PRUNERS

Providing Reproducibility for Uncovering
Non-Deterministic Errors in Runs on Supercomputers

Computational Reproducibility at Exascale (CRE2017)
November 12th, 2017

Kento Sato

B Lawrence Livermore
National Laboratory

Debugging/Testing large-scale applications
is challenging

“On average, software developers spend
50% of their programming time finding and fixing bugs.” [1]

55 UNIVERSITY OF -
%P CAMBRIDGE = RogueWave

Judge Business School SOF TWARE

Debugging/Testing are inevitable software development processes.

Tools facilitating Debugging/Testing are indispensable

[1] Source: http://www prweb.com/releases/2013/ 1/ prweb 10292185 htm, CAMBRIDGE, UK (PRWEB) JANUARY 08, 2013

LLNL-PRES-741293 2

Bugs are not created equal !

* When debugging/testing, reproducibility is very important

Source code NI

Compiler

Different compilers, flags and
platforms produce
different binaries

T T T > >3 B ssmnan
.........

Execution) .
Runtime environment

""" Call path X Call path Y Call path Z | =====" Runtime environments (e.g.,
MPI, OpenMP) also change
l l l applications’ behaviors
------ Result X Result Y Result Z | =eeee-

= Examples
— Bugs that manifest themselves when using O3, but do not with —O0
— Bugs that do not manifests themselves

LLNL-PRES-741293

Non-deterministic bugs cost substantial amounts of
time and efforts

Diablo/Hypre 2.10.1 HYDRA (porting on Sequoia)

Approximated Inverse

ParaSAILS is an approximate inverse method for sparse
linear systems

= The bug manifested in particular = MPI/OpenMP application non-
machines deterministically crashed in an

= It hung only once every 30 runs OpenMP region when compiling
after a few hours with optimization levels

= The scientists spent 2 months in = Manifested intermittently at or

the period of 18 months, and above 8K MPI processes

then aave ub on debuaaging it = The scientists spent months, and
7 P 9913 then ended up disabling OpenMP

and more ...

LLNL-PRES-741293

Non-deterministic bugs are introduced at
multiple levels

= Introduced at the compiler level or at different runtime levels
= A monolithic tool won't work for all cases

= Debugging/testing toolset
— Individual tool works effectively
— Interoperable and composable each other
— Make debugging/testing easier even under other existing debuggers

- A s Compiler level
- § 4 BinoayC fron

""" Call path X Call path Y Call path Z

1 v v Inter-process level
----- [Result X] [Result Y] [Result Z] - p(MP')

—

1
sjona| a|diyny

LLNL-PRES-741293

P R U N E R S Multi-level debugging/testing capabilities

The PRUNERS Toolset comprises four individual tools that can co-operate

Q)

: _0

Compiler-induced floating-point computation @ 3

variability tester o S

)
i Dat detector for OpenMP <

1 ata race detector for OpenMP programs
»arrher =
@l WmiiWmi e
O
—— O
ANEER (<F
Jeel Re M PI MPI record-and-replay tool o
Smmnb for reproducing non-deterministic MPI bugs Ty
Noise injection tool
for exposing message race bugs

LLNL-PRES-741293

Different compilers, compiler flags and
platforms produce different numerical results

* No guarantee that floating-point computation on

one platform is the same on another platform
—E.g.) Apply associativity rules of real arithmetic

gcc-4.9.3 -00 Shewchuk/Kahan summation
gcc-4.9.3 -03 =X +Y; 1cc-16.0.3 -03
icc-16.0.3 -00 =y - (val - x);

X +Y,

y - (val - x); 0

Understanding how sensitive your algorithm is w.r.t. to different round-off

errors introduced by different compilers and flags are important
for code verification and validation

FLiT (Floating-point Litmus Tester)

= FLiT is a reproducibility test framework
— Test floating-point arithmetic variability in any user-given collection of programs

= FLIT tests the variability through hundreds of combinations
— Different compilers, compiler flags, and also different hosts

= Results are stored in SQL database and used for visualization and for
further analysis

Test case

SQL
database

-funsafe-math -frounding || -freciprocal
-optimizations -math -math

Visualization

LLNL-PRES-741293

FLiT case study

= We tested several kernels which have compiler-induced FP variability
— Difference in numerical results across different compilers, flags and kernels

= Example

— When you want to find a compiler option that makes your applications faster
while reproducing the exactly same results as non-optimized code, FLiT
becomes very useful tool

LLNL-PRES-741293

Compiler options
A

Kernels

A

-00

-03

-fassociative-math -O3
-fcx-fortran-rules -O3
-fcx-limited-range -0O3
-fcx-excess-precision=fast -0O3
-ffinite-math-only -O3
-ffloat-store -O3
-ffp-contract=on -03
-fmerge-all-constants -O3
-fno-trapping-math -0O3
-freciprocal-math -03
-frounding-math -O3
-fsignaling-nans -03
-funsafe-math-optimizations -0O3
-mavx -03

-mfpmath=sse -mtune=native -03

uoneddnINWIOANARNGLISIA

vindiogdwodbuel
2dade

N|Asda|buell]
ejoueled
uoJaHda|bueli]
Jewouqgns
uoldnpayadwis
wns)yNYsmays
401590014

GCC compiler

L
|
|
=
O
O

) 9
%] wn
=))
o o
egend o =4 <
0: Unoptimized / Ground Truth < < 1
. - -
1: Difference #1 S s N
2: Difference #2 2 2 g
3: Difference #3 _ £ = Q
. - =3
4: Difference #4 2 5 u o5 _ 3
= == 4 0
a5 3 55 2 = Y9-
O30 © do 5, =99
T, D v 525 o553
3 ovxm Moo 23@ ~2a
3 35¢c [t @38 [=Ne)
Te>gdyod> J[Thgoerpo
955322055 322800
<1 2Cgdag2920®F9gW3
+ 00T XN A U?Unm'u 5
IVec3o3 ool IS
=<~35o5e~Z0Z3300Y
>TSS RS RrAa3=5a47/2

-00

-03

-fcx-limited-range -0O3
-ffloat-store -O3

-fma -03
-fmerge-ll-constants -O3
-fp-model=double -03
-fp-model=extended -O3
-fp-model fast=1 -03
-fp-model fast=2 -03
-fp-model=precise -0O3
-fp-model=source -03
-fp-model=strict -O3
-fp-port -0O3
-frounding-math -03
-fsingle-precision-constant -O3
-ftz -03
-march=core-avx2 -03
-mavx -03

-mavx2 -mfma -03
-mfpmath=sse -mtune=native -0O3
-mpl -03

-no-fma -03

-no-ftz -03

-no-prec-div -0O3
-prec-div -03
--use_fast_math -0O3

ICPC compiler

OpenMP easily creates non-deterministic bugs

= Data races in OpenMP are the most malignant non-deterministic bugs
= Depending on orders of read and write, numerical results change

= Orders of read and write are non-deterministic, it introduces non-
deterministic bugs

Example Day
:
#pragma omp parallel for '

for(int i = 0; 1 < 4; i++) »

Thread O Thread 1
i1=0 .1 i1=2. 3

Sa® e

Data dependency

In large-scale applications,

it is difficult to identify data races manually

LLNL-PRES-741293

10

Arch ¥
rcner
tarcher
@il =il Wi
= Archer is a data race detector combining static and dynamic
analysis

OpenMP Static Analysis — Dynamic Analysis _, geport

Source code (OpenMP C/C++ Clang/LLVM Compiler) (Tsan and OpenMP RT)

= Static analysis
— Exclude regions that can be statically detected to be race-free for
dynamic analysis (Blacklisting)

= Dynamic analysis

— Detect data races based on LLVM/Clang
ThreadSanitizer combined with OMPT-based annotation

Archer significantly reduce runtime overhead

while providing high precision and accuracy

LLNL-PRES-741293 11

Archer case study: HYDRA

= Archer easily detected data races !

HYDRA (porting on Sequoia)

1002: hypre_BoomerAMGInterpTruncation(..) {

1007: int *P_diag_i = hypre_CSRMatrixI(P_diag);
1014: int *P_offd_i = hypre_CSRMatrixI(P_offd);

1062: #pragma omp parallel private(...)
S |

1064
1172: if(max_elmst>0) {
1179: for(i=start; i<stop; i++) {

1i83: last_index = P_diag_i[i+1];
1184 : last_index_offd = P_offd_i[i+1];

= MPI/OpenMP application non-
deterministically crashed in an
OpenMP region when compiling

with optimization levels 40T, ~ Tefurnioraralier Leglon o/ o o oo

48: P_diag_i[i]
249: P_offd_il[i]

cnt_diag;
cnt_offd;

= Manifested intermittently at or

above 8K MPI processes

SOIQOUDA G N0y

P_diag_i[5] P_diag_i[5] . Poffdi[5] P_offd i[5] /

LLNL-PRES-741293

saull €y

. . r-TTTTETT Data ra r-TTTTT Data race
= The scientists spent months, and [0 T Ssulir 10 Tl &
then ended up disabling OpenMP ! ? ? i : ? ? i
. i [[
: _ RACE! : : _ RACE! :
| |

12

MPI can also introduce non-determinism

It's typically due to communication with MPI_ANY_SOURCE
= In non-deterministic applications, each MPI rank doesn’t know which other
MPI rank will send message and when

= Example
— If processes communication with neighbors, messages can arrive in any order from

neighbors
Example: Communications with neighbors

TIIL]
7] a1 north
MPT_Irecv(.., MPT_ANY_SOURCE, .); vt
while(1) { * 4; 4; q; l
MPT_Test(flag); vttt J_H— west <
if (flag) { =5 =" east
<computation> - 4
MPI_Irecv(.., MPI_ANY_SOURCE, ..); I
} A south
} .

MCB: Monte Carlo Benchmark

If a bug manifests through a particular message receive order,

It's hard to reproduce the bug, thereby, hard to debug it

LLNL-PRES-741293 13

ReMPI| deterministically reproduces order of
message receives

= ReMPI is an MPI record-and-replay tool
— Record an order of MPl message receives
— Replay the exactly same order of MPI message receives

= Even if a bug manifests in a particular order of message
receives, ReMPI can consistently reproduce the target bug

Debugging a particular control flow in replay

Target bug

<iReMPI

seg-fault

14

ReMPI case study: ParaDiS

= ParaDis
— non-deterministically crashed after 100 to 200 iterations

= ReMPI reproduced the bug at the exactly same iteration
= ReMPI is interoperable with parallel debuggers and makes

debugging non-deterministic bug easier
— We recorded a buggy behavior in record mode
— We diagnosed with TotalView under replay mode

Record

File Edit View Group Process Thread Action Point Tools Window Heb

Group (Conro) ,Dlllb|sdse :)

4 3 35 M
p Out Run To| Prev UnStep Caller BackTo Live

TOTALVIEW

TECHNOLOGIES

- s -
8

LLNL-PRES-741293

ReMPI is also useful for “Testing” {£iReVIPI

= "Testing” is also important for maintaining software quality

= MPI non-deterministic applications present significant challenges to testing
— The non-determinism can produce different results from run to run by nature

= Using ReMPI, computational scientists can easily reproduce MPI behaviors,
which facilitate testing

Testing deterministic apps Testing non-deterministic apps
Previous New Previous New
version version version version

l Result l = [Result] [Result A] [Result C] [Result B] = [Result F] [Result A] [Result E]

LLNL-PRES-741293 16

Unintended message races in MPI

= Many applications are written as a series of communication and computation
routines (i.e., data parallel, SPMD)

Developers must make sure all communication routines are “isolated”
Example (Routine A and Routine B)

— Different MPI_TAG or synchronization (e.g. MPI_Barrier) between the two routines

If not isolated, message race bugs potentially occur
— E.g.) Amessage sent in Routine B is received in Routine A

Unintended message races are non-deterministic and infrequently occur

Intended Unintended
message matching message matching
PO P1 P2 PO P1 P2
Routine A :
Routine X L1

Routine B

LLNL-PRES-741293 17

NINJA: Noise Injection Agent Tool

= NINJA exposes message race bugs by injecting noise

Intended . Unintended
message matching message matching
PO P1 P2 PO P1 P2
Routine A :
Routine X Lo
Routine B X

= NINJA detects suspicious communication routines
— Communication routine using the same MPI_TAG without synchronization

= NINJA injects a delay to MPI messages in order to enforce message
races
= NINJA can test if the application has unintended message races

LLNL-PRES-741293 18

NINJA cast study: Diablo/Hypre-2.10.1(in ParaSail module)

= Unintended message races in Hypre
= Prior to NINJA, the bug does not manifest itself in Hypre test code
= NINJA consistently exposed message races in the test code

Diablo/Hypre 2.10.1

Exact Inverse Approximated Inverse

\
-

ParaSAILS is an approximate inverse method for sparse
linear systems

= The bug manifested in particular
machines

= It hung only once every 30 runs
after a few hours

= The scientists spent 2 months in
the period of 18 months, and
then gave up on debugging it

LLNL-PRES-741293

of iterations to wrong message match

100

80

60

40

20

100% [
manifestation !

with NINJA ,'

0 %
manifestation !
without NINJA

|
N\ e e e e e e e 1

w/o NINJA w/ NINJA

19

Summary

= Debugging and testing large-scale HPC applications are becoming

more challenging

= The PRUNERS toolset facilitates debugging and testing

= Exscale computing will be the culmination of non-deterministic
execution for unprecedentedly high performance, and PRUNERS
leads the way to solve its debugging and testing challenges.

PRUNERS

LLNL-PRES-741293

|
Source code NG

Compiler

20

PRUNERS

hitps://pruners.github.io/

PRUNERS toolset Q|

<iReMPI

LLg Lawrence Livermore u U'ﬁ] IVERSITY R\WNTH

National Laboratory OF UTAH?®
Dong H. Ahn Simone Atzeni :
Chris Chambreau Michael Bentley Joachim Protze
lgnacio Laguna Goef Sawaya
Gregory L. Lee Prof. Ganesh Gopalakrishnan
Kento Sato Prof. Zvonimir. Rakamaric

Martin Schulz

LLNL-PRES-741293

B Lawrence Livermore
National Laboratory

