
LLNL-PRES-741293
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344. Lawrence
Livermore National Security, LLC

ECP 2nd annual meeting
February 9th

Kento Sato

Debugging/Testing
Non-deterministic MPI Applications

LLNL-PRES-741293 3

What is non-determinism in MPI applications ?

§ Message receive orders change across executions
— Unpredictable system noise (e.g. network, system daemon & OS jitter)

§ Floating point arithmetic orders can also change across
executions

Execution A: (a+b)+c

P0 P1 P2

a
b
c

P0 P1 P2

b
c

a

no
ise

 !

Execution B: a+(b+c)

Execution binary Input data+

LLNL-PRES-741293 4

Non-determinism increases debugging cost

§ Non-deterministic control flow
— Successful run, seg-fault or hang

§ Non-deterministic numerical results
— Floating-point arithmetic is non-associative

§ Control flows of an application can change across different runs

seg-fault Result
Result A Result B

(a+b)+c ≠ a+(b+c)

Input

In non-deterministic applications, it’s hard to reproduce bugs and incorrect results.
It costs excessive amounts of time for “reproducing” target behaviors

LLNL-PRES-741293 5

Non-deterministic bugs cost substantial amounts of
time and efforts in MPI applications

§ The bug manifested in particular
clusters

§ It hung only once every 30 runs
after a few hours

§ The scientists spent 2 months in
the period of 18 months, and
then gave up on debugging it

Diablo/Hypre 2.10.1 ParaDis

§ The bug intermittently
manifested at 100 to 200
iteration

§ The scientists gave up
debugging by themselves

and more ...

LLNL-PRES-741293 6

How MPI introduces non-determinism ?

§ It’s typically due to communication with MPI_ANY_SOURCE
§ In non-deterministic applications, each MPI rank doesn’t know which other

MPI ranks will send message and when

Non-deterministic code w/ MPI_ANY_SOURCE

MPI_Irecv(…, MPI_ANY_SOURCE, …);
while(1) {
MPI_Test(flag);
if (flag) {
<computation>
MPI_Irecv(…, MPI_ANY_SOURCE, …);

}
}

LLNL-PRES-741293 7

CORAL benchmark: MCB (Monte carlo benchmark)

§ Use of MPI_ANY_SOURCE is not only source of non-
determinism
— MPI_Waitany/Waitsome/Testany/Testsome also introduce non-determinism

north

south

west
east

Example: Communications with neighbors Non-deterministic code w/o MPI_ANY_SOURCE

MPI_Irecv(…, north_rank, …, reqs[0]);
MPI_Irecv(…, south_rank, …, reqs[1]);
MPI_Irecv(…, west_rank , …, reqs[2]);
MPI_Irecv(…, east_rank , …, reqs[3]);
while(1) {

MPI_Testsome(…, reqs, …, flag, status);
if (flag) {

…
<computation>
for (…) MPI_Irecv(…, status.MPI_SOURCE, …);
…

}
}

MCB: Monte Carlo Benchmark

LLNL-PRES-741293 8

Output
Output A Output B

Hanging

Target bug

seg-fault

Debugging a particular control flow in replay

Input

§ ReMPI is an MPI record-and-replay tool
— Record an order of MPI message receives
— Replay the exactly same order of MPI message receives

§ Even if a bug manifests in a particular order of message receives,
ReMPI can consistently reproduce the target bug

§ ReMPI works with other existing debugging tools
— STAT
— Parallel debuggers (e.g., Totalview, DDT)

ReMPI deterministically reproduce order of
message receives

SC15: Kento Sato et al., " Clock delta compression for scalable
order-replay of non-deterministic parallel applications”

LLNL-PRES-741293 10

MCB with/without ReMPI
§ Performance metric: How many particles are tracked per second

0.00E+00
5.00E+08
1.00E+09
1.50E+09
2.00E+09
2.50E+09
3.00E+09
3.50E+09
4.00E+09
4.50E+09
5.00E+09

48 96 192 384 768 1536 3072

P
er

fo
rm

an
ce

 (t
ra

ck
s/

se
c)

of processes

MCB w/o Recording

MCB w/ gzip (Local storage)

§ ReMPI becomes scalable by recording to local memory/storage
— Each rank independently writes record à No communication across MPI ranks

P0 P1

node 1

P2 P3

node 2

P4 P5

node 3

P6 P7

node 4

MCB

ReMPI

ReMPI

B
et

te
r

No
Comm.

No
Comm.

No
Comm.

Recording location: Local SSDe

LLNL-PRES-741293 11

ReMPI case study: ParaDiS
§ ParaDis

— non-deterministically crashed after 100 to 200 iterations
§ ReMPI reproduced the bug at the exactly same iteration
§ ReMPI is interoperable with parallel debuggers and makes

debugging non-deterministic bug easier
— We recorded a buggy behavior in record mode
— We diagnosed with TotalView under replay mode

Record
data JobParaDiS

Job
ParaDiS
Job

Record Replay

Shared file system

LLNL-PRES-741293 12

ReMPI is also useful for “Testing”

§ “Testing” is also important for maintaining software quality

§ However, non-deterministic MPI applications present significant
challenges to testing
— The non-determinism can produce different results from run to run by nature
— It’s difficult to reason the different numerical results are due to MPI non-determinism or

software bug

§ Using ReMPI, computational scientists can easily reproduce MPI
behaviors, which facilitate testing

New
version

Previous
version

Result Result=

New
version

Result F≠ Result A Result E

Previous
version

Result A Result C Result B

Testing deterministic apps Testing non-deterministic apps

LLNL-PRES-741293 13

MPI is not only source of non-determinism

§ Applications have been going towards hybrid
programming model
— E.g.) MPI + OpenMP

§ OpenMP code adds another level of non-
determinism
— Reduction, critical section or data racy access
— OpenMP non-determinism affects MPI function

call behaviors
— Need to record both MPI and OpenMP events

Providing record-and-replay
for MPI+OpenMP application is our future work

MPI+OpenMP

CORAL benchmarks

LLNL-PRES-741293 14

Unintended message races in MPI

Unintended
message matching

P0

X

X

X

P1 P2 P0

X

X

X

P1 P2

N
oi

se

Crash

Routine A

Routine X

Routine B

§ Many applications are written as a series of communication and computation
routines executed by all processes (i.e., data parallel, SPMD)

§ Developers must make sure all communication routines are “isolated”
§ Example (Routine A and Routine B)

— Different MPI_TAG or synchronization (e.g. MPI_Barrier) between the two routines
§ If not isolated, message race bugs potentially occur

— E.g.) A message sent in Routine B is received in Routine A
§ Unintended message races are non-deterministic and infrequently occur

Intended
message matching

LLNL-PRES-741293 15

NINJA
§ NINJA (Noise Injection Agent Tool) exposes message race bugs by

injecting noise

§ NINJA detects suspicious communication routines
— Communication routine using the same MPI_TAG without synchronization

§ NINJA injects a delay to MPI messages in order to enforce message
races

§ NINJA can test if the application has unintended message races

Unintended
message matching

P0

X

X

X

P1 P2 P0

X

X

X

P1 P2

N
oi

se

Crash

Routine A

Routine X

Routine B

Intended
message matching

PPoPP2017: Kento Sato et al., Noise Injection Techniques for
Reproducing Subtle and Unintended Message Races”

LLNL-PRES-741293 16

NINJA cast study: Diablo/Hypre-2.10.1(in ParaSail module)

§ The bug manifested in particular
machines

§ It hung only once every 30 runs
after a few hours

§ The scientists spent 2 months in
the period of 18 months, and
then gave up on debugging it

Diablo/Hypre 2.10.1

w/o NINJA w/ NINJA

0 %
manifestation

without NINJA

100%
manifestation
with NINJA

§ Unintended message races in Hypre
§ Prior to NINJA, the bug does not manifest itself in Hypre test code
§ NINJA consistently exposed message races in the test code

LLNL-PRES-741293 17

Summary

§ Non-determinism in MPI applications costs significant
time for debugging and testing

§ ReMPI and NINJA facilitate debugging/testing non-
deterministic MPI applications
— ReMPI is MPI record-and-replay for reproducing paticular errors
— NINJA is an noise injection tool for exposing message-race bugs

§ We will extend our tools for supporting MPI+OpenMP
applications in future

LLNL-PRES-741293 18

OR https://github.com/PRUNERS/NINJAPRUNERS NINJA

PRUNERS ReMPI OR https://github.com/PRUNERS/ReMPI

