
LLNL-PRES-741293
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344. Lawrence
Livermore National Security, LLC

Computational Reproducibility at Exascale (CRE2017)
November 12th, 2017

Kento Sato

Providing Reproducibility for Uncovering
Non-Deterministic Errors in Runs on Supercomputers

LLNL-PRES-741293 2

Debugging/Testing large-scale applications
is challenging

“On average, software developers spend
50% of their programming time finding and fixing bugs.” [1]

Debugging/Testing are inevitable software development processes.
Tools facilitating Debugging/Testing are indispensable

[1] Source: http://www.prweb.com/releases/2013/1/prweb10298185.htm, CAMBRIDGE, UK (PRWEB) JANUARY 08, 2013

LLNL-PRES-741293 3

Bugs are not created equal !

§ Examples
— Bugs that manifest themselves when using –O3, but do not with –O0
— Bugs that do not manifests themselves

Binary A

Compiler

int main() {
double throwDist, a;
for(int i = 1; i <= 10000; i++) {

throwDist = dist((double)rand(),
(double)rand());

if(throwDist <= 1) a++;
}
double pieCalc = pie(numThrows, a);
return 0;

}

Source code

Execution

Binary B Binary C

Call path YCall path X Call path Z

Result X Result Y Result Z

Compiler

Runtime environment

Different compilers, flags and
platforms produce
different binaries

Runtime environments (e.g.,
MPI, OpenMP) also change

applications’ behaviors

§ When debugging/testing, reproducibility is very important

LLNL-PRES-741293 4

Non-deterministic bugs cost substantial amounts of
time and efforts

§ The bug manifested in particular
machines

§ It hung only once every 30 runs
after a few hours

§ The scientists spent 2 months in
the period of 18 months, and
then gave up on debugging it

Diablo/Hypre 2.10.1 HYDRA (porting on Sequoia)

§ MPI/OpenMP application non-
deterministically crashed in an
OpenMP region when compiling
with optimization levels

§ Manifested intermittently at or
above 8K MPI processes

§ The scientists spent months, and
then ended up disabling OpenMP

and more ...

LLNL-PRES-741293 5

Non-deterministic bugs are introduced at
multiple levels
§ Introduced at the compiler level or at different runtime levels
§ A monolithic tool won’t work for all cases
§ Debugging/testing toolset

— Individual tool works effectively
— Interoperable and composable each other
— Make debugging/testing easier even under other existing debuggers

Binary A

Compiler

int main() {
double throwDist, a;
for(int i = 1; i <= 10000; i++) {

throwDist = dist((double)rand(),
(double)rand());

if(throwDist <= 1) a++;
}
double pieCalc = pie(numThrows, a);
return 0;

} Source code

Execution

Binary B Binary C

Call path YCall path X Call path Z

Result X Result Y Result Z

Compiler level

Inter-thread level
(OpenMP)

Inter-process level
(MPI)

M
ultiple levels

LLNL-PRES-741293 6

FLiT

Data race detector for OpenMP programs

Compiler-induced floating-point computation
variability tester

MPI record-and-replay tool
for reproducing non-deterministic MPI bugs

Noise injection tool
for exposing message race bugs

The PRUNERS Toolset comprises four individual tools that can co-operate
C

om
piler

level
O

penM
P

M
PI

M
ultiple levels

Multi-level debugging/testing capabilities

LLNL-PRES-741293 7

Different compilers, compiler flags and
platforms produce different numerical results

§ No guarantee that floating-point computation on
one platform is the same on another platform
—E.g.) Apply associativity rules of real arithmetic

float val = x + y;
float err = y - (val - x);

gcc-4.9.3 -O0
gcc-4.9.3 -O3
icc-16.0.3 -O0

icc-16.0.3 –O3

float val = x + y;
float err = y - (val - x);

float val = x + y;
float err = y – y; 0

Understanding how sensitive your algorithm is w.r.t. to different round-off
errors introduced by different compilers and flags are important

for code verification and validation

Shewchuk/Kahan summation

LLNL-PRES-741293 8

FLiT (Floating-point Litmus Tester)

§ FLiT is a reproducibility test framework
— Test floating-point arithmetic variability in any user-given collection of programs

§ FLiT tests the variability through hundreds of combinations
— Different compilers, compiler flags, and also different hosts

§ Results are stored in SQL database and used for visualization and for
further analysis

Test case

clang gcc icc

-O0 -O1 -O2 -O3

-funsafe-math
-optimizations

-frounding
-math

-freciprocal
-math

(a) NVCC compiler for CUDA

(b) GCC compiler

(c) Clang compiler

Legend
0: Unoptimized / Ground Truth
1: Difference #1
2: Difference #2
3: Difference #3
4: Difference #4

(d) ICPC compiler

Fig. 4: Heat maps of compiler-induced variability. The horizontal axis of each heat map is which test was executed. The vertical axis is the compilation flags
provided. In each case, the unoptimized version (e.g. “-O0”) returns the reference answer shown in black. Anything not black gave a different answer than
the unoptimized compilation. Note: each column is independently scaled since they are independent tests. This demonstrates how many different answers are
achieved varying only compiler flags for fixed code and fixed algorithm inputs. Litmus tests and compilations with no variability are excluded from these
heat maps. To keep the heat maps of reasonable size, only the unoptimized compilation and -O3 are shown.

the true answer, which is shown on the figure as black. One
may wonder how different these answers are. This difference
information is stored in the database and can be mined by the
user if desired. For these small litmus tests, the answers are
very similar, which is not surprising considering their size.
However, that misses the point we are presenting – that static
code can be compelled to generate up to four different values
simply by compiling it in different ways. It will be informative
to investigate how many different answers a complex piece of

real-world code is capable of generating.
Note that in Figure 4, the compilers are separated in their

analysis. This is for two reasons: (1) some compiler flags do
not apply to all compilers and (2) compiler flags and optimiza-
tion levels do not have uniform meaning across compilers.
We can compare compilers in isolation to gain larger trends.
The Clang compiler in Figure 4(c) is the least aggressive with
unsafe floating-point optimizations. The ICPC compiler in
Figure 4(d) is the most aggressive and is aggressive in different

Visualization

SQL
database

LLNL-PRES-741293 9

§ We tested several kernels which have compiler-induced FP variability
— Difference in numerical results across different compilers, flags and kernels

§ Example
— When you want to find a compiler option that makes your applications faster

while reproducing the exactly same results as non-optimized code, FLiT
becomes very useful tool

FLiT case study

(a) NVCC compiler for CUDA

(b) GCC compiler

(c) Clang compiler

Legend
0: Unoptimized / Ground Truth
1: Difference #1
2: Difference #2
3: Difference #3
4: Difference #4

(d) ICPC compiler

Fig. 4: Heat maps of compiler-induced variability. The horizontal axis of each heat map is which test was executed. The vertical axis is the compilation flags
provided. In each case, the unoptimized version (e.g. “-O0”) returns the reference answer shown in black. Anything not black gave a different answer than
the unoptimized compilation. Note: each column is independently scaled since they are independent tests. This demonstrates how many different answers are
achieved varying only compiler flags for fixed code and fixed algorithm inputs. Litmus tests and compilations with no variability are excluded from these
heat maps. To keep the heat maps of reasonable size, only the unoptimized compilation and -O3 are shown.

the true answer, which is shown on the figure as black. One
may wonder how different these answers are. This difference
information is stored in the database and can be mined by the
user if desired. For these small litmus tests, the answers are
very similar, which is not surprising considering their size.
However, that misses the point we are presenting – that static
code can be compelled to generate up to four different values
simply by compiling it in different ways. It will be informative
to investigate how many different answers a complex piece of

real-world code is capable of generating.
Note that in Figure 4, the compilers are separated in their

analysis. This is for two reasons: (1) some compiler flags do
not apply to all compilers and (2) compiler flags and optimiza-
tion levels do not have uniform meaning across compilers.
We can compare compilers in isolation to gain larger trends.
The Clang compiler in Figure 4(c) is the least aggressive with
unsafe floating-point optimizations. The ICPC compiler in
Figure 4(d) is the most aggressive and is aggressive in different

GCC compiler

C
om

pi
le

r o
pt

io
ns

Kernels

(a) NVCC compiler for CUDA

(b) GCC compiler

(c) Clang compiler

Legend
0: Unoptimized / Ground Truth
1: Difference #1
2: Difference #2
3: Difference #3
4: Difference #4

(d) ICPC compiler

Fig. 4: Heat maps of compiler-induced variability. The horizontal axis of each heat map is which test was executed. The vertical axis is the compilation flags
provided. In each case, the unoptimized version (e.g. “-O0”) returns the reference answer shown in black. Anything not black gave a different answer than
the unoptimized compilation. Note: each column is independently scaled since they are independent tests. This demonstrates how many different answers are
achieved varying only compiler flags for fixed code and fixed algorithm inputs. Litmus tests and compilations with no variability are excluded from these
heat maps. To keep the heat maps of reasonable size, only the unoptimized compilation and -O3 are shown.

the true answer, which is shown on the figure as black. One
may wonder how different these answers are. This difference
information is stored in the database and can be mined by the
user if desired. For these small litmus tests, the answers are
very similar, which is not surprising considering their size.
However, that misses the point we are presenting – that static
code can be compelled to generate up to four different values
simply by compiling it in different ways. It will be informative
to investigate how many different answers a complex piece of

real-world code is capable of generating.
Note that in Figure 4, the compilers are separated in their

analysis. This is for two reasons: (1) some compiler flags do
not apply to all compilers and (2) compiler flags and optimiza-
tion levels do not have uniform meaning across compilers.
We can compare compilers in isolation to gain larger trends.
The Clang compiler in Figure 4(c) is the least aggressive with
unsafe floating-point optimizations. The ICPC compiler in
Figure 4(d) is the most aggressive and is aggressive in different

(a) NVCC compiler for CUDA

(b) GCC compiler

(c) Clang compiler

Legend
0: Unoptimized / Ground Truth
1: Difference #1
2: Difference #2
3: Difference #3
4: Difference #4

(d) ICPC compiler

Fig. 4: Heat maps of compiler-induced variability. The horizontal axis of each heat map is which test was executed. The vertical axis is the compilation flags
provided. In each case, the unoptimized version (e.g. “-O0”) returns the reference answer shown in black. Anything not black gave a different answer than
the unoptimized compilation. Note: each column is independently scaled since they are independent tests. This demonstrates how many different answers are
achieved varying only compiler flags for fixed code and fixed algorithm inputs. Litmus tests and compilations with no variability are excluded from these
heat maps. To keep the heat maps of reasonable size, only the unoptimized compilation and -O3 are shown.

the true answer, which is shown on the figure as black. One
may wonder how different these answers are. This difference
information is stored in the database and can be mined by the
user if desired. For these small litmus tests, the answers are
very similar, which is not surprising considering their size.
However, that misses the point we are presenting – that static
code can be compelled to generate up to four different values
simply by compiling it in different ways. It will be informative
to investigate how many different answers a complex piece of

real-world code is capable of generating.
Note that in Figure 4, the compilers are separated in their

analysis. This is for two reasons: (1) some compiler flags do
not apply to all compilers and (2) compiler flags and optimiza-
tion levels do not have uniform meaning across compilers.
We can compare compilers in isolation to gain larger trends.
The Clang compiler in Figure 4(c) is the least aggressive with
unsafe floating-point optimizations. The ICPC compiler in
Figure 4(d) is the most aggressive and is aggressive in different

(a) NVCC compiler for CUDA

(b) GCC compiler

(c) Clang compiler

Legend
0: Unoptimized / Ground Truth
1: Difference #1
2: Difference #2
3: Difference #3
4: Difference #4

(d) ICPC compiler

Fig. 4: Heat maps of compiler-induced variability. The horizontal axis of each heat map is which test was executed. The vertical axis is the compilation flags
provided. In each case, the unoptimized version (e.g. “-O0”) returns the reference answer shown in black. Anything not black gave a different answer than
the unoptimized compilation. Note: each column is independently scaled since they are independent tests. This demonstrates how many different answers are
achieved varying only compiler flags for fixed code and fixed algorithm inputs. Litmus tests and compilations with no variability are excluded from these
heat maps. To keep the heat maps of reasonable size, only the unoptimized compilation and -O3 are shown.

the true answer, which is shown on the figure as black. One
may wonder how different these answers are. This difference
information is stored in the database and can be mined by the
user if desired. For these small litmus tests, the answers are
very similar, which is not surprising considering their size.
However, that misses the point we are presenting – that static
code can be compelled to generate up to four different values
simply by compiling it in different ways. It will be informative
to investigate how many different answers a complex piece of

real-world code is capable of generating.
Note that in Figure 4, the compilers are separated in their

analysis. This is for two reasons: (1) some compiler flags do
not apply to all compilers and (2) compiler flags and optimiza-
tion levels do not have uniform meaning across compilers.
We can compare compilers in isolation to gain larger trends.
The Clang compiler in Figure 4(c) is the least aggressive with
unsafe floating-point optimizations. The ICPC compiler in
Figure 4(d) is the most aggressive and is aggressive in different

ICPC compiler

LLNL-PRES-741293 10

OpenMP easily creates non-deterministic bugs

§ Data races in OpenMP are the most malignant non-deterministic bugs

§ Depending on orders of read and write, numerical results change

§ Orders of read and write are non-deterministic, it introduces non-
deterministic bugs

#pragma omp parallel for
for(int i = 0; i < 4; i++)
v[i] = v[i+1] + 1; v[0] v[1] v[2] v[3]

Thread 0
(i = 0 … 1)Example

In large-scale applications,
it is difficult to identify data races manually

Data dependency

Thread 1
(i = 2 … 3)

LLNL-PRES-741293 11

Archer

§ Archer is a data race detector combining static and dynamic
analysis

OpenMP
Source code

Static Analysis
(OpenMP C/C++ Clang/LLVM Compiler)

Dynamic Analysis
(Tsan and OpenMP RT)

Report

§ Static analysis
— Exclude regions that can be statically detected to be race-free for

dynamic analysis (Blacklisting)

§ Dynamic analysis
— Detect data races based on LLVM/Clang

ThreadSanitizer combined with OMPT-based annotation

Archer significantly reduce runtime overhead
while providing high precision and accuracy

LLNL-PRES-741293 12

Archer case study: HYDRA

1002: hypre_BoomerAMGInterpTruncation(…) {
…
1007: int *P_diag_i = hypre_CSRMatrixI(P_diag);
1014: int *P_offd_i = hypre_CSRMatrixI(P_offd);
…
1062: #pragma omp parallel private(...)
1064: {
…
1172: if(max_elmst>0) {
…
1179: for(i=start; i<stop; i++) {
…
1183: last_index = P_diag_i[i+1];
1184: last_index_offd = P_offd_i[i+1];
…
1248: P_diag_i[i] = cnt_diag;
1249: P_offd_i[i] = cnt_offd;
…
1484: } /* end parallel region */
1491: return ieer;
1492: }

423 lines
A

bout 50 va
ria

bles

§ Archer easily detected data races !

HYDRA (porting on Sequoia)

§ MPI/OpenMP application non-
deterministically crashed in an
OpenMP region when compiling
with optimization levels

§ Manifested intermittently at or
above 8K MPI processes

§ The scientists spent months, and
then ended up disabling OpenMP

Archer

T0

Write
P_diag_i[5]

Read
P_diag_i[5]

T1

RACE!

T0

Write
P_offd_i[5]

Read
P_offd_i[5]

T1

RACE!

LLNL-PRES-741293 13

MPI can also introduce non-determinism
§ It’s typically due to communication with MPI_ANY_SOURCE
§ In non-deterministic applications, each MPI rank doesn’t know which other

MPI rank will send message and when
§ Example

— If processes communication with neighbors, messages can arrive in any order from
neighbors

MPI_ANY_SOURCE communication

MPI_Irecv(…, MPI_ANY_SOURCE, …);
while(1) {

MPI_Test(flag);
if (flag) {

<computation>
MPI_Irecv(…, MPI_ANY_SOURCE, …);

}
}

north

south

west
east

MCB: Monte Carlo Benchmark

Example: Communications with neighbors

If a bug manifests through a particular message receive order,
It’s hard to reproduce the bug, thereby, hard to debug it

LLNL-PRES-741293 14

ReMPI deterministically reproduces order of
message receives

Output
Output A Output B

Hanging

Target bug

seg-fault

Debugging a particular control flow in replay

Input

§ ReMPI is an MPI record-and-replay tool
— Record an order of MPI message receives
— Replay the exactly same order of MPI message receives

§ Even if a bug manifests in a particular order of message
receives, ReMPI can consistently reproduce the target bug

LLNL-PRES-741293 15

ReMPI case study: ParaDiS
§ ParaDis

— non-deterministically crashed after 100 to 200 iterations
§ ReMPI reproduced the bug at the exactly same iteration
§ ReMPI is interoperable with parallel debuggers and makes

debugging non-deterministic bug easier
— We recorded a buggy behavior in record mode
— We diagnosed with TotalView under replay mode

Record
data JobParaDiS

Job
ParaDiS
Job

Record Replay

LLNL-PRES-741293 16

ReMPI is also useful for “Testing”

§ “Testing” is also important for maintaining software quality

§ MPI non-deterministic applications present significant challenges to testing
— The non-determinism can produce different results from run to run by nature

§ Using ReMPI, computational scientists can easily reproduce MPI behaviors,
which facilitate testing

New
version

Previous
version

Result Result=

New
version

Result F≠ Result A Result E

Previous
version

Result A Result C Result B

Testing deterministic apps Testing non-deterministic apps

LLNL-PRES-741293 17

Unintended message races in MPI

Unintended
message matching

P0

X

X

X

P1 P2 P0

X

X

X

P1 P2

N
oi

se

Crash

Routine A

Routine X

Routine B

§ Many	applications	are	written	as	a	series	of	communication	and	computation	
routines	(i.e.,	data	parallel,	SPMD)

§ Developers	must	make	sure	all	communication	routines	are	“isolated”
§ Example	(Routine	A	and	Routine	B)

— Different	MPI_TAG	or	synchronization	(e.g.	MPI_Barrier)	between	the	two	routines
§ If	not	isolated,	message	race	bugs	potentially	occur

— E.g.)	A	message	sent	in	Routine	B	is	received		in	Routine	A
§ Unintended	message	races	are	non-deterministic	and	infrequently	occur

Intended
message matching

LLNL-PRES-741293 18

NINJA: Noise Injection Agent Tool
§ NINJA exposes message race bugs by injecting noise

§ NINJA detects suspicious communication routines
— Communication routine using the same MPI_TAG without synchronization

§ NINJA injects a delay to MPI messages in order to enforce message
races

§ NINJA can test if the application has unintended message races

Unintended
message matching

P0

X

X

X

P1 P2 P0

X

X

X

P1 P2

N
oi

se

Crash

Routine A

Routine X

Routine B

Intended
message matching

LLNL-PRES-741293 19

NINJA cast study: Diablo/Hypre-2.10.1(in ParaSail module)

§ The bug manifested in particular
machines

§ It hung only once every 30 runs
after a few hours

§ The scientists spent 2 months in
the period of 18 months, and
then gave up on debugging it

Diablo/Hypre 2.10.1

w/o NINJA w/ NINJA

0 %
manifestation

without NINJA

100%
manifestation
with NINJA

§ Unintended message races in Hypre
§ Prior to NINJA, the bug does not manifest itself in Hypre test code
§ NINJA consistently exposed message races in the test code

LLNL-PRES-741293 20

Summary
§ Debugging and testing large-scale HPC applications are becoming

more challenging
§ The PRUNERS toolset facilitates debugging and testing
§ Exscale computing will be the culmination of non-deterministic

execution for unprecedentedly high performance, and PRUNERS
leads the way to solve its debugging and testing challenges.

Binary A

Compiler

int main() {
double throwDist, a;
for(int i = 1; i <= 10000; i++) {

throwDist = dist((double)rand(),
(double)rand());

if(throwDist <= 1) a++;
}
double pieCalc = pie(numThrows, a);
return 0;

} Source code

Execution

Binary B Binary C

Call path YCall path X Call path Z

Result X Result Y Result Z

FLiT

C
om

pi
le

r
O

pe
n

M
P

M
PI

LLNL-PRES-741293 21

PRUNERS	toolset

https://pruners.github.io/

FLiT

Dong H. Ahn
Chris Chambreau
Ignacio Laguna
Gregory L. Lee

Kento Sato
Martin Schulz

Simone Atzeni
Michael Bentley

Goef Sawaya
Prof. Ganesh Gopalakrishnan

Prof. Zvonimir. Rakamaric

Joachim Protze

