PRUNERS

Providing Reproducibility for Uncovering

Non-Deterministic Errors in Runs on Supercomputers
PMCD/JOWOG February 14, 2018

Dong H. Ahn (Pl) , Chris Chambreau, Ignacio Laguna, Gregory L. Lee, Kento Sato,
Martin Schulz, Simone Atzeni, Michael Bentley, Goef Sawaya, Ganesh
Gopalakrishnan, Zvonimir. Rakamaric, Joachim Protze

LLg Lawrence Livermore
National Laboratory

‘ I{ES 741293 R’
6 Qﬂwas performe rt e a

Debugging/Testing large-scale applications
is challenging

“On average, software developers spend
50% of their programming time finding and fixing bugs.” [1]

2.5 UNIVERSITY OF __=..
&¥ CAMBRIDGE = RogueWave

Judge Business School OF TWARE

Debugging/Testing are inevitable software development processes.

Tools facilitating Debugging/Testing are indispensable

[1] Source: hitp//www. prweb.com/releases/2013/ 1/prweb 10295125 him, CAMBRIDGE, UK (PRWEB) JANUARY 08, 2013

LLNL-PRES-741293 2

http://www.prweb.com/releases/2013/1/prweb10298185.htm

Easy-to-fix bugs VS. Difficult-to-fix bugs
¥ Totalview/DDT

Some bugs require to use Totalview or DDT

A
[|

Difficulty-level of
debugging

L | Chunky Fat
ong tai middle head
\ J | J
! Bugs
Many bugs can be quickly fixed Some class of bugs are
by simple printf debugging significantly hard to fix

g5 printf p®f Tota@/DDT

Bugs are not created equal |

= When debugging/testing, reproducibility is very important

Source code N

‘}K

Call path X Call path Y Call path Z
----- Result X ResultY Result Z

= Examples
— Bugs that manifest themselves when using -O3, but do not with -O0
— Bugs that manifests in a run and do not in the next run

LLNL-PRES-741293

Different compilers, flags and
platforms produce
different binaries

Runtime environment

Runtime environments (e.g.,
MPI, OpenMP) also change
applications’ behaviors

Non-deterministic bugs cost substantial amounts of
time and efforts

Diablo/Hypre 2.10.1 HYDRA (porting on Sequoia)

Approximated Inverse

ParaSAILS is an approximate inverse method for sparse
linear systems

= The bug manifested in particular = MPI/OpenMP application non-
machines deterministically crashed in an

= It hung only once every 30 runs OpenMP region when compiling
after a few hours with optimization levels

= The scientists spent 2 months in = Manifested intermittently at or

: above 8K MPI processes
the period of 18 months, and = The scientists spent months, and

then gave up on debugging it then ended up disabling OpenMP

and more ...

LLNL-PRES-741293

Non-deterministic bugs are introduced at
multiple levels

= Introduced at the compiler level or at different runtime levels

= A monolithic tool won't work for all cases

= Debugging/testing toolset

— Individual tool works effectively
— Interoperable and composable each other
— Make debugging/testing easier even under other existing debuggers

|
Source code &

Compiler

Execution

Call path X Call path Y

\

Call path Z

\

y

A\ 4

----- [Result X] [Result Y] [Result Z]

LLNL-PRES-741293

—

Compiler level

1
sjona| a|diyny

- Inter-process level
lllll (M Pl)

P R U N E R S Multi-level debugging/testing capabilities

The PRUNERS Toolset comprises four individual tools

=N Q)
: _ 0
/K% Compiler-induced floating-point computation 0 =
FLiT \X variability tester o S
N ®
i =
i Data race detector for OpenMP programs
~archer c
Wl wmiiWmi e
O
= D
AEEEM (E
Cryy | Re M PI MPI record-and-replay tool o
Smms? for reproducing non-deterministic MPI bugs o
“ NJ A Noise injection tool
for exposing message race bugs

LLNL-PRES-741293

Different compilers, compiler flags and
platforms produce different numerical results

* No guarantee that floating-point computation on

one platform is the same on another platform
—E.g.) Apply associativity rules of real arithmetic

gcc-4.9.3 -00 Shewchuk/Kahan summation
gcc-4.9.3 -03 =X +Y; 1cc-16.0.3 -03
1cc-16.0.3 -00 =y - (val - x);

X +Y,

y - (val - x); ; @

It's important to understanding how sensitive your numerical algorithm is

w.r.t. round-off errors introduced by different compilers
for code verification and validation

FLIiT (Floating-point Litmus Tester)

= FLiT is a reproducibility test framework

— Test floating-point arithmetic variability in any user-given collection of programs

= FLIT tests the variability through hundreds of combinations
— Different compilers, compiler flags, and also different hosts

= Results are stored in SQL database and used for visualization and for

further analysis

Test case

-funsafe-math -frounding
-optimizations -math

-freciprocal
-math

LLNL-PRES-741293

SQL
database

Visualization

FLiT case study

= We tested several kernels which have compiler-induced FP variability

— Difference in numerical results across different compilers, flags and kernels

= Example

— When you want to find a compiler option that makes your applications faster

LLNL-PRES-741293

while reproducing the exactly same results as non-optimized code, FLiT
becomes very useful tool

Compiler options
A

Kernels

A

-00

-03

-fassociative-math -O3
-fcx-fortran-rules -O3
-fcx-limited-range -0O3
-fcx-excess-precision=fast -0O3
-ffinite-math-only -O3
-ffloat-store -0O3
-ffp-contract=on -03
-fmerge-all-constants -O3
-fno-trapping-math -0O3
-freciprocal-math -03
-frounding-math -0O3
-fsignaling-nans -03
-funsafe-math-optimizations -0O3
-mavx -03

-mfpmath=sse -mtune=native -03

uoneddnINWIOANARNGLISIA

vindiogdwodbuel
2dade

uosaHda|buen |
uondnpaysdwis
wnNSYNYIMays
401590014

|ewJouqns

_|
=
o
=]
Q
I
o
0
=
<

eloueled

GCC compiler

L
|
|
=
O
O

) 9
%] wn
g =
o o
egend o =4 <
0: Unoptimized / Ground Truth < < 1
. - -
1: Difference #1 S s N
2: Difference #2 2 2 g
3: Difference #3 _ £ = Q
. - =3
4: Difference #4 2 5 u o5 _ 3
= == 4 0
aQ_ 5 3 55 2 3 KY-
o4y © Sy 5,0 =
o= = S8 2ws FIs
32502 =65 333 223
58cPd _~39 @38 g3
Be258FPEE2 3523azpo
cos5325Y955 30200 W03
oS0 Pog? I=5
=+ 00 X A anST wo O oo il
TN I3 Qdc B2 T2 Uy
g~<ﬂ35'9_5|m.-r%m:33mm0
>TSS RS RrAa3=5a47/2

-00

-03

-fcx-limited-range -0O3
-ffloat-store -O3

-fma -03
-fmerge-ll-constants -O3
-fp-model=double -03
-fp-model=extended -O3
-fp-model fast=1 -03
-fp-model fast=2 -03
-fp-model=precise -0O3
-fp-model=source -03
-fp-model=strict -O3
-fp-port -0O3
-frounding-math -03
-fsingle-precision-constant -O3
-ftz -03
-march=core-avx2 -03
-mavx -03

-mavx2 -mfma -03
-mfpmath=sse -mtune=native -0O3
-mpl -03

-no-fma -03

-no-ftz -03

-no-prec-div -0O3
-prec-div -03
--use_fast_math -03

ICPC compiler

10

OpenMP easily creates non-deterministic bugs

= Data races in OpenMP are the most malignant non-deterministic bugs
= Depending on orders of read and write, numerical results change

= Orders of read and write are non-deterministic, it introduces non-
deterministic bugs

Thread 0 Thread 1
1 = 1 =2 ..
Data racy code (i=0.1 G 3)
#pragma omp parallel for ijb tp%
forCint i = 0: 1 < 4 1) | B | (@) (@)oo
vli] = v[i+1l] + 1;
Data races

In large applications,

it is difficult to manually identify data races

LLNL-PRES-741293 11

Arch i
rcner H
tarcher
Wi =il il
= Archer is a data race detector combining static and dynamic
analysis

OpenMP Static Analysis —» Dynamic Analysis _,. Report

Source code (OpenMP C/C++ Clang/LLVM Compiler) (Tsan and OpenMP RT)

= Static analysis
— Exclude regions that can be statically detected to be race-free for
dynamic analysis (Blacklisting)

= Dynamic analysis

— Detect data races based on LLVM/Clang ThreadSanitizer combined
with OMPT-based annotation

Archer significantly reduce runtime overhead

while providing high precision and accuracy

LLNL-PRES-741293 12

Archer case study: HYDRA

= Archer easily detected data races !

HYDRA (porting on Sequoia)

= MPI/OpenMP application non-
deterministically crashed in an
OpenMP region when compiling
with optimization levels

= Manifested intermittently at or
above 8K MPI processes

= The scientists spent months, and
then ended up disabling OpenMP

LLNL-PRES-741293

1002: hypre_BoomerAMGInterpTruncation(..) {
1007: int *P_diag_i
1014: int *P_offd_i

1062: #pragma omp parallel private(...)
{

1172: if(max_elmst>0) {
1179: for(i=start; i<stop; i++) {

hypre_CSRMatrixI(P_diag);
hypre_CSRMatrixI(P_offd);

last_index = P_diag_i[i+1];
last_index_offd = P_offd_i[i+1];

P_diag_i[i]
P_offd_i[i]

cnt_diag;
cnt_offd;

Read Write
P_diag_i[5] P_diag_i[5] / . Pooftd_i[5] P_offd_i[5]

SOIQOLDA 0G N0V

soull g¢y

13

How MPI introduces non-determinism ?

= It's typically due to communication with MPI_ANY_SOURCE
= In non-deterministic applications, each MPI rank doesn’t know which other
MPI ranks will send message and when

Non-deterministic code w/ MPI_ANY_ SOURCE

MPI_Irecv(.., MPI_ANY_SOURCE, ..);
while(1l) {
MPI_Test(flag);
1f (flag) {
<computation>
MPI_Irecv(.., MPI_ANY_SOURCE, ..);

h
}

LLNL-PRES-741293

CORAL benchmark: MCB (Monte carlo benchmark)

= Use of MPI_ANY_SOURCE is not only source of non-

determinism

— MPI_Waitany/Waitsome/Testany/Testsome also introduce non-determinism
= MCB produces different numerical results from run to run

Example: Communications with neighbors Non-deterministic code w/o MPI_ANY_SOURCE

MPI_TIrecv(.., north_rank, .., reqs[0]);
_________ horth MPT_Trecv(.., south_rank, .., reqs[1]);
MPI_Trecv(., west_rank , .., reqs[2]);
l MPI_Irecv(.., east_rank , .., reqs[3]);
west | while(1) {
—> east MPI_Testsome(.., regs, .., flag, status);
T if (flag) {
__________ south <computation>
for (.) MPI_Irecv(.., status.MPI_SOURCE, ..);

In non-deterministic applications,
if a bug manifests through a particular message receive order,
it's hard to reproduce the bug, thereby, hard to debug it

LLNL-PRES-741293 15

ReMPI deterministically reproduce order of
message receives

= ReMPI is an MPI record-and-replay tool
— Record an order of MPl message receives
— Replay the exactly same order of MPI message receives

= Even if a bug manifests in a particular order of message
receives, ReMPI can consistently reproduce the target bug

=iReMPI

SC15: Kento Sato et al., " Clock delta compression for scalable order-replay of non-deterministic parallel applications”

LLNL-PRES-741293 16

ReMPI case study: ParaDiS

= ParaDis
— non-deterministically crashed after 100 to 200 iterations

= ReMPI reproduced the bug at the exactly same iteration
= ReMPI is interoperable with parallel debuggers and makes

debugging non-deterministic bug easier
— We recorded a buggy behavior in record mode
— We diagnosed with TotalView under replay mode

Record

:::::

TOTALVIEW

TECHNOLOGIES

list,
xit(l);

LLNL-PRES-741293

ReMPI is also useful for “Testing” {£iReVIPI

= “Testing” is also important for maintaining software quality

= However, non-deterministic MPI applications present significant

challenges to testing

— The non-determinism can produce different results from run to run by nature

— It's difficult to reason the different numerical results are due to MPI non-determinism or
software bug

= Using ReMPI, computational scientists can easily reproduce MPI
behaviors, which facilitate testing

Performance
tuning

Tuned code

Numerical Numerical
result result

v

Original code

LLNL-PRES-741293

Unintended message races in MPI

= Many applications are written as a series of communication and computation
routines executed by all processes (i.e., data parallel, SPMD)
Developers must make sure all communication routines are “isolated”

Example (Routine A and Routine B)

— Different MPI_TAG or synchronization (e.g. MPI_Barrier) between the two routines
If not isolated, message race bugs potentially occur

— E.g.) A message sent in Routine B is received in Routine A

Unintended message races are non-deterministic and infrequently occur

Intended . Unintended
message matching message matching
PO P1 P2 PO P1 P2
Routine A :
Routine X L

Routine B

LLNL-PRES-741293 19

g
or
25
2>
%!
5

o2
o‘::::::o
RKES

S

PPoPP2017: Kento Sato et al., Noise Injection Techniques for
Reproducing Subtle and Unintended Message Races”

= NINJA (Noise Injection Agent Tool) exposes message race bugs by
injecting noise

Intended . Unintended
message matching message matching
PO P1 P2 PO P1 P2
Routine A :
Routine X i
Routine B X

NINJA detects suspicious communication routines
— Communication routine using the same MPI_TAG without synchronization

NINJA injects a delay to MPI messages in order to enforce message
races
NINJA can test if the application has unintended message races

LLNL-PRES-741293

20

NINJA cast study: Diablo/Hypre-2.10.1(in ParaSail module)

= Unintended message races in Hypre
= Prior to NINJA, the bug does not manifest itself in Hypre test code
= NINJA consistently exposed message races in the test code

Diablo/Hypre 2.10.1

Exact Inverse Approximated Inverse

ParaSAILS is an approximate inverse method for sparse
linear systems

= The bug manifested in particular
machines

= It hung only once every 30 runs
after a few hours

= The scientists spent 2 months in
the period of 18 months, and
then gave up on debugging it

LLNL-PRES-741293

of iterations to wrong message match

100

80

60

40

20

0% 100% |
manifestation |1 manifestation !

without NINJA with NINJA ,'

B
N o e e o o e e e d N e e e en e e =

w/o NINJA w/ NINJA

21

Summary

= Debugging and testing are becoming more challenging
due to non-determinism in HPC applications

= The PRUNERS toolset facilitates debugging and testing
for non-deterministic applications

PRUNERS

v / o‘. %

Compiler

LLNL-PRES-741293 22

PRUNERS

hitps://pruners.github.io/

PRUNERS toolset Q ’

<iReMPI

B Lawrence Livermore U university IR\NTH

National Laboratory

OF UTAH®
Dong H. Ahn (PI) Simone Atzeni Joachim Protze
Chris Chambreau Michael Bentley
Ilgnacio Laguna Goef Sawaya
Gregory L. Lee Prof. Ganesh Gopalakrishnan
Kento Sato Prof. Zvonimir. Rakamaric

Martin Schulz

LLNL-PRES-741293

23

B Lawrence Livermore
National Laboratory

