ HPC	apps	call	a	series	of	self-contained	communication	routines	step-

by-step
— Each	colored	box	illustrates	a	self-contained	routine
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Avoiding	message	races
§ To	make	communication	routines	“self-contained”,	common	

approaches	in	MPI	are:

— Use	of	different	tags/communicators

— Calling	synchronization	(e.g.	MPI_Barrier)
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Message	race	bugs	are	non-deterministic

§ Manifestations	of	message	race	bugs	depend	on	system	noise

— Occurrences	and	amounts	of	system	noise	are	non-deterministic

§ Message	race	bugs	rarely	manifest,	E.g.,	when

1. System	noise	level	is	low

2. Unsafe	routines	(Routine A and	Routine B)	are	separated	by	

interleaving	routines	(Routine X)
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Case	study:	Diablo/Hypre 2.10.1
§ The	message	race	bug	in	Hypre manifest	when	a	message	sent	in	

Routine	3	is	received	in	Routine	1	

— Routine	1	&	3:	same	MPI	tag	without	synchronization
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We need a tool to frequently expose subtle message race bugs

However, Routine 1 and 3 are significantly separated by 2.5 msec, 
the message race bug rarely manifest
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NINJA:	Noise	Injection	Agent	Tool
§ NINJA	emulates	noisy	environments	to	expose	subtle	message	

race	bugs

§ Two	noise	injection	modes	

— System-centric	mode :	NINJA	emulates	congested	network	to	induce	

message	races

— Application-centric	mode :	NINJA	analyzes	application’s	communication	

pattern,	and	inject	a	sufficient	amount	of	noise	to	make	two	unsafe	

routines	overlapped
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System-centric	mode	emulates	noisy	network
§ System-centric	mode	emulates	noisy	network	based	on	a	

conventional	“flow	control”	in	interconnects

§ Conventional	flow	control

— When	sending	a	message,	the	message	is	divided	into	packets	and	

queued	into	a	send	buffer

— The	packets	are	transmitted	from	a	send	buffer	to	a	receive	buffer

— If	the	receive	buffer	does	not	have	enough	space,	flow	control	engine	

suspends	packet	transmission	until	enough	buffer	space	is	freed	up

Physical
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NINJA	implements	flow	control	at	process-level

§ NINJA’s	flow	control

— Each	process	manages	virtual	buffer	queue	(VBQ)

— If	VBQ	does	not	have	enough	space,	NINJA	delays	sending	the	MPI	

message	until	enough	buffer	space	is	freed	up

MPI processes

MPI process

MPI process

VBQPackets

Packets

PacketsMPI process

Physical
link

Send 
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How	NINJA	triggers	noise	injection	?

§ NINJA	system-centric	mode

— Monitor	#	of	incoming	packets

— Compute	# of	outgoing	packets	by	

using	a	model	based	on	network	

bandwidth	and	latency

— Estimate	VBQ	length

— If	VBQ	length	exceeds	the	VBQ	size,	

then	NINJA	injects	noise	to	the	

message

§ NINJA	logically	estimate	VBQ	

length,	so	does	not	physically	

buffer	messages	by	copying
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with the goal of manifesting subtle message races more
frequently. Unlike node-local noise (Figure 4-(d)), a right
amount of network noise can expose unintended message
races (Figure 5-(a)). NINJA provides two noise injection
modes: system-centric and application-centric. In system-
centric mode, NINJA induces message races by reconstruct-
ing noise signatures. In application-centric mode, NINJA
first analyses the application’s behavior to then directly en-
force the overlapping of certain communication routines.
It achieves this goal by building the application-specific
knowledge into its noise injection scheme.

4.1 System-Centric Noise-Injection Mode
When injecting network noise in the system-centric mode,
NINJA considers two important factors to maximize the
chance for an incorrect message matching to manifest itself
due to races, while limiting the application slowdown: which
MPI sends to inject noise into; and how much noise to inject.

4.1.1 Noise Triggering Criteria
To induce message races in the example shown in Figure 4-
(d) or (e), the ideal approach would be to delay message 1,
but not message 2, as illustrated in Figure 5-(a). In general,
if we delay later messages in an unsafe communication rou-
tine while not delaying earlier messages in the next unsafe
routine, we can overlap two unsafe communication routines,
thereby, inducing message races Figure 5-(b).

To implement such behavior, each MPI process manages
a virtual buffer queue (VBQ) at the user level. NINJA re-
gards MPI messages as a sequence of fixed-size chunks, i.e.,
packets, which are all funneled thought the VBQ of the MPI
process. If the number of packets in the VBQ exceeds the
configurable VBQ threshold (Ns), then NINJA injects a de-
lay to all of the subsequent sends until this congestion con-
dition is cleared. Since the buffer queue is virtually managed
by NINJA itself, NINJA does not actually buffer the packets,
but instead only keeps track of the number of packets that are
expected to be in the VBQ and triggers delays as necessary.

4.1.2 Noise Amount
The second factor is the amount of each delay that should be
injected. When the number of packets exceeds the threshold,
NINJA computes how long the subsequent messages should
wait until the VBQ is sufficiently freed up below the thresh-
old, Ns.

More precisely, when sending an MPI message, which
will be packetized into Nm packets, with the length and
threshold of VBQ being configured to be Nl and Ns respec-
tively, NINJA blocks the issuing of the send operations until
Nm packets fit into the VBQ under the VBQ threshold, i.e.,
until Nm + (Nl −Ns) packets are transmitted, as shown in
Figure 6. Finally, we estimate the delayed time it takes to
transmit N = Nm + (Nl −Ns) packets, D, which is given

Nm packets (Nm + (Nl – Ns ) ) packets 
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Figure 6. To enqueue all Nm packets of the message in
the VBQ, Nm and Nl − Ns packets must be dequeued and
transmitted.

by:

D =

{
N∑

i=1

(Ps[i]/B + C)

}
× Sp (1)

where Ps[i] and B are the size of the i-th packet (the 1st
packet being at the head of the VBQ) and network bandwidth
respectively, and Sp denotes the noise scaling factor.

This algorithm is also based on our observation that the
more the system is congested and the more noisy the net-
work, the more unintended message matchings occur (de-
tailed results are in Figure 11 and 12). Actually, this queue
model described in Section 4.1.2 and 4.1.1 is similar to gen-
eral network flow controls [4, 11]: when a destination buffer
do not have enough space, the congestion control engine sus-
pends packet transmission until enough buffer space is freed
up to avoid packet losses. Therefore, one can emulate more
noisy environment by delaying more messages with lower
VBQ threshold, Ns, and by delaying messages longer by
higher noise scale factor, Sp. By using the NINJA’s system-
centric model, users can observe an unintended message
matching more frequently than ones without using NINJA.

4.2 Application-Centric Noise-Injection Mode
The system-centric mode is useful to manifest an unintended
message matching problem while minimizing overhead to
the application. However, this mode cannot guarantee that all
pairs of unsafe communication routines will be overlapped.
As described in Section 3.2, for example, the smaller the
scale is, the longer the time between two unsafe communica-
tion routines, thereby making the separation problem worse.
For a small scale at which message races have never been
observed during production runs, our system-centric noise
mode will still be unlikely to manifest the race problem.

> VBQ	size

VBQ length
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How	much	amount	of	noise	is	injected	?
§ NINJA	delay	a	message	send	until	enough	VBQ	space	is	freed	up

§ Example
— VBQ	size:	5	packets

— #	of	packets	in	VBQ:	3	packets

— The	incoming	message:	4	packets

è NINJA	delays	this	message	by	the	time	to	transmit	2	packets

VBQ

5 packets

3 packets

Send message

4 packets

B [GB/sec]

C [sec]

2	[KB]
3.14	[GB/sec] + 0.25	[µsec] ×2	56789:; =

Packet size = 2 [KB]
B = 3.14 [GB/sec]
C = 0.25 [µsec]

1.27	[msec]
Noise amount
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System-centric	mode	induces	message	races
§ Earlier	messages	are	not	delayed	in	a	routine		(since	buffer	space	is	

left)	while	later	messages	are	delayed	in	the	same	routine

§ NINJA	extends	an	unsafe	routine	so	that	we	can	overlap	one	unsafe	

communication	routine	with	the	next	communication	routine,	

thereby,	induce	message	races	
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Race	!
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Application-centric	mode

§ Problem	in	system-centric	mode

— If	unsafe	routines	(i.e.	Routine	A	and	B)	are	significantly	

separated,	system-centric	noise	amount	is	not	adequate

§ Application-centric	mode

— NINJA	analyzes	communication	patterns	during	system-

centric	mode

— Then,	NINJA	injects	an	adequate	amount	of	noise	to	

enforce	message	races
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Application-centric	mode

1.	Each	process	traces	message	send	time	stamps
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Application-centric	mode

2.	Compute	message	send	intervals	based	on	

the	time	stamps	
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Application-centric	mode
3.	Detect	separated	unsafe	routines

— If	an	interval	is	more	than	system-centric	noise	

amount,	NINJA	regards	the	routines	as	

separated	unsafe	routines

— Example
• System-centric	noise	amount:	20	μsec

• NINJA	regards	Set	1	and	2	as	separated	unsafe	

routines	more	than	system-centric	noise	amount

20	[µsec]
0

50

100

150

200

250

300

Ti
m

e

Message send call

Send interval
Send time (System-centric mode)

Px

20	[µsec]

Set 1

Set 2



LLNL-PRES-720797
23

180	[µsec]

Application-centric	mode
4.	Compute	this	separated	interval	between	the	two	

routines

— Sum	of	intervals:	

— Updates	max	of	this	separated	interval	every	

iterations	for	every	detected	pairs	of	separated	

routines
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Figure 7. Example: Message send timestamps in system-centric (blue plots) and application-centric mode (red plots)

One can set a significantly large scale factor for Sp to en-
force any pairs of unsafe communication routine to be over-
lapped. However, this configuration would introduce pro-
hibitively large overhead to the application. In addition, de-
bugging an application at a smaller scale is much more pre-
ferred than doing it at large scale. Thus, NINJA also pro-
vides an alternative way to enforce an overlapping between
all pairs of unsafe communication routines.

4.2.1 Enforcing Message Races
To enforce an overlapping, NINJA provides an application-
centric mode that uses knowledge about the application’s
own communication patterns even under a debugging tool’s
control. During a run in system-centric mode, NINJA traces
and analyzes the time intervals between successive message
sends, detects unsafe communications violating both Cmsgid

and Csync, and finally dumps the analysis data at the end of
execution (if this run in system-centric mode does not hang
nor crash due to message races). During successive runs
in application-centric mode, NINJA then loads the analysis
data and uses this information to inject appropriate amounts
of noise to enforce the overlapping of each detected unsafe
communication routine.

More specifically, NINJA keeps track of injected mini-
mum noise (Dm) during the system-centric mode in its the
analysis file. If the time interval between two consecutive
sends is larger than Dm, NINJA regards the rest of the mes-
sage sends (before the next large interval is detected) as the
next distinct communication routine. In Figure 7, for exam-
ple, NINJA regards Send sets 1 and 2 each as a distinct com-
munication routine and also deems that message races have
not occurred between Send set 1 and 2. Because the time
between Send set 1 and 2 is larger than Dm, it’s not guaran-
teed that Send set 1 and 2 were overlapped during the run in
system-centric mode.

After detecting the distinct Send sets, NINJA computes
how long messages in Send set 1 should be delayed to be
able to be overlapped with Send set 2 (application-centric
noise amount). More precisely, NINJA computes the amount
of application-centric noise for Send set i, Vi, as follows:

Vi =

{mi+1−1∑

k=mi

Dk

}
× Sa (2)

where Dk is the time interval between send k + 1 and
k, and mi denotes the first message of Send set i, and
finally Sa denotes an application-centric noise scaling factor.
NINJA computes Vi at the end of each epoch. An epoch
consists of a set of routines detected by our epoch detection
algorithm. Messages sent in an epoch are solely received
within the same epoch. As such, they cannot cross the epoch
boundary and be received within the next epoch. Figure 7
shows an example where V1 and V2 are computed as 63 and
16 respectively in Epoch 1, and 66 and 6 in Epoch 2.

For the epoch detection, each MPI process counts the
number of sends and receives. Whenever a global synchro-
nization is called by the application, all of the processes call
MPI Allreduce to compute the global sum of the number
of sends and receives. If the send count is equal to the re-
ceive count, NINJA infers that the application progressed
into the next epoch because the global synchronization holds
the condition Csync, i.e., synchronization without in-flight
messages. Whenever an epoch ends, NINJA updates Vi if
new Vi is larger than old Vi to compute the maximum. By
updating the maximum of Vi, NINJA ensures that it enforces
an overlapping between Send set i and i+ 1 with arbitrary i
in every epoch. In Figure 7, V1 and V2 become 66 and 16 at
the end of Epoch 1.

We note that NINJA does not inject application-centric
noise to the last Send set in each epoch, to avoid unnecessary
noise injection: Message races will never occur between two

(Dk )
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Application-centric	mode
Px

Execution

in	system-centric	mode

<tag1,	comm1>	180	 [μsec]

<tag2,	comm1>	65						[μsec]

<tag2,	comm2>	230				[μsec]

<tag4,	comm2>	1500		[μsec]

Execution

in	application-centric mode

§ At	the	end	of	system-centric	mode,	each	process	

writes	this	analysis	file	

§ Application-centric	mode	read	this	file	and	inject	

noise	according	this	analysis

— i.e.	System-centric	mode	with	auto-tuned	noise	amount	

180	[µsec]

<tag1,	comm1>	
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Implementation
§ We	implement	the	noise	injection	schemes	

by	using	PMPI	profiling	interface	

§ To	inject	network	noise,	we	use	a	send-

dedicated	thread,	one	per	MPI	process

— (1)	MPI	Init,	

• Each	MPI	process	spawns	this	send-dedicated	thread

— (2)	MPI_Isend for	non-delayed	messages

• Calls	PMPI_Isend

— (3)	MPI_Isend for	delayed	messages

• The	main	thread	calls	PMPI_Send_init,	computes	the	

amount	of	delay,	and	set	delayed	send	time

— (4)	PMPI_Start

• The	send	thread	periodically	check	the	send	time

• When	the	scheduled	send	time	comes,	the	send	

thread	calls	PMPI_Start

MPI_Init

MPI process

PMPI_Start

ts

Main 
thread

Send
thread

(1)

(2)

(3)

(4)

MPI_Isend

MPI_Isend
(PMPI_Send_init)

t’s
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Evaluation

§ Cases

— Two	synthetic	benchmarks:	Case	1	and	2

— Parasail	module	in	Hypre 2.10.1	

• Computes	a	sparse	approximate	inverse	pre-conditioner,	which	is	used	by	

Diablo

§ Environment

— MVAPICH-2.1	

— LLNL	systems

• Run	64	processes	in	4	nodes

§ Evaluate	the	number	of	loops	at	which	a	message	race	occurs

Table 1. Node specification of Cab and Catalyst
Cab Catalyst

Nodes 1,200 batch nodes 304 batch nodes
CPU 2.6 GHz Intel Xeon E5-2670 2.4 GHz Intel Xeon E5-2695 v2

(16 cores per node) (24 cores per node)
Memory 32 GB 128 GB

HCA InfiniBand QDR4X (QLogic) InfiniBand QDR4X (QLogic) x2

Send A	
Recv A	

Send B	
Recv B	

Send A	
Allreduce A	

Recv A	

Send B	
Allreduce B	

Recv B	

X X X X X X 

Send A (tag=222)	
Allreduce A	

Recv A (tag=222)	

Send B (tag=222)	
Allreduce B	

Recv B (tag=222)	

Send X (tag=223)	
Recv X (tag=223)	

(a) Case 1 (b) Case 2 (c) Case 3 

P0	 P1	 P2	 P0	 P1	 P2	 P0	 P1	 P2	

Barrier	 Barrier	
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Figure 9. Case 1 and 2: Synthetic cases to capture common
unintended message races. Case 3: Hypre communication
pattern

6. Evaluation
In this section, we present our evaluation results showing
the effectiveness and performance overhead of our injec-
tion techniques. Our evaluation is conducted on two large
systems sited at Lawrence Livermore National Laboratory
(LLNL): Cab and Catalyst. The main differences between
two systems are: 1) Cab is larger in terms of the number of
compute nodes in the machine and 2) as a production system
it is more heavily utilized with more users than Catalyst. In
terms of the capabilities within each node, however, Cata-
lyst contains a higher number of compute cores than Cab
(24 versus 16), and one additional InfiniBand rail that is only
used for system management purposes. Taken together, ap-
plications are more subject to network congestion when they
run on Cab than on Catalyst. For all our evaluation, we used
MVAPICH-2.1 as the underlying MPI implementation.

6.1 System-Centric Mode
The main purpose of the system-centric mode is to inject net-
work noise to emulate a highly congested environment for
the application. Even on a quiet network system, therefore,
this mode can increase the manifestation rate of unintended
message races. In contrast to the application-centric mode,
the system-centric mode can achieve this without obtaining
the application’s messaging patterns.

6.1.1 Synthetic Benchmarks For Unintended Races
To evaluate the effectiveness we created two synthetic cases
capturing common race conditions (Case 1 and 2), as shown
in Figure 9.

In Case 1, each process first sends messages to a ran-
domly selected destination process (Send A), receives the
messages from the random senders (Recv A), and then per-

P0: Send to P1 and P2  
P1: Send to P0 
P2: Send to P0 and P1 

P0: {2, 2, 1}  
P1: {2, 2, 1} 
P2: {2, 2, 1} 

Set flags Reduction  with sum 

P0: {0, 1, 1}  
P1: {1, 0, 0} 
P2: {1, 1, 0} 

Figure 10. Typical communication patterns needed to de-
termine the exact number of messages to receive at runtime

forms a computation followed by the same random sends
and receives, i.e., Send B and Recv B. Then, each pro-
cess cycles through this communications and computations
for the configurable number of iterations. In Case 2, each
process performs the same random sends and receives as
Case 1, but this time all processes are synchronized with
MPI Allreduce after the random sends. In fact, this cap-
tures a common communication pattern that can emerge
when each process does not know exactly from which other
process(es) the messages will be sent to it. In this case, af-
ter sending messages (Send A), each process fills in the send
array by setting the index corresponding to each destination
rank, and calls MPI Allreduce with MPI SUM to compute
how many messages should be received. Then, each process
calls wild-card receives with MPI ANY SOURCE (Figure 10).
This case is created to evaluate the effectiveness of NINJA
when the target application is being under a debugging tool’s
control and hence is subject to the tool overhead problem de-
scribed in Section 3.3. Because processes are synchronized
after Send A, the tool’s overhead introduced at Send A can
propagate across all of the processes. Unlike Cass 1, Case 2
can decrease the frequency of exposing unintended message
races.

In the experiments for manifestation of message races,
we evaluate the manifestation of message races at both small
and large scales. However, we only show results at a small
scale, 64 processes distributed across 4 compute nodes, be-
cause of the following reasons. First, the results are same
between small and large scales. Second, if we use a higher
number of processes, Routine A can become more load-
imbalanced, and this can cause unintended message races
between Routine A and B to occur more frequently at large
scale. Message races at large scale is more easy to appear
than ones at small scale. Third, when debugging unintended
message races, it is highly desired to be able to observe the
races at small scale, as debugging is much easier and more
cost-effective. In summary, we desire to evaluate the effec-
tiveness of NINJA at small scales in more difficult and chal-
lenging scenarios to NINJA. We use 3.14 GB/s, 0.25 µsec
and 1 for B, C and Sp to emulate a congested environment
in system-centric mode.

6.1.2 System-Centric (S-Centric) Mode
Figures 11 and 12 show the number of iterations executed
until an incorrect match occurs due to unintended message
races in Case 1 and 2, respectively (a message sent in Rou-

Less noisy system
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Case	1:	Send-Receive

Send A
Recv A

Send B
Recv B

X X X

P0 P1 P63

Barrier

Ro
ut

in
e 

A
Ro

ut
in

e 
X

Ro
ut

in
e 

B

Send messages to 
random destinations

Send messages to 
random destinations

1 [msec]
computation

1.	In	Cab,	this	message	race	easily	

manifest	itself	without	NINJA	because	

Cab	is	relatively	noisy	system

...

3.	If	we	use	NINJA	in	catalyst,	we	can	frequently	

and	immediately	manifest	message	race	even	in	

this	less	noisy	system

2.	In	less	noise	system,	this	message	

race	rarely	manifest

Max Iterations: 10,000

Cab Catalyst Catalyst
w/ System-centric
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Case	2:	Send-AllReduce-Receive

Send messages to 
random destinations

Send messages to 
random destinations

Send A
Allreduce A

Recv A

Send B
Allreduce B

Recv B

P0 P1 P2

Barrier

Table 1. Node specification of Cab and Catalyst
Cab Catalyst

Nodes 1,200 batch nodes 304 batch nodes
CPU 2.6 GHz Intel Xeon E5-2670 2.4 GHz Intel Xeon E5-2695 v2

(16 cores per node) (24 cores per node)
Memory 32 GB 128 GB

HCA InfiniBand QDR4X (QLogic) InfiniBand QDR4X (QLogic) x2

Send A	
Recv A	

Send B	
Recv B	

Send A	
Allreduce A	

Recv A	

Send B	
Allreduce B	

Recv B	

X X X X X X 

Send A (tag=222)	
Allreduce A	

Recv A (tag=222)	

Send B (tag=222)	
Allreduce B	

Recv B (tag=222)	

Send X (tag=223)	
Recv X (tag=223)	

(a) Case 1 (b) Case 2 (c) Case 3 
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Figure 9. Case 1 and 2: Synthetic cases to capture common
unintended message races. Case 3: Hypre communication
pattern

6. Evaluation
In this section, we present our evaluation results showing
the effectiveness and performance overhead of our injec-
tion techniques. Our evaluation is conducted on two large
systems sited at Lawrence Livermore National Laboratory
(LLNL): Cab and Catalyst. The main differences between
two systems are: 1) Cab is larger in terms of the number of
compute nodes in the machine and 2) as a production system
it is more heavily utilized with more users than Catalyst. In
terms of the capabilities within each node, however, Cata-
lyst contains a higher number of compute cores than Cab
(24 versus 16), and one additional InfiniBand rail that is only
used for system management purposes. Taken together, ap-
plications are more subject to network congestion when they
run on Cab than on Catalyst. For all our evaluation, we used
MVAPICH-2.1 as the underlying MPI implementation.

6.1 System-Centric Mode
The main purpose of the system-centric mode is to inject net-
work noise to emulate a highly congested environment for
the application. Even on a quiet network system, therefore,
this mode can increase the manifestation rate of unintended
message races. In contrast to the application-centric mode,
the system-centric mode can achieve this without obtaining
the application’s messaging patterns.

6.1.1 Synthetic Benchmarks For Unintended Races
To evaluate the effectiveness we created two synthetic cases
capturing common race conditions (Case 1 and 2), as shown
in Figure 9.

In Case 1, each process first sends messages to a ran-
domly selected destination process (Send A), receives the
messages from the random senders (Recv A), and then per-

P0: Send to P1 and P2  
P1: Send to P0 
P2: Send to P0 and P1 

P0: {2, 2, 1}  
P1: {2, 2, 1} 
P2: {2, 2, 1} 

Set flags Reduction  with sum 

P0: {0, 1, 1}  
P1: {1, 0, 0} 
P2: {1, 1, 0} 

Figure 10. Typical communication patterns needed to de-
termine the exact number of messages to receive at runtime

forms a computation followed by the same random sends
and receives, i.e., Send B and Recv B. Then, each pro-
cess cycles through this communications and computations
for the configurable number of iterations. In Case 2, each
process performs the same random sends and receives as
Case 1, but this time all processes are synchronized with
MPI Allreduce after the random sends. In fact, this cap-
tures a common communication pattern that can emerge
when each process does not know exactly from which other
process(es) the messages will be sent to it. In this case, af-
ter sending messages (Send A), each process fills in the send
array by setting the index corresponding to each destination
rank, and calls MPI Allreduce with MPI SUM to compute
how many messages should be received. Then, each process
calls wild-card receives with MPI ANY SOURCE (Figure 10).
This case is created to evaluate the effectiveness of NINJA
when the target application is being under a debugging tool’s
control and hence is subject to the tool overhead problem de-
scribed in Section 3.3. Because processes are synchronized
after Send A, the tool’s overhead introduced at Send A can
propagate across all of the processes. Unlike Cass 1, Case 2
can decrease the frequency of exposing unintended message
races.

In the experiments for manifestation of message races,
we evaluate the manifestation of message races at both small
and large scales. However, we only show results at a small
scale, 64 processes distributed across 4 compute nodes, be-
cause of the following reasons. First, the results are same
between small and large scales. Second, if we use a higher
number of processes, Routine A can become more load-
imbalanced, and this can cause unintended message races
between Routine A and B to occur more frequently at large
scale. Message races at large scale is more easy to appear
than ones at small scale. Third, when debugging unintended
message races, it is highly desired to be able to observe the
races at small scale, as debugging is much easier and more
cost-effective. In summary, we desire to evaluate the effec-
tiveness of NINJA at small scales in more difficult and chal-
lenging scenarios to NINJA. We use 3.14 GB/s, 0.25 µsec
and 1 for B, C and Sp to emulate a congested environment
in system-centric mode.

6.1.2 System-Centric (S-Centric) Mode
Figures 11 and 12 show the number of iterations executed
until an incorrect match occurs due to unintended message
races in Case 1 and 2, respectively (a message sent in Rou-

Typical communication patterns 
when each MPI rank does not know how many messages arrive

Max Iterations: 10,000Cab Catalyst Catalyst
w/ System-centric
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Case	2:	Send-Allreduce-Receive	with	1	msec interval

Send messages to 
random destinations

P0 P1 P2

Send A
Allreduce A

Recv A

Send messages to 
random destinations

Send B
Allreduce B

Recv B

Barrier

X X X 1 [msec]
computation

1.	Message	race	does	not	

manifest	at	all	even	in	Cab

2.	System-centric	noise	also	cannot	manifest	the	

message	races	because	noise	amount	is	too	small	for	

these	unsafe	routine	separated	by	1	[msec]

3.	Application-centric	noise	can	consistently	and	immediately	manifest	message	races	because	this	

mode	analyzes	how	much	unsafe	routines	are	separated	and	injects	adequate	amount	of	noise	

Max Iterations: 1,000 Cab Cab
w/ System-centric

Cab
w/ Application-centric
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Hypre 2.10.1

§ NINJA	also	successfully	manifest	real	message	race	bugs	with	

application-centric	mode

Send A (tag=222)

Allreduce A
Recv A (tag=222)

Send B (tag=222)

Allreduce B
Recv B (tag=222)

Send X (tag=223)
Recv X (tag=223)

P0 P1 P2

Unsafe communication routines 
in Hypre 2.10.1

Max Iterations: 100
Cab Cab

w/ Application-centric
Cab

w/ System-centric
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Discussion
§ Disadvantage:	NINJA	cannot	reproduce	the	same	message	race

à However,	the	same	message	race	can	be	reproduced	by	using	MPI	

record-and-replay	technique

Execution 
with correct message matching

Execution 
with wrong message matching

NINJA

ReMPI [1]

P0

X

X

X

P1 P2 P0

X

X

X

P1 P2

N
oi

se

Crash

NINJA’s smart network 
noise triggers wrong 

message matching more 
frequently

Once recorded, 
ReMPI can 

reproduce this wrong 
message matching

[1] Kento Sato et al. “Clock Delta Compression for Scalable Order-Replay of Non-Deterministic Parallel Applications”, SC15
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Conclusion

§ Debugging	large-scale	HPC	applications	are	becoming	more	

challenging

§ Rarely-occurring	message	race	bugs	hamper	debugging	

productivity	because	they	do	not	frequently	manifest

§ NINJA	can	frequently	and	immediately	manifest	such	message	

race	bugs	

§ As	future	work,	we	will	integrate	NINJA	with	ReMPI

— Currently,	NINJA	and	ReMPI are	independent	tools
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